Extended electroweak precision fits and their implications

Laura Reina Florida State University

LoopFest XV

University at Buffalo - August, 15 2016

<u>With</u>: J. de Blas¹, M. Ciuchini², E. Franco¹, D. Ghosh³, S. Mishima⁴, M. Pierini⁵, L. Silvestrini¹

1) University of Roma "La Sapienza", 2) University of Roma Tre, 3) Weizmann Institute of Science, 4) KEK, 5) CERN.

<u>Thanks</u> to the extended **HEPfit** collaboration.

Electroweak precision physics in the LHC era

- LHC, Run II: after the Higgs-boson discovery
 - $\hookrightarrow M_H$ becomes a precision electroweak (EW) parameter;
 - \hookrightarrow precision fits now probe consistency of the Standard Model (SM) and can provide indirect evidence of new physics;
 - \hookrightarrow fits can be extended to include Higgs-boson results: rates and distributions \longrightarrow constraints on anomalous Higgs-boson couplings;
 - \hookrightarrow actual sensitivity depends on experimental precision and theoretical accuracy.
- HEPfit: a global fit of existing electroweak precision data (EWPD) and Higgs-boson observables
 - $\rightarrow\,$ General framework, new features
 - $\rightarrow\,$ Results of EWPD fit, constraints on new physics
- Main results for Higgs-boson couplings and effective interactions
 - \rightarrow In terms of κ_i rescaling factors.
 - \rightarrow In terms of C_i coefficients of EFT operators.
- Outlook

LHC Run I has discovered the Higgs, measured its mass and spin . . .

ATLAS+CMS, Phys. Rev. Lett. 114, 191803

 M_H is now among the EW precision observables!

Effects of New Physics can now be more clearly disentangled in both **EW observables** and **Higgs-boson couplings**

Moreover, from decays $(H \to VV \text{ and } H \to ff)$

- \rightarrow Spin: highly constrained to be s = 0
- \rightarrow Parity: scalar vs pseudoscalar, exploring the tensor structure of decay amplitudes

Fits of electroweak precision data

- Set of input parameters
 - \rightarrow fixed: G_F , α (best measured)
 - \rightarrow floating: $M_Z, M_H, m_t, \alpha_s(M_Z), \Delta \alpha_{had}^{(5)}$
- Compute EW precision observables (EWPO), including all known higher-order corrections (in a given renormalization scheme):
 M_W, Γ_W (LEP2/Tevatron), Z-pole observables: Γ_Z, A_f, ... (LEP/SLD)
- **Perform best fit** and compare with experimental measurement: tension might signal new physics.
- Parametrize new physics effects (ex: *S*, *T*, *U* parameters) and constrain deviations in terms of chosen parameters.
- Several groups:
 - \rightarrow GAPP [Erler]
 - \rightarrow ZFITTER: [Akhundov, Arbuzov, S.Riemann & T.Riemann]
 - \rightarrow Gfitter: [Baak, Cúth, Haller, Hoecker, Kogler, Mönig, Schott, Stelzer]
 - → Now also part of $| HEPfit | \longrightarrow HEPfit$ Collaboration. For this study: [de Blas, Ciuchini, Franco, Mishima, Pierini, L.R., Silvestrini]

HEPfit developer repository: https://github.com/silvest/HEPfit HEPfit webpage: http://hepfit.roma1.infn.it

In this talk: EW precision physics and Higgs-boson physics [de Blas, Ciuchini, Franco, Mishima, Pierini, L.R., Silvestrini, arXiv:1608.01509]

The fitting procedure $\rightarrow \texttt{HEPfit}$

- Both electroweak and Higgs observables are calculated as a SM core plus corrections:
 - \hookrightarrow the SM cores include all existing higher order corrections [\rightarrow loops!]
 - \hookrightarrow the NP corrections are at the lowest order in all SM couplings.
- Experimental results are taken from the most recent published analyses
- The fit procedure uses BAT (Bayesan Analysis Toolkit) with flat priors for all input parameters, and posteriors calculated using a Markov Chain Monte Carlo.

(Caldwell, Kollar, Kröninger, arXiv:0808.2552+ Beaujean, Greenwald, Schulz)

- Stand-alone or library mode to compute observables in a given model:
 - \hookrightarrow Implemented models:
 - \hookrightarrow SM,
 - \hookrightarrow Oblique parameters (S,T,U), ε_i parameters, Modified $Zb\bar{b}$ couplings,
 - \hookrightarrow Modified Higgs couplings (κ_i), SMEFT (d=6),
 - \hookrightarrow 2HDM.
 - \hookrightarrow Implemented observables: EWPO, Flavor ($\Delta F = 2$, UT, B-decays).

Results of SM fit to EW precision data

	Measurement	Result	Prediction	1D Pull	nD Pull
$\alpha_s(M_Z)$	0.1179 ± 0.0012	0.1180 ± 0.0011	0.1185 ± 0.0028	-0.2	
$\delta \alpha_5^{\rm had}(M_Z)$	0.02750 ± 0.00033	0.02747 ± 0.00025	0.02743 ± 0.00038	0.04	
M_Z [GeV]	91.1875 ± 0.0021	91.1879 ± 0.0020	91.199 ± 0.011	-1.0	
m_t [GeV]	173.34 ± 0.76	173.61 ± 0.73	176.6 ± 2.5	-1.3	
m_H [GeV]	125.09 ± 0.24	125.09 ± 0.24	102.8 ± 26.3	0.8	
M_W [GeV]	80.385 ± 0.015	80.3644 ± 0.0061	80.3604 ± 0.0066	1.5	
$\Gamma_W [\text{GeV}]$	2.085 ± 0.042	2.08872 ± 0.00064	2.08873 ± 0.00064	-0.2	
$\sin^2 \theta_{\rm eff}^{\rm lept}(Q_{\rm FB}^{\rm had})$	0.2324 ± 0.0012	0.231464 ± 0.000087	0.231435 ± 0.000090	0.8	
$P_{\tau}^{\rm pol} = \mathcal{A}_{\ell}$	0.1465 ± 0.0033	0.14748 ± 0.00068	0.14752 ± 0.00069	-0.4	
$\Gamma_Z [{\rm GeV}]$	2.4952 ± 0.0023	2.49420 ± 0.00063	2.49405 ± 0.00068	0.5	
σ_h^0 [nb]	41.540 ± 0.037	41.4903 ± 0.0058	41.4912 ± 0.0062	1.3	0.7
R_ℓ^0	20.767 ± 0.025	20.7485 ± 0.0070	20.7472 ± 0.0076	0.8	0.7
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	0.01631 ± 0.00015	0.01628 ± 0.00015	0.8	
\mathcal{A}_{ℓ} (SLD)	0.1513 ± 0.0021	0.14748 ± 0.00068	0.14765 ± 0.00076	1.7	
\mathcal{A}_{c}	0.670 ± 0.027	0.66810 ± 0.00030	0.66817 ± 0.00033	0.02	
\mathcal{A}_b	0.923 ± 0.020	0.934650 ± 0.000058	0.934663 ± 0.000064	-0.6	
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	0.07390 ± 0.00037	0.07399 ± 0.00042	-0.9	1.5
$A_{ m FB}^{ar 0,ar b}$	0.0992 ± 0.0016	0.10338 ± 0.00048	0.10350 ± 0.00054	-2.6	
R_c^{0}	0.1721 ± 0.0030	0.172228 ± 0.000023	0.172229 ± 0.000023	-0.05	
R_b^{0}	0.21629 ± 0.00066	0.215790 ± 0.000028	0.215788 ± 0.000028	0.7	
$\sin^2 \theta_{\rm eff}^{ee}$	0.23248 ± 0.00052			2.1	
$\sin^2 \theta_{\rm eff}^{\mu\mu}$	0.2315 ± 0.0010			0.07	
$\sin^2 \theta_{\rm eff}^{\ddot{e}e}$	0.23146 ± 0.00047	0.231464 ± 0.000087	$0.231/35 \pm 0.00000$	0.1	
$\sin^2 heta_{ ext{eff}}^{ec{ee},\mu\mu}$	0.2308 ± 0.0012	0.201404 ± 0.000007	0.201400 ± 0.000090	-0.5	
$\sin^2 \theta_{\rm eff}^{\mu\mu}$	0.2287 ± 0.0032			-0.8	
$\sin^2 \theta_{\text{eff}}^{\mu\mu}$	0.2314 ± 0.0011			-0.1	

→ New 2016 world average for $\alpha_s(M_Z)$ (previously: $\alpha_s(M_Z) = 0.1185 \pm 0.0005$) → Successful comparison with both ZFITTER and Gfitter.

Good agreement between direct and indirect determination of the values of the input parameters

Good agreement between direct and indirect determination of the values of the input parameters

EW precision, example of future projections

Present

Observable	Exp. Error	Theor. Error
$M_W [{\rm MeV}]$	15	4
$\sin^2 \theta_{\rm eff}^l \ [10^{-5}]$	16	4.5
$\Gamma_Z[{ m MeV}]$	2.3	0.5
$R_b \ [10^{-5}]$	66	15

Future

Observable	ILC	FCC-ee	CEPC	Theor. Error
$M_W [{ m MeV}]$	3-4	1	3	1
$\sin^2 \theta_{\rm eff}^l \ [10^{-5}]$	1	0.6	2.3	1.5
$\Gamma_Z[MeV]$	0.8	0.1	0.5	0.2
$R_b \ [10^{-5}]$	14	6	17	5-10

[A. Freitas, arXiv:1604.00406]

 $(\delta m_t = 50 \text{ MeV}, \delta \alpha_s = 0.001, \delta M_Z = 2.1 \text{ MeV}, \delta(\Delta \alpha) \simeq 5 \cdot 10^{-5})$

ILC $[e^+e^-, \sqrt{s}=90-500 \text{ GeV}] \rightarrow \text{hep-ph/0106315}, \text{arXiv:1306.6352}$ FCC-ee $[e^+e^-, \sqrt{s}=90-400 \text{ GeV}] \rightarrow \text{arXiv:1308.6176}$ CEPC $[e^-p, \sqrt{s}=90-250 \text{ GeV}] \rightarrow \text{IHEP-CEPC-DR-2015-01}$

 \rightarrow Theoretical errors may become leading source of error

Limits on beyond SM physics from EW precision data and Higgs-boson data

Parametrizing indirect evidence of new physics beyond the SM (BSM) in a **model-independent** way via

- Oblique corrections (ex.: S,T,U parameters)
- Non-standard $Zb\bar{b}$ couplings
- Non-standard Higgs couplings
- SM effective field theory (SMEFT)

Oblique parameters, S, T, U [Peskin and Takeuchi, Phys. Rev. D46 (1992) 381] Dominant effects of NP in gauge-boson vacuum polarization corrections,

$$\alpha S = 4e^2 \left[\Pi_{33}^{NP'}(0) - \Pi_{3Q}^{NP'}(0) \right]$$

$$\alpha T = \frac{e^2}{s_W^2 c_W^2 M_Z^2} \left[\Pi_{11}^{NP}(0) - \Pi_{33}^{NP}(0) \right]$$

$$\alpha U = 4e^2 \left[\Pi_{11}^{NP'}(0) - \Pi_{33}^{NP'}(0) \right]$$

NP contributions to given EWPO (linearized in terms of S, T, U)

$$O = O_{\rm SM} + O_{\rm NP}(S, T, U)$$

 $U \to NP$ contributions to M_W and Γ_W

 $U \ll S, T$ in many NP models (linearly realized EWSB) $\rightarrow U = 0$

Equivalently: use $\varepsilon_{1,2,3,b}$ parameters [Altarelli, Barbieri, Phys. Lett. B253 (1991) 161]

blue shaded areas $\rightarrow 68\%, 95\%, 99\%$

blue shaded areas $\rightarrow 68\%, 95\%$

Projected sensitivity to EW oblique parameters at a glance:

FCCee: several projected runs

	Z pole	WW threshold	HZ threshold	$t\bar{t}$ threshold	above $t\bar{t}$ threshold
$\sqrt{s} [\text{GeV}]$	90	160	240	350	> 350
$\mathcal{L} [ab^{-1}/yr]$	86	15	3.5	1.0	1.0
Years of run	0.3/2.5	1	3	0.5	3
Events	$10^{12}/10^{13}$	6×10^7	2×10^6	2×10^5	$7.5 imes 10^4$

Non-standard $Zb\bar{b}$ couplings

Tension in $A_{\rm FB}^{0,b}$ (pull of EWPO fit $\rightarrow 2.8\sigma$)

$$A_{\rm FB}^{0,b} = \frac{3}{4} A_e A_b \ , \ A_f = \frac{2 \operatorname{Re} \frac{g_V^f}{g_A^f}}{1 + (\operatorname{Re} \frac{g_V^f}{g_A^f})^2} \longrightarrow g_i^b = g_{i,\rm SM}^b + \delta g_i^b \ {}_{(i=\rm V,A,L,R)}$$

$$\begin{split} \delta A_{\rm FB}^{0,b}, \delta A_b &\propto g_{L,\rm SM}^b \delta g_R^b - g_{R,\rm SM}^b \delta g_L^b \\ \delta R_b &\propto g_{R,\rm SM}^b \delta g_R^b + g_{L,\rm SM}^b \delta g_L^b \end{split}$$

Higgs couplings analysis

ATLAS: arXiv:1507.04548

$$\begin{split} \mu &= \sum_{i} w_{i} r_{i} \text{ where} \\ w_{i} &= \frac{[\sigma \times \mathrm{Br}]_{i}}{[\sigma_{\mathrm{SM}} \times \mathrm{Br}_{\mathrm{SM}}]_{i}} \\ r_{i} &= \frac{\epsilon_{i} [\sigma_{\mathrm{SM}} \times \mathrm{Br}_{\mathrm{SM}}]_{i}}{\sum_{j} \epsilon_{j}^{\mathrm{SM}} [\sigma_{\mathrm{SM}} \times \mathrm{Br}_{\mathrm{SM}}]_{j}} \\ \sigma_{i} &= \sigma_{i}^{\mathrm{SM}} + \delta \sigma_{i} \\ \Gamma_{j} &= \Gamma_{j}^{\mathrm{SM}} + \delta \Gamma_{j} \end{split}$$

 $\sigma_i^{\rm SM}, \Gamma_j^{\rm SM} \to {\rm YR} \text{ of HXSWG}$ $\delta \sigma_i \to {\rm FR+Madgraph+Kfactors}$ $\delta \Gamma_j \to {\rm eHdecay}$

 $h\gamma\gamma$: ATLAS(1408.7084), CMS(1407.0558) $h\tau\tau$: ATLAS(1501.04943), CMS(1401.5041) hZZ: ATLAS(1408.5191), CMS(1412.8662) hWW: ATLAS(1412.2641,1506.06641), CMS(1312.1129) hbb: ATLAS(1409.6212, 1503.05066), CMS(1310.3687, 1408.1682), CDF (1301.6668), D0 (1303.0823)

Non-standard Higgs-boson couplings

Minimal assumptions (inspired by strong-dynamics EWSB models):

- \hookrightarrow only one Higgs boson below the cutoff Λ ;
- \hookrightarrow custodial symmetry approximately realized;
- \hookrightarrow corrections from new physics flavor-diagonal and universal;
- \hookrightarrow no NP corrections in Hgg, $H\gamma\gamma$, $HZ\gamma$ loop-induced couplings.

Ex.: Contino, Grojean, Moretti, Piccinini, Rattazzi, JHEP 1005 (2010) 089

$$\mathcal{L}_{\text{eff}} = \frac{v^2}{4} \text{tr} \left(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \right) \left(1 + 2\kappa_V \frac{h}{v} + \cdots \right) - m_i \bar{f}_L^i \left(1 + 2\kappa_f \frac{h}{v} + \cdots \right) f_R^i$$

where $\Sigma(x) = \exp i\sigma^a \chi^a(x)/v \rightarrow \text{longitudinal } W/Z \text{ polarizations.}$

Defining: $\kappa_X = g_X/g_X^{\text{SM}} \text{ (SM} \to \kappa_X = 1),$

 $\kappa_V \rightarrow$ rescaling of all hVV couplings $\kappa_f \rightarrow$ rescaling of all $hf\bar{f}$ couplings

Considering both κ_V and κ_f

Higgs only

	68%	95%	correl	lation
κ_V	1.01 ± 0.04	[0.93, 1.10]	1.00	
κ_{f}	1.03 ± 0.10	[0.83, 1.23]	0.31	1.00

_ _

Higgs+EWPO

	68%	95%	correlation
κ_V	1.02 ± 0.02	[0.99, 1.06]	1.00
κ_f	1.03 ± 0.10	[0.85, 1.23]	0.14 1.00

Zooming into κ_V and κ_f ...

Custodial symmetry

 $(\kappa_V \to \kappa_W, \kappa_Z)$

Higgs only

	68%	95%	correlation		L
κ_W	1.00 ± 0.05	[0.89, 1.10]	1.00		
κ_Z	1.07 ± 0.11	[0.85, 1.27]	-0.17	1.00	
κ_f	1.01 ± 0.11	[0.80, 1.22]	0.41	-0.14	1.00

$$(\kappa_f \to \kappa_u, \kappa_d, \kappa_l)$$

Higgs only

	68%	95%		correl	lation	
κ_V	0.97 ± 0.08	[0.80, 1.13]	1.00			
κ_l	1.01 ± 0.14	[0.73, 1.30]	0.54	1.00		
κ_u	0.97 ± 0.13	[0.73, 1.25]	0.42	0.41	1.00	
κ_d	0.91 ± 0.21	[0.48, 1.35]	0.81	0.61	0.77	1.00

_

Higgs+EWPO

	68%	95%		corre	lation	
κ_V	1.02 ± 0.02	[0.99, 1.06]	1.00			
κ_l	1.07 ± 0.12	[0.82, 1.32]	0.15	1.00		
κ_u	1.01 ± 0.12	[0.79, 1.27]	0.10	0.24	1.00	
κ_d	1.01 ± 0.13	[0.76, 1.30]	0.31	0.38	0.78	1.00

Projected sensitivity to κ_i **parameters at a glance**:

SM Effective Field Theories

Systematic extension of the SM Lagrangian by d > 4 operators,

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{d>4} \frac{1}{\Lambda^{d-4}} \mathcal{L}_d, \text{ with } \mathcal{L}_d = \sum_i C_i \mathcal{O}_i, \quad [\mathcal{O}_i] = d,$$

including effects in NP on EWPO and SM Higgs-boson coupling, but also allowing for new structures.

Consider:

- $\rightarrow~d=6$ operators only, obeying SM gauge symmetry, L and B conservation
- \rightarrow one Higgs doublet of $SU(2)_L$, linearly realized SSB
- → assuming flavor universality: 59 operators [basis by Grzadkowski et al., JHEP 1010 (2010) 085]
- \rightarrow CP even and with at least one Higgs: 27 operators
- $\rightarrow\,$ contributing to the observables considered: 17 operators
- \rightarrow with a specific model in mind: running $C_i(\Lambda) \rightarrow C_i(\Lambda_{\rm EW})$ more meaningful
- \rightarrow otherwise take $C_i = C_i(\Lambda_{\rm EW})$, no running included

$$\mathcal{O}_{HG} = (H^{\dagger}H) G^{A}_{\mu\nu} G^{A\mu\nu}$$

$$\mathcal{O}_{HW} = (H^{\dagger}H) W^{I}_{\mu\nu} W^{I\mu\nu}$$

$$\mathcal{O}_{HB} = (H^{\dagger}H) B_{\mu\nu} B^{\mu\nu}$$

$$\mathcal{O}_{HWB} = (H^{\dagger}\tau^{I}H) W^{I}_{\mu\nu} B^{\mu\nu}$$

$$\mathcal{O}_{HD} = (H^{\dagger}D^{\mu}H)^{*} (H^{\dagger}D_{\mu}H)$$

$$\mathcal{O}_{H\Box} = (H^{\dagger}H)\Box(H^{\dagger}H)$$

bosonic operators

corrections to: \rightarrow

- oblique parameters
- *hVV*
- WWZ and $WW\gamma$

$$\begin{aligned} \mathcal{O}_{HL}^{(1)} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{L}\gamma^{\mu}L) \\ \mathcal{O}_{HL}^{(3)} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\overline{L}\tau^{I}\gamma^{\mu}L) \\ \mathcal{O}_{He} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{e}_{R}\gamma^{\mu}e_{R}) \\ \mathcal{O}_{HQ}^{(1)} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{Q}\gamma^{\mu}Q) \\ \mathcal{O}_{HQ}^{(3)} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{Q}\tau^{I}\gamma^{\mu}Q) \\ \mathcal{O}_{Hu} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{u}_{R}\gamma^{\mu}u_{R}) \\ \mathcal{O}_{Hd} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{d}_{R}\gamma^{\mu}d_{R}) \\ \mathcal{O}_{Hud} &= i(\widetilde{H}^{\dagger}D_{\mu}H)(\overline{u}_{R}\gamma^{\mu}d_{R}) \end{aligned}$$

single-fermionic-vector-currentoperators

- corrections to: \rightarrow
 - *hff Vff*

$$\mathcal{O}_{eH} = (H^{\dagger}H)(\bar{L}\,e_R H)$$

$$\mathcal{O}_{uH} = (H^{\dagger}H)(\bar{Q}\,u_R \tilde{H})$$

$$\mathcal{O}_{dH} = (H^{\dagger}H)(\bar{Q}\,d_R H)$$

$$\mathcal{O}_{dH} = (H^{\dagger}H)(\bar{Q}\,d_R H)$$

$$\mathcal{O}_{LL} = (\bar{L}\gamma^{\mu}L)(\bar{L}\gamma^{\mu}L)$$

<u>Notice</u>: $Vf\bar{f}$ and indirect effects (e.g. G_F) strongly constrained by EW precision observables.

Upon SSB, direct effect on Higgs-boson couplings

$$\mathcal{L}_{\text{Higgs}} = \mathcal{L}_{hVV} + \mathcal{L}_{hff} + \mathcal{L}_{hVff} + \mathcal{L}_{hTff}$$

each term contains the interactions to either vector bosons or fermions.

<u>Ex.1</u>: \mathcal{L}_{hVV} contains all the non-fermionic interactions with the SM vector bosons,

$$\mathcal{L}_{hVV} = h \left(g_{hZZ}^{(1)} Z_{\mu\nu} Z^{\mu\nu} + g_{hZZ}^{(2)} Z_{\nu} \partial_{\mu} Z^{\mu\nu} + g_{hZZ}^{(3)} Z_{\mu} Z^{\mu} - g_{hAA} A_{\mu\nu} A^{\mu\nu} + g_{hZA}^{(1)} Z_{\mu\nu} A^{\mu\nu} + g_{hZA}^{(2)} Z_{\nu} \partial_{\mu} A^{\mu\nu} - g_{hWW}^{(1)} W_{\mu\nu}^{+} W^{-\mu\nu} + \left(g_{hWW}^{(2)} W_{\nu}^{+} D_{\mu} W^{-\mu\nu} + (g_{hWW}^{(2)})^{*} W_{\nu}^{-} D_{\mu} W^{+\mu\nu} \right) + g_{hWW}^{(3)} W_{\mu}^{+} W^{-\mu} + g_{hGG} \operatorname{Tr} \left[G_{\mu\nu} G^{\mu\nu} \right] \right)$$

where (both directly and indirectly $\rightarrow G_F$, field renormalization, ...),

$$C_{HG} \longrightarrow g_{hGG}$$

$$C_{HW} \longrightarrow g_{hWW}^{(1)}$$

$$C_{HW}, C_{HB}, C_{HWB} \longrightarrow g_{hZZ}^{(1)}, g_{hZA}^{(1)}, g_{hAA}^{(1)}$$

$$C_{HD} \longrightarrow g_{hZZ}^{(3)}$$

while Ex. 2: \mathcal{L}_{hff} contains the interactions with the fermions only:

$$\mathcal{L}_{hff} = h \sum_{f} g_{hff} \overline{f_L} f_R + \text{h.c.}$$

where,

 $\begin{array}{l} C_{eH} \longrightarrow g_{h\tau\tau} \\ C_{uH} \longrightarrow g_{hcc}, g_{htt} \\ C_{dH} \longrightarrow g_{hbb} \end{array}$

The corresponding rescaling factors $\kappa_V = \frac{g_{hVV}}{g_{hVV}^{SM}}$ and $\kappa_f = \frac{g_{hff}}{g_{hff}^{SM}}$, are

$$\kappa_{Z} = 1 + \delta_{h} + \frac{1}{2} \frac{v^{2}}{\Lambda^{2}} C_{HD} - \frac{1}{2} \delta_{G_{F}}$$

$$\kappa_{W} = 1 + \delta_{h} - \frac{1}{2} (c_{W}^{2} - s_{W}^{2}) (4s_{W}c_{W} \frac{v^{2}}{\Lambda^{2}} C_{HWB} + c_{W}^{2} \frac{v^{2}}{\Lambda^{2}} C_{HD} + \delta_{G_{F}})$$

$$\kappa_{f} = 1 + \delta_{h} - \frac{1}{2} \delta_{G_{F}} - \frac{v}{m_{f}} \frac{v^{2}}{\Lambda^{2}} \frac{C_{fH}}{\sqrt{2}}$$

where

 $\delta_h \to \text{NP}$ corrections to h wave-function renormalization $\delta_{G_F} \to \text{NP}$ corrections to G_F

95% bounds on coefficients of d=6 interactions

\rightarrow Fitting one operator at a time

	Only EW	Only Higgs	EW + Higgs
		1	1
	$O(\Lambda^2)$ (m. r. 2)	C / Λ^2 (m to 2)	α / Λ^2 (m ev. 3)
	C_i/Λ^2 [TeV ⁻²]	C_i/Λ^2 [TeV ⁻²]	C_i/Λ^2 [TeV ⁻²]
Operator (O_i)	at 95%	at 95%	at 95%
$O_{HG} = (H^{\dagger}H) G^A_{\mu\nu} G^{A\mu\nu}$		[-0.005, 0.009]	[-0.005, 0.009]
$O_{HW} = (H^{\dagger}H) W^{I}_{\mu\nu} W^{I\mu\nu}$		[-0.033, 0.015]	[-0.033, 0.015]
$O_{HB} = (H^{\dagger}H) B_{\mu\nu} B^{\mu\nu}$		[-0.009, 0.004]	[-0.009, 0.004]
$O_{HWB} = (H^{\dagger}\tau^{I}H) W^{I}_{\mu\nu} B^{\mu\nu}$	[-0.010, 0.004]	[-0.008, 0.017]	[-0.007, 0.005]
$O_{HD} = (H^{\dagger}D^{\mu}H)^* \left(\dot{H^{\dagger}}D_{\mu}H\right)$	[-0.032, 0.006]	[-1.38, 1.35]	[-0.032, 0.005]
$O_{H\square} = (H^{\dagger}H)\square(H^{\dagger}H)$		[-1.12, 1.72]	[-1.12, 1.72]
$\overline{O_{HL}^{(1)} = (H^{\dagger} i \overleftrightarrow{D}_{\mu} H)(\overline{L} \gamma^{\mu} L)}$	[-0.006, 0.011]		[-0.006, 0.011]
$O_{HL}^{(3)} = (H^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} H) (\overline{L} \tau^{I} \gamma^{\mu} L)$	[-0.013, 0.006]	[-0.64, 0.49]	[-0.013, 0.006]
$O_{He} = (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{e}_{R}\gamma^{\mu}e_{R})$	[-0.017, 0.006]		[-0.017, 0.006]
$O_{HQ}^{(1)} = (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{Q}\gamma^{\mu}Q)$	[-0.025, 0.046]	[-4.3, 1.3]	[-0.025, 0.046]
$O_{HQ}^{(3)} = (H^{\dagger}i\overleftarrow{D}_{\mu}^{I}H)(\overline{Q}\tau^{I}\gamma^{\mu}Q)$	[-0.011, 0.016]	[-0.35, 0.18]	[-0.011, 0.016]
$O_{Hu} = (H^{\dagger} i \overleftrightarrow{D}_{\mu} H) (\overline{u}_R \gamma^{\mu} u_R)$	[-0.069, 0.088]	[-1.9, 2.2]	[-0.069, 0.088]
$O_{Hd} = (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{d}_{R}\gamma^{\mu}d_{R})$	[-0.160, 0.058]	[-6.2, 7]	[-0.160, 0.058]
$O_{eH} = (H^{\dagger}H)(\bar{L}e_RH)$		[-0.053, 0.027]	[-0.053, 0.027]
$O_{uH} = (H^{\dagger}H)(\bar{Q}u_R\tilde{H})$		[-0.350, 0.510]	[-0.350, 0.510]
$O_{dH} = (H^{\dagger}H)(\bar{Q}d_RH)$		[-0.036, 0.086]	[-0.036, 0.086]
$O_{LL} = (\bar{L}\gamma^{\mu}L)(\bar{L}\gamma^{\mu}L)$	[-0.010, 0.023]	[-1.970, 1.260]]	[-0.010, 0.023]

 \hookrightarrow see also Corbett, Eboli, Gonçalves, Gonzales-Fraile, Plehn, Rauch, arXiv:1505.0551

95% bounds on coefficients of d=6 interactions

 \rightarrow Fitting all EW operators at the same time

	One at a time	Combined
Operator (O_i)	$C_i/\Lambda^2 \ [{ m TeV^{-2}}]$ at 95%	$C_i/\Lambda^2 \; [{ m TeV^{-2}}]$ at 95%
$\begin{aligned} O_{HL}^{(1)} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{L}\gamma^{\mu}L)\\ O_{HL}^{(3)} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\overline{L}\tau^{I}\gamma^{\mu}L)\\ O_{He} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{e}_{R}\gamma^{\mu}e_{R})\\ O_{HQ}^{(1)} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{Q}\gamma^{\mu}Q)\\ O_{HQ}^{(3)} &= (H^{\dagger}i\overleftarrow{D}_{\mu}^{I}H)(\overline{Q}\tau^{I}\gamma^{\mu}Q)\\ O_{Hu} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{u}_{R}\gamma^{\mu}u_{R})\\ O_{Hd} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{d}_{R}\gamma^{\mu}d_{R}) \end{aligned}$	$\begin{bmatrix} -0.006, \ 0.011 \end{bmatrix} \\ \begin{bmatrix} -0.013, \ 0.006 \end{bmatrix} \\ \begin{bmatrix} -0.017, \ 0.006 \end{bmatrix} \\ \begin{bmatrix} -0.025, \ 0.046 \end{bmatrix} \\ \begin{bmatrix} -0.011, \ 0.016 \end{bmatrix} \\ \begin{bmatrix} -0.069, \ 0.088 \end{bmatrix} \\ \begin{bmatrix} -0.160, \ 0.058 \end{bmatrix}$	$\begin{bmatrix} -0.012, 0.036 \\ [-0.064, 0.009] \\ [-0.026, 0.014] \\ [-0.106, 0.070] \\ [-0.189, -0.001] \\ [-0.220, 0.420] \\ [-1.180, -0.150] \end{bmatrix}$
$O_{LL} = (\bar{L}\gamma^{\mu}L)(\bar{L}\gamma^{\mu}L)$	[-0.010, 0.023]	[-0.084, 0.030]

Only 8 combinations of EW operators can be fitted at the same time: drop O_{HWB} and O_{HD} [\hookrightarrow e.g. Falkowski, Riva, arXiv:1411.0669]

95% bounds on scale of new physics Λ

	Only EW	Only Higgs	EW + Higgs
Operator (O_i)	$\begin{array}{l} \Lambda \ [\text{TeV}] \\ C_i = 1 \end{array}$	$\begin{array}{l} \Lambda \ [\text{TeV}] \\ C_i = 1 \end{array}$	$\Lambda \text{ [TeV]} \\ C_i = 1$
$O_{} (\mathbf{u}^{\dagger} \mathbf{u}) C^{A} C^{A \mu \nu}$		19	19
$O_{HG} = (\Pi^{\dagger}\Pi) G_{\mu\nu} G^{\dagger}$ $O_{HW} = (H^{\dagger}H) W^{I}_{\mu\nu} W^{I\mu\nu}$		5.9	5.9
$O_{HB} = (H^{\dagger}H) B^{\mu\nu}_{\mu\nu} B^{\mu\nu}$		12	12
$O_{HWB} = (H^{\dagger}\tau^{I}H)W^{I}_{\mu\nu}B^{\mu\nu}$	11	8.2	12
$O_{HD} = (H^{\dagger}D^{\mu}H)^* \left(H^{\dagger}D_{\mu}H\right)$	5.9	0.9	6
$O_{H\Box} = (H^{\dagger}H)\Box(H^{\dagger}H)$		0.8	0.8
$O_{HL}^{(1)} = (H^{\dagger} i \overleftrightarrow{D}_{\mu} H) (\overline{L} \gamma^{\mu} L)$	10	_	10
$O_{HL}^{(3)} = (H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\overline{L}\tau^{I}\gamma^{\mu}L)$	9.4	1.3	9.7
$O_{He} = (H^{\dagger}i \overleftarrow{D}_{\mu} H)(\overline{e}_R \gamma^{\mu} e_R)$	8.2	—	8.2
$O_{HQ}^{(1)} = (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{Q}\gamma^{\mu}Q)$	5.0	0.5	5.0
$O_{HQ}^{(3)} = (H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\overline{Q}\tau^{I}\gamma^{\mu}Q)$	8.6	1.8	8.7
$O_{Hu} = (H^{\dagger}i D_{\mu}H)(\overline{u}_R \gamma^{\mu} u_R)$	3.5	0.7	3.5
$O_{Hd} = (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{d}_{R}\gamma^{\mu}d_{R})$	2.7	0.4	2.7
$O_{eH} = (H^{\dagger}H)(\bar{L}e_RH)$		4.7	4.7
$O_{uH} = (H^{\dagger}H)(\bar{Q}u_R\tilde{H})$	1.5	1.5	
$O_{dH} = (H^{\dagger}H)(\bar{Q}d_RH)$		3.7	3.7
$O_{LL} = (\bar{L}\gamma^{\mu}L)(\bar{L}\gamma^{\mu}L)$	7.9	0.9	7.9

 \rightarrow For $|C_i| \simeq 1$ NP is beyond LHC reach, need perturbative C_i .

95% bounds on scale of new physics Λ - Present vs Future

	95% present bound on		95% future bound on	
Coefficient	$\frac{C_i}{\Lambda^2} \; [\text{TeV}^{-2}]$	$\begin{array}{l} \Lambda \ [\text{TeV}] \\ (C_i = \pm 1) \end{array}$	$\frac{C_i}{\Lambda^2} \left[\text{TeV}^{-2} \right]$	$\begin{array}{l} \Lambda \ [\text{TeV}] \\ (C_i = \pm 1) \end{array}$
$\begin{array}{c} C_{HWB} \\ C_{HD} \end{array}$	$\begin{bmatrix} 0.009, 0.003 \\ 0.027, 0.004 \end{bmatrix}$	$\begin{array}{c} 12 \\ 6.6 \end{array}$	[0.0001, 0.0001] [0.0005, 0.0005]	$93 \\ 45$
$C^{(1)}_{HL} \ C^{(3)}_{HL} \ C_{He} \ C^{(1)}_{HQ} \ C^{(3)}_{HQ} \ C_{HQ} \ C_{Hu} \ C_{Hu} \ C_{Hu}$	$\begin{bmatrix} 0.005, 0.012 \\ 0.011, 0.005 \\ 0.015, 0.007 \end{bmatrix}$ $\begin{bmatrix} 0.027, 0.043 \\ 0.011, 0.015 \\ 0.071, 0.081 \end{bmatrix}$ $\begin{bmatrix} 0.14, 0.070 \end{bmatrix}$	$9.9 \\ 10 \\ 8.6 \\ 5.3 \\ 9.1 \\ 3.7 \\ 2.9$	$\begin{bmatrix} 0.0003, 0.0003 \\ 0.0002, 0.0002 \end{bmatrix}$ $\begin{bmatrix} 0.0003, 0.0003 \\ 0.0018, 0.0018 \end{bmatrix}$ $\begin{bmatrix} 0.0018, 0.0018 \\ 0.0005, 0.0005 \end{bmatrix}$ $\begin{bmatrix} 0.0035, 0.0035 \\ 0.0046, 0.0046 \end{bmatrix}$	$56 \\ 70 \\ 58 \\ 24 \\ 44 \\ 17 \\ 15$
C_{LL}	[0.0096, 0.023]	7.3	[0.0003, 0.0003]	61

 \rightarrow Precision (×10) \rightarrow reach $\Lambda \simeq 100$ TeV

 \hookrightarrow Controlling the theoretical uncertainty will be crucial \rightarrow parameters, NLO HEFT, ...

Outlook

- The SM offers a incredibly solid theoretical framework that we can use to extract indications of new physics.
- Indirect evidence of new physics from Higgs-boson and EW precision measurements can come from the synergy between
 - $\rightarrow\,$ accurate theoretical prediction,
 - $\rightarrow\,$ a systematic approach to the study of new effective interactions,
 - $\rightarrow\,$ the intuition and experience of many years of Beyond SM searches!
- Increasing the precision of input parameters could allow to test higher scales of new physics: a factor of 10 in precision could give access to scales as high as 100 TeV.
- Identifying and controlling the main sources of theoretical error become very important for future developments.
- Direct evidence of new physics can boost this process, as the discovery of a Higgs-boson has prompted and guided us in this new era of LHC physics.