

Fully Differential predictions for top-quark pair production at NNLO using STRIPPER

David Heymes

dheymes@hep.phy.cam.ac.uk

LoopFest 2016, Buffalo

Arxiv: 1606.03350, 1608.00765, ...

Cavendish Laboratory - HEP Group

NNLO – Cross section

$$\sigma_{h_1h_2}(P_1, P_2) = \sum_{ab} \iint_0^1 \mathrm{d}x_1 \mathrm{d}x_2 \, f_{a/h_1}(x_1, \mu_\mathrm{F}^2) \, f_{b/h_2}(x_2, \mu_\mathrm{F}^2) \, \hat{\sigma}_{ab}(x_1P_1, x_2P_2; \, \alpha_s(\mu_\mathrm{R}^2), \, \mu_\mathrm{R}^2, \, \mu_\mathrm{F}^2)$$

- Partonic cross section expansion in α_s at NNLO

$$\hat{\sigma}_{ab} = \hat{\sigma}_{ab}^{(0)} + \hat{\sigma}_{ab}^{(1)} + \hat{\sigma}_{ab}^{(2)}$$

• NNLO contribution

- V: Virtual
- C: Collinear Factorization

- STRIPPER
 - Subtraction scheme to consistently cancel IR singularities

Subtraction/slicing schemes at NNLO

- Antenna subtraction
 - e+e- \rightarrow 3 jets, pp \rightarrow 2 jets, qq \rightarrow tt, H + jet
- Colorful subtraction
 - $H \rightarrow bb, e+e- \rightarrow 3 jets$
- qT slicing
 - pp → H, pp → V, pp → H + V, pp → VV,
 qq → tt (flavour off-diagonal) [Gehrmann, Grazzini, Kallweit, Maierhofer, Manteuffel, Rathlev, Torre, '14 -'15]
- N-jettiness slicing
 - $pp \rightarrow H + jet, pp \rightarrow W + jet, pp \rightarrow Z + jet, pp \rightarrow H + V, pp \rightarrow \gamma\gamma$

[Gaunt, Stahlhofen, Tackmann, Walsh, '15] [Boughezal, Focke, Giele, Liu, Petriello, '15-'16] [Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello, '15] [Campbell, Ellis, Williams, '16]

[Catani, Grazzini, '07]

[Gehrmann, GehrmannDeRidder, Glover, Heinrich '05 - '08] [Weinzierl '08, '09] [Currie, Gehrmann, GehrmannDeRidder, Glover, Pires, '13 -'14] [Bernreuther, Bogner, Dekkers, '11,'14] [Abelof, (Dekkers), GermannDeRidder, '11-'15] [Abelof, GehrmannDeRidder, Maierhofer, Pozzorini, '14] [Chen, Gehrmann, Glover, Jaquier, '15]

> [DelDuca, Somogyi, Troscsanyi, '05 - '13] [DelDuca, Duhr, Somogyi, Tramontano, Trocsanyi, '15] [DelDuca et al. , '16]

[Bonciani, Catani, Grazzini, Sargsyan, Torre; '14. '15]

Sector improved residue subtraction (STRIPPER)

SecToR Improved Phase sPacE for real Radiation

- Local subtraction scheme for NNLO (no approximations)
- First formulation [Czakon, '10, '11]
 - $pp \rightarrow tt$ (total cross section, A_{FB} at Tevatron, distributions at Tevatron)

[Czakon, Fiedler, Mitov; '13, '15] [Czakon, Fiedler, DH, Mitov; '16]

• $pp \rightarrow H + jet$, $Z \rightarrow e+ e-$, Muon – decay, b – decay, top – decay, single top production [Boughezal, Caola, Melnikov, Petriello, Schulze, '13 '14] [Boughezal, Melnikov, Petriello, '11] [Caola, Czernecki, Liang, Melnikov, Szafron, '14] [Brucherseifer, Caola, Melnikov, '13, '13, '14]

• Generalization to 4 dimensions [Czakon, DH, '14]

STRIPPER – Main Idea

- Numerical cancellation of IR poles between NNLO contributions
- Example: Double real radiation (most complicated)

$$\hat{\sigma}_{ab}^{\mathrm{RR}} = \frac{1}{2\hat{s}} \frac{1}{N_{ab}} \int \mathrm{d}\boldsymbol{\Phi}_{n+2} \langle \mathcal{M}_{n+2}^{(0)} | \mathcal{M}_{n+2}^{(0)} \rangle F_{n+2}$$

- 1) Use selector functions to split phase space into triple and double collinear sectors
- 2) Use physical parametrization (angles, energies)
- 3) Physical sector decomposition: Factorization of non-commuting singularities

[Binoth, Heinrich; '00]

[Frixione, Kunszt, Signer (FKS); '95]

- 4) Generate subtraction terms
- 5) Laurent series in ϵ (\rightarrow numerical integration of all coefficients)

STRIPPER – General formulation

[Czakon, DH; '14]

$$\hat{\sigma}_{ab}^{(2)} = \hat{\sigma}_{ab}^{\text{RR}} + \hat{\sigma}_{ab}^{\text{RV}} + \hat{\sigma}_{ab}^{\text{VV}} + \hat{\sigma}_{ab}^{\text{C1}} + \hat{\sigma}_{ab}^{\text{C2}}$$

- Each contribution is a Laurent series in ϵ
- Separation of independently finite contributions (check number of unresolved particles)
 - Finite contribution (all particles resolved)
 - Single unresolved $|\mathfrak{M}_{n+1}^{(0)}
 angle$
 - Double unresolved $|\mathcal{M}_n^{(0)}
 angle$
 - Finite Remainder $|\mathcal{F}_n^{(1)}\rangle = |\mathcal{M}_n^{(1)}\rangle \mathbf{Z}^{(1)}|\mathcal{M}_n^{(0)}\rangle$

$$\begin{split} \hat{\sigma}_{\rm F}^{\rm RR} , \quad \hat{\sigma}_{\rm F}^{\rm RV} , \quad \hat{\sigma}_{\rm F}^{\rm VV} , \quad \hat{\sigma}_{\rm FR} &= \hat{\sigma}_{\rm FR}^{\rm RV} + \hat{\sigma}_{\rm FR}^{\rm VV} + \hat{\sigma}_{\rm FR}^{\rm C2} , \\ \hat{\sigma}_{\rm SU} &= \hat{\sigma}_{\rm SU}^{\rm RR} + \hat{\sigma}_{\rm SU}^{\rm RV} + \hat{\sigma}_{\rm SU}^{\rm C1} , \quad \hat{\sigma}_{\rm DU} &= \hat{\sigma}_{\rm DU}^{\rm RR} + \hat{\sigma}_{\rm DU}^{\rm RV} + \hat{\sigma}_{\rm DU}^{\rm VV} + \hat{\sigma}_{\rm DU}^{\rm C1} + \hat{\sigma}_{\rm DU}^{\rm C2} \end{split}$$

• Make sure that SU and DU cancel independently (\rightarrow resolved particles in 4 dimensions)

Differential top-quark pair production at NNLO

[Czakon, DH, Mitov; 2015, 2016]

Top-quark pairs at the LHC

- Total cross section measured (~ 7 %) $\sigma_{t\bar{t}}(13 \,\mathrm{TeV}) \approx (800 \pm 50) \mathrm{pb}$
- Uncertainty of the prediction
 - LO (30 %) → NLO (15%) → NNLO + NNLL (5%)
 - \rightarrow Percent level precision required
- Precision tests of the Standard Model
- Background for many searches and processes (Higgs, New Physics,...)
- Constrain gluon PDF at high x

. . .

Scale dependence and best scale choice

[Czakon, DH, Mitov; 2016]

$$\sigma_{h_1h_2}(P_1, P_2) = \sum_{ab} \iint_0^1 \mathrm{d}x_1 \mathrm{d}x_2 \, f_{a/h_1}(x_1, \mu_\mathrm{F}^2) \, f_{b/h_2}(x_2, \mu_\mathrm{F}^2) \, \hat{\sigma}_{ab}(x_1P_1, x_2P_2; \, \alpha_s(\mu_\mathrm{R}^2), \mu_\mathrm{R}^2, \mu_\mathrm{F}^2)$$

- What is the "best" (dynamical) scale?
 - Difference between different dynamical scales could be as large as difference between dynamical scale and fixed scale
 - · Precision predictions only possible for deliberately chosen scale
- Comparative study of <u>perturbative convergence</u> based on different scales
- Selection of the "correct" scale is based on the following criteria:
 - Perturbative convergence for both total and differential cross section
 - Limiting behavior: Low $p_T (m_{tt})$: ~ m_{top} \leftrightarrow High $p_T (m_{tt})$: ~ p_T
 - Restriction to simple functional forms studied in the past (H_T , m_{tt} , ...)

Scale dependence – Total cross section

[Czakon, DH, Mitov; 2016]

- 10 LΟ NLO NNT.C Look for convergence NNLO+NNLL • $\sigma\left(\mu
 ight)/\sigma_{
 m res}\left({
 m m}_{
 m t}
 ight)$ -1 [%] 5 Scale value which minimizes difference • 1 0 -1 $NLO \rightarrow NNLO \rightarrow (NNLO + NNLL)$ ٠ $PP \rightarrow t\bar{t} + X (8 \text{ TeV})$ m₊=173.3 GeV -5 $\mu_0 = m_+$ Best convergence: $\mu_0 < m_{top}$ • NNPDF3.0 -10 Little dependence on PDFset at NNLO ۲ 1/4 1/22 1/8 1 4 μ/μ_0
 - Value of NNLO cross section at point of best convergence equals the NNLO+NNLL at the usual canonical scale $\mu_0 = m_{top}$
 - \rightarrow Therefore: Resummation has negligible impact on the total cross section at the point of fastest convergence

David Heymes – LoopFest 2016

8

Scale dependence – Differential Distributions

- Main guidance is perturbative convergence to discriminate between scales
 - Invariant mass distribution

 $\mu_0 = H_T/4$ $H_T = \sqrt{m_t^2 + p_{\mathrm{T}t}^2} + \sqrt{m_t^2 + p_{\mathrm{T}\bar{t}}^2}$

• Limiting behaviour

 $\begin{array}{rccc} \mu_0(p_{\rm T} \to 0) & \to & m_t/2 \\ \mu_0(p_{\rm T} \to \infty) & \to & (p_{{\rm T},t} + p_{{\rm T},\bar{t}})/4 \end{array}$

· Scales based on the invariant mass itself

 $\mu \propto \, m_{t ar{t}}$

Scale dependence – Differential Distributions

[Czakon, DH, Mitov; 2016]

Main guidance is perturbative convergence to discriminate between scales

- Choose individual scales for top and antitop p_{T}
- Transverse mass scale

$$\mu_0 = \frac{1}{2}m_{\rm T}(t/\bar{t}) = \frac{1}{2}\sqrt{m_t^2 + p_{{\rm T},t/\bar{t}}^2}$$

• Average distributions afterwards

Different scale choices for different observables

Differential Distributions @ 13 TeV

Dynamical scales \rightarrow extended kinematical regime

Comparison with data → Good agreement

Bump hunting in top-pair events (Example: 750 GeV)

[Czakon,DH, Mitov; 2016]

• Minimize theory uncertainty → choose appropriate normalization

- Trade off between experimental uncertainty and theory uncertainty to choose N
 - Minimize dependence on the top-mass << 1%, checked at NLO
- Analytic fit of the distribution allows flexible rebinning

Discriminate Signal from Background

• Signal Model (BSM) from [Hespel, Maltoni, Vryonidou 2016] \rightarrow 1.1 pb

• Significance depends on the bin-width

Discriminate Signal from Background

• Signal Model (BSM) from [Hespel, Maltoni, Vryonidou 2016] \rightarrow 1.1 pb

• Significance depends on the bin-width

Discriminate Signal from Background

• Signal Model (BSM) from [Hespel, Maltoni, Vryonidou 2016] \rightarrow 1.1 pb

• Significance depends on the bin-width

Bumps in top-pair invariant mass

- Discriminate Signal from Background
 - Significance depends on the position of the bin as well

Summary and Outlook

- Implementation of the Sector improved residue subtraction (STRIPPER)
- Applied to differential top-quark pair productions
 - High quality predictions for LHC at 8 TeV and 13 TeV
 - Precision could be used for new physics searches (Example at 750 GeV)

- Outlook
 - Combine NNLO-QCD with NLO-EW (published soon, in collaboration with Pagani, Tsinikos and Zaro)
 - Include top-quark decays at NNLO

Back Up Slides

STRIPPER - Implementation

- General purpose event generator for NNLO computation
- Based on four-dimensional formulation of the subtraction scheme
- Complete independent implementation
- SM tree-level matrix elements are included [vanHameren, Bury; '09, '15]
- Process independent: User has to interface the one-loop and two-loop finite contributions
- Speed: Monte Carlo over processes and polarizations
- Simultaneous computation of:
 - Different PDF sets (LHAPDF interface)
 - Different renormalization and factorizations scales
 - Different observables

Differential Distributions @ 8 TeV

- NNLO has important impact (Good perturbative convergence)
- Good agreement with data \rightarrow [CMS 2015, ATLAS 2015]
- However: Results with fixed scales applicable only to limited kinematical range

Scale dependence – Differential Distributions

[Czakon, DH, Mitov; 2016]

- Comparison between different scale choices
 - Difference within uncertainty
 - Main impact on scale dependence at high values and the K-factor
- Independence of PDF sets has been checked

Differential Distributions @ 13 TeV

• PDF - dependence

• Useful to constrain PDF sets

