Dispersion relations and differential equations for Feynman Integrals

Lorenzo Tancredi

TTP - KIT, Karlsruhe
LoopFest 2016-17 August 2016, Buffalo

Based on collaboration with A. von Manteuffel and E. Remiddi
[arXiv:1602.01481], [arXiv:1609.xxxxx]

Dimensionally regularised Feynman Integrals fulfil differential equations! [Kotikov '90, Remiddi '97, Gehrmann-Remiddi '00,...]

$$
\Downarrow
$$

Direct consequence of Integration-by-parts (IBPs) identities in d-dimensions!

$$
\int \prod_{j=1}^{\prime} \frac{d^{d} k_{j}}{(2 \pi)^{d}}\left(\frac{\partial}{\partial k_{j}^{\mu}} v_{\mu} \frac{S_{1}^{\sigma_{1}} \ldots S_{s}^{\sigma_{s}}}{D_{1}^{\alpha_{1}} \ldots D_{n}^{\alpha_{n}}}\right)=0, \quad v^{\mu}=k_{j}^{\mu}, p_{k}^{\mu}
$$

Reduced to N master integrals, $l_{i}\left(d ; x_{k}\right)$ with $i=1, \ldots, N$.

$$
\Downarrow
$$

Differentiating the masters and using the IBPs we get a system of N coupled differential equations

$$
\frac{\partial}{\partial x_{k}} I_{i}\left(d ; x_{k}\right)=\sum_{j=1}^{N} c_{i j}\left(d ; x_{k}\right) I_{j}\left(d ; x_{k}\right)
$$

(Relatively) Simple standard case: multiple polylogarithms!

- In this case, one can find a canonical basis [Henn '13]

$$
\frac{\partial}{\partial x_{k}} l_{i}\left(d ; x_{k}\right)=(d-4) \sum_{j=1}^{N} c_{i j}\left(x_{k}\right) l_{j}\left(d ; x_{k}\right), \quad c_{i j}\left(x_{k}\right) \quad \text { in } d \text {-log form } .
$$

- Existence of such a basis related to decoupling of diff. eqs. for $d \rightarrow 4$.

Decoupling due to degeneracy of IBPs in even integer numbers of dimensions, i.e. number of master integrals in $d=2 n$ is smaller than for generic d ! [E.Remiddi, L.T. '13; L.T. '15]

Let's talk about what happens when this is not possible
As we'll see, it's enough to start putting some masses in the loops!

Interesting because:
1- LHC is pushing precision beyond 5%

2- High energies and High $p_{T} \rightarrow$ probe massive particles in the loops
a- Top quark corrections to $\mathrm{Hj}, \mathrm{HH}, \gamma \gamma, \mathrm{jj}, \ldots$
b- New massive states?

Let's look more in detail - in reality we have

$$
\begin{gathered}
l_{j}\left(d ; x_{k}\right)=\left(m_{j}\left(d ; x_{k}\right), \operatorname{su}_{j}\left(d ; x_{k}\right)\right) \\
\Downarrow \\
\frac{\partial}{\partial x_{k}} m_{i}\left(d ; x_{k}\right)=\sum_{j=1}^{N} h_{i j}\left(d ; x_{k}\right) m_{j}\left(d ; x_{k}\right)+\sum_{j=1}^{M} n h_{i j}\left(d ; x_{k}\right) s u b_{j}\left(d ; x_{k}\right) .
\end{gathered}
$$

Let's look more in detail - in reality we have

$$
\begin{gather*}
I_{j}\left(d ; x_{k}\right)=\left(m_{j}\left(d ; x_{k}\right), \operatorname{sub}_{j}\left(d ; x_{k}\right)\right) \\
\Downarrow \\
\frac{\partial}{\partial x_{k}} m_{i}\left(d ; x_{k}\right)=\sum_{j=1}^{N} \underbrace{h_{i j}\left(d ; x_{k}\right)}_{\Downarrow} m_{j}\left(d ; x_{k}\right)+\sum_{j=1}^{M} n h_{i j}\left(d ; x_{k}\right) \operatorname{su} b_{j}\left(d ; x_{k}\right) . \\
\begin{array}{l}
\text { homogeneous piece is first source } \\
\text { of complexity - whether } \\
\text { differential equations are coupled }
\end{array}
\end{gather*}
$$

No way to solve this in general. Need to do some "statistics"!

Let's look more in detail - in reality we have

$$
\begin{gathered}
I_{j}\left(d ; x_{k}\right)=\left(m_{j}\left(d ; x_{k}\right), \operatorname{sub}_{j}\left(d ; x_{k}\right)\right) \\
\Downarrow \\
\frac{\partial}{\partial x_{k}} m_{i}\left(d ; x_{k}\right)=\sum_{j=1}^{N} h_{i j}\left(d ; x_{k}\right) m_{j}\left(d ; x_{k}\right)+\sum_{j=1}^{M} \underbrace{n h_{i j}\left(d ; x_{k}\right) \operatorname{su} b_{j}\left(d ; x_{k}\right)}_{\Downarrow} . \\
\begin{array}{l}
\text { non-homogeneous piece is second } \\
\text { source of complexity - we must } \\
\text { integrate over it! }
\end{array}
\end{gathered}
$$

Systematized using differential equations and dispersion relations

Let's have a look at two completely unrelated examples

Let's have a look at two completely unrelated examples

- $p^{2} \neq 0$, three massive lines
- 2 master integrals
- Satisfy 2 coupled diff. eqs.
- Needed for NNLO $t \bar{t}$
$p_{1}^{2}=p_{2}^{2}=0$, four massive lines
2 master integrals
Satisfy 2 coupled diff. eqs Needed for NNLO $\gamma \gamma, t \bar{t}$, \Downarrow
massive 3-particle cut
Integrals over elliptic integrals!

Let's have a look at two completely unrelated examples

- $p^{2} \neq 0$, three massive lines
- 2 master integrals
- Satisfy 2 coupled diff. eqs.
- Needed for NNLO $t \bar{t}$
\Downarrow
massive 3-particle cut
Integrals over elliptic integrals!

- $p_{1}^{2}=p_{2}^{2}=0$, four massive lines
- 2 master integrals
- Satisfy 2 coupled diff. eqs
- Needed for NNLO $\gamma \gamma, t \bar{t}, \ldots$

$$
\Downarrow
$$

NO massive 3-particle cut
SAME Integrals over elliptic integrals!

In both cases diff. eqs. can be written as $\left(p^{2}=u, m^{2}=1\right.$ for simplicity $)$

$$
\frac{d}{d u}\binom{h_{1}(d ; u)}{h_{2}(d ; u)}=B(u)\binom{h_{1}}{h_{2}}+(d-4) D(u)\binom{h_{1}}{h_{2}}+\binom{N_{1}(d ; u)}{N_{2}(d ; u)} .
$$

Matrices $B(u)$ and $D(u)$ different for the two cases \rightarrow but don't depend on d !

$N_{j}(d ; u)$ trivial for the sunrise \rightarrow Tadpole!

In both cases diff. eqs. can be written as $\left(p^{2}=u, m^{2}=1\right.$ for simplicity $)$

$$
\frac{d}{d u}\binom{h_{1}(d ; u)}{h_{2}(d ; u)}=B(u)\binom{h_{1}}{h_{2}}+(d-4) D(u)\binom{h_{1}}{h_{2}}+\binom{N_{1}(d ; u)}{N_{2}(d ; u)} .
$$

- Matrices $B(u)$ and $D(u)$ different for the two cases \rightarrow but don't depend on d! \Downarrow

Matrices may have only regular singular points $1 /(u-a)$
Fuchsian differential equations! [Lee, '14]
$N_{j}(d ; u)$ trivial for the sunrise \rightarrow Tadpole!
$N_{j}(d ; u)$ non-trivial for triangle, contains multiple polylogarithms!

In both cases diff. eqs. can be written as $\left(p^{2}=u, m^{2}=1\right.$ for simplicity $)$

$$
\frac{d}{d u}\binom{h_{1}(d ; u)}{h_{2}(d ; u)}=B(u)\binom{h_{1}}{h_{2}}+(d-4) D(u)\binom{h_{1}}{h_{2}}+\binom{N_{1}(d ; u)}{N_{2}(d ; u)}
$$

- Matrices $B(u)$ and $D(u)$ different for the two cases \rightarrow but don't depend on d!

$$
\begin{gathered}
\Downarrow \\
\text { Matrices may have only regular singular points } 1 /(u-a) \\
\text { Fuchsian differential equations! [Lee, '14] }
\end{gathered}
$$

- $N_{j}(d ; u)$ trivial for the sunrise \rightarrow Tadpole!
- $N_{j}(d ; u)$ non-trivial for triangle, contains multiple polylogarithms!

Start by looking for two independent solutions of the homogeneous equation

$$
G(u)=\left(\begin{array}{ll}
I_{1}(u) & J_{1}(u) \\
I_{2}(u) & J_{2}(u)
\end{array}\right)
$$

such that

$$
\frac{d}{d u} G(u)=B(u) G(u) .
$$

Fundamental properties (in both cases):

1- $I_{k}(u)$ and $J_{k}(u)$ are linear combinations of complete elliptic integrals

2- The Wronskian of the solutions is trivial \rightarrow matrix $B(u)$ is traceless $W(u)=\operatorname{det} G(u)=I_{1}(u) J_{2}(u)-J_{1}(u) I_{2}(u)=\pi$

Start by looking for two independent solutions of the homogeneous equation

$$
G(u)=\left(\begin{array}{ll}
I_{1}(u) & J_{1}(u) \\
I_{2}(u) & J_{2}(u)
\end{array}\right)
$$

such that

$$
\frac{d}{d u} G(u)=B(u) G(u)
$$

Fundamental properties (in both cases):

1- $I_{k}(u)$ and $J_{k}(u)$ are linear combinations of complete elliptic integrals

2- The Wronskian of the solutions is trivial \rightarrow matrix $B(u)$ is traceless

$$
W(u)=\operatorname{det} G(u)=I_{1}(u) J_{2}(u)-J_{1}(u) I_{2}(u)=\pi
$$

The simple wronskian is crucial to solve the equations.

$$
\binom{h_{1}(d ; u)}{h_{2}(d ; u)}=G(u)\binom{m_{1}(d ; u)}{m_{2}(d ; u)}, \quad \text { with } \quad G^{-1}(u)=\frac{1}{\pi}\left(\begin{array}{cc}
J_{2}(u) & -J_{1}(u) \\
-I_{2}(u) & I_{1}(u)
\end{array}\right)
$$

And the new functions satisfy the equations
with $M(u)=G^{(-1)}(u) D(u) G(u)$, which does not depend on $d!!!!$
$M^{\prime}(u)$ contains all information needed for iteration at every order in ($d^{\prime}-4$)!

The simple wronskian is crucial to solve the equations.

$$
\binom{h_{1}(d ; u)}{h_{2}(d ; u)}=G(u)\binom{m_{1}(d ; u)}{m_{2}(d ; u)}, \quad \text { with } \quad G^{-1}(u)=\frac{1}{\pi}\left(\begin{array}{cc}
J_{2}(u) & -J_{1}(u) \\
-I_{2}(u) & I_{1}(u)
\end{array}\right)
$$

And the new functions satisfy the equations

$$
\frac{d}{d u}\binom{m_{1}(d ; u)}{m_{2}(d ; u)}=(d-4) \frac{1}{\pi} M(u)\binom{m_{1}(d ; u)}{m_{2}(d ; u)}+G^{(-1)}(u)\binom{N_{1}(d ; u)}{N_{2}(d ; u)}
$$

with $M(u)=G^{(-1)}(u) D(u) G(u)$, which does not depend on $d!!!!$ $M^{\prime}(u)$ contains all information needed for iteration at every order in ($d^{\prime}-4$)!

The simple wronskian is crucial to solve the equations.

$$
\binom{h_{1}(d ; u)}{h_{2}(d ; u)}=G(u)\binom{m_{1}(d ; u)}{m_{2}(d ; u)}, \quad \text { with } \quad G^{-1}(u)=\frac{1}{\pi}\left(\begin{array}{cc}
J_{2}(u) & -J_{1}(u) \\
-l_{2}(u) & l_{1}(u)
\end{array}\right) .
$$

And the new functions satisfy the equations

$$
\frac{d}{d u}\binom{m_{1}(d ; u)}{m_{2}(d ; u)}=(d-4) \frac{1}{\pi} M(u)\binom{m_{1}(d ; u)}{m_{2}(d ; u)}+G^{(-1)}(u)\binom{N_{1}(d ; u)}{N_{2}(d ; u)}
$$

with $M(u)=G^{(-1)}(u) D(u) G(u)$, which does not depend on d !!!!
$M(u)$ contains all information needed for iteration at every order in $(d-4)$!

Let's see example of the two-loop sunrise graph [E.Remiddi, L.T., '16]

The differential equations can be put in the form above

$$
\frac{d}{d u}\binom{h_{1}}{h_{2}}=B(u)\binom{h_{1}}{h_{2}}+(d-4) D(u)\binom{h_{1}}{h_{2}}+\binom{0}{1} .
$$

where the two matrices $B(u), D(u)$ are defined as

$$
\begin{aligned}
B(u) & =\frac{1}{6 u(u-1)(u-9)}\left(\begin{array}{cc}
3\left(3+14 u-u^{2}\right) & -9 \\
(u+3)\left(3+75 u-15 u^{2}+u^{3}\right) & -3\left(3+14 u-u^{2}\right)
\end{array}\right) \\
D(u) & =\frac{1}{6 u(u-9)(u-1)}\left(\begin{array}{cc}
6 u(u-1) & 0 \\
(u+3)\left(9+63 u-9 u^{2}+u^{3}\right) & 3(u+1)(u-9)
\end{array}\right)
\end{aligned}
$$

Four regular singular points: $u=0,1,9, \pm \infty$

Matrix of solutions of homogeneous eq. obtained studying the imaginary part

$$
\begin{gathered}
G(u)=\left(\begin{array}{cc}
I_{1}(u) & J_{1}(u) \\
I_{2}(u) & J_{2}(u)
\end{array}\right) \\
I_{1}(u)=\int_{4}^{(\sqrt{u}-1)^{2}} d b \frac{1}{\sqrt{R_{4}(b, u)}}, \quad I_{2}(u)=\int_{4}^{(\sqrt{u}-1)^{2}} d b \frac{b^{2}}{\sqrt{R_{4}(b, u)}} \\
J_{1}(u)=\int_{0}^{4} d b \frac{1}{\sqrt{-R_{4}(d, u)}}, \quad J_{2}(u)=\int_{0}^{4} d b \frac{b^{2}}{\sqrt{-R_{4}(d, u)}}+\frac{\pi}{3}(u+3) \\
R_{4}(b, u)=b(b-4)\left((\sqrt{u}-1)^{2}-b\right)\left((\sqrt{u}+1)^{2}-b\right)
\end{gathered}
$$

$I_{k}(u), J_{k}(u)$ are linear combinations of complete elliptic integrals

After rotation to solve homogeneous part defining

$$
G(u)=\left(\begin{array}{ll}
I_{1}(u) & J_{1}(u) \\
I_{2}(u) & J_{2}(u)
\end{array}\right)
$$

and

$$
\binom{h_{1}(d ; u)}{h_{2}(d ; u)}=G(u)\binom{m_{1}(d ; u)}{m_{2}(d ; u)}
$$

Equations become as we saw

$$
\frac{d}{d u}\binom{m_{1}(d ; u)}{m_{2}(d ; u)}=(d-4) \frac{1}{\pi} M(u)\binom{m_{1}(d ; u)}{m_{2}(d ; u)}+\frac{1}{\pi}\binom{-J_{1}(u)}{l_{1}(u)}
$$

And the matrix $M(u)$ can be written as a total differential!!!!

$$
\begin{aligned}
& M_{11}(u)=-\frac{d}{d u}\left[\left(\frac{(u+3)^{2}}{6} I_{1}(u) J_{1}(u)\right)+\frac{\pi}{4}(2 \ln (u-9)+2 \ln (u-1)-\ln (u))\right] \\
& M_{12}(u)=-\frac{d}{d u}\left(\frac{(u+3)^{2}}{6} I_{1}(u) I_{1}(u)\right), \\
& M_{21}(u)=+\frac{d}{d u}\left(\frac{(u+3)^{2}}{6} J_{1}(u) J_{1}(u)\right), \\
& M_{22}(u)=+\frac{d}{d u}\left[\left(\frac{(u+3)^{2}}{6} I_{1}(u) J_{1}(u)\right)+\frac{\pi}{4}(2 \ln (u-9)+2 \ln (u-1)-\ln (u))\right],
\end{aligned}
$$

Derivatives of logs and of products of elliptic integrals and rational functions! It looks like a natural generalization of a "simple" matrix in d-log form!

Integral representation of solution for the master integrals at order zero

$$
\begin{aligned}
& h_{1}^{(0)}(u)=\frac{1}{\pi}\left[J_{1}(u) \int_{0}^{u} d t I_{1}(t)-I_{1}(u)\left(\int_{0}^{u} d t J_{1}(t)-\mathrm{Cl}_{2}\left(\frac{\pi}{3}\right)\right)\right], \\
& h_{2}^{(0)}(u)=\frac{1}{\pi}\left[J_{2}(u) \int_{0}^{u} d t I_{1}(t)-I_{2}(u)\left(\int_{0}^{u} d t J_{1}(t)-\mathrm{Cl}_{2}\left(\frac{\pi}{3}\right)\right)\right] .
\end{aligned}
$$

Similarly simple (one-fold integral) representation one order higher!

See [arXiv:1602.01481] for details!

Same approach can be applied to master integrals of non-planar crossed triangle To appear soon... [A.von Manteuffel, L.T.]!

$$
x=-\frac{p^{2}}{m^{2}}
$$

All subtopologies can be written in terms of (not trivial!)

$$
\ln \left(f\left(l_{i}\right)\right), \quad \operatorname{Li}_{n}\left(f\left(l_{i}\right)\right), \quad \operatorname{Li}_{2,2}\left(f\left(l_{i}\right), g\left(l_{j}\right)\right)
$$

with

$$
l_{i}=\left\{\sqrt{x}, \frac{1}{2}(\sqrt{x}+\sqrt{x+4}), \sqrt{x+4}, \frac{1}{2}(\sqrt{x}+\sqrt{x-4}), \sqrt{x-4}\right\}
$$

Also in this case, analytical result for two master integrals can be written as

$$
\begin{aligned}
& T_{1}^{(0)}(x)=\frac{2}{\pi}\left[J_{1}(x) \int_{0}^{x} d t I_{1}(t) Q(t)-I_{1}(x) \int_{0}^{x} d t J_{1}(t) Q(t)\right] \\
& T_{2}^{(0)}(x)=\frac{2}{\pi}\left[J_{2}(x) \int_{0}^{x} d t I_{1}(t) Q(t)-I_{2}(x) \int_{0}^{x} d t J_{1}(t) Q(t)\right]
\end{aligned}
$$

$I_{k}(t), J_{k}(t)$ are again linear combinations of complete elliptic integrals
$Q(t)$ subtopologies \rightarrow linear combination of weight 2 polylogs

In particular we have

$$
Q(x)=5 \ln ^{2}\left(I_{2}\right)-I_{1} \frac{3 / 2 \zeta_{2}+3 \ln ^{2}\left(I_{4}\right)+3 \operatorname{Li}_{2}\left(-1 / I_{4}^{2}\right)}{l_{5}}
$$

And

$$
\begin{gathered}
I_{1}(t)=\sqrt{x} \mathrm{~K}\left(\frac{x}{16}\right), \quad J_{1}(x)=\sqrt{x} \mathrm{~K}\left(1-\frac{x}{16}\right) \\
I_{2}(x)=-\sqrt{x} \mathrm{E}\left(\frac{x}{16}\right), \quad J_{2}(x)=\sqrt{x}\left[\mathrm{E}\left(1-\frac{x}{16}\right)-\mathrm{K}\left(1-\frac{x}{16}\right)\right],
\end{gathered}
$$

The integral representation of the solution is also in this case suited for analytic continuation and, very importantly, fast and precise numerical evaluation

The integral representation of the solution is also in this case suited for analytic continuation and, very importantly, fast and precise numerical evaluation

$$
\Downarrow
$$

Comparison against SecDec3 [S.Borowka et al., '15] for scalar triangle

§ Minkoswki kinematics

\Im Minkowski kinematics

How do we go further?

What do we do if these integrals appear in turn as inhomogeneous term of more complicated graphs?
\rightarrow Dispersion relations together with differential equations allow to simplify this step.
\Downarrow
Worked out explicitly case of the Kite integral [arXiv:1602.01481]

$$
\begin{aligned}
\mathcal{I}\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right) & = \\
& =\int \mathfrak{D}^{d} k \mathfrak{D}^{d} l \frac{1}{D_{1}^{n_{1}} D_{2}^{n_{2}} D_{3}^{n_{3}} D_{4}^{n_{4}} D_{5}^{n_{5}}} \\
D_{1}=k^{2}+m^{2}, & D_{2}=l^{2}, \quad D_{3}=(k-l)^{2}+m^{2} \\
D_{4}=(k-p)^{2}, & D_{5}=(l-p)^{2}+m^{2}
\end{aligned}
$$

Let's see how this works for a simple 1-loop example

$$
\operatorname{Tri}(s)=\int \mathfrak{D}^{d} k \frac{1}{\left(k^{2}+m^{2}\right)\left(\left(k-p_{1}\right)^{2}+m^{2}\right)\left(\left(k-p_{1}-p_{2}\right)^{2}+m^{2}\right)}
$$

It is easy to derive differential equation in s for 1-loop triangle $\operatorname{Tri}(s)$

$$
\begin{aligned}
\frac{d}{d s} \operatorname{Tri}(s) & =-\frac{1}{s} \operatorname{Tri}(s)+\frac{(d-2)}{8 m^{4}}\left(\frac{1}{s-4 m^{2}}-\frac{1}{s}\right) \operatorname{Tad}(m) \\
& +\frac{(d-3)}{4 m^{2}}\left(\frac{1}{s-4 m^{2}}-\frac{1}{s}\right) \operatorname{Bub}(s)
\end{aligned}
$$

and

$$
\operatorname{Tad}(m)=\int \mathfrak{D}^{d} k \frac{1}{k^{2}+m^{2}}=\frac{m^{d-2}}{(d-2)(d-4)}
$$

In order to solve it:

1 - Solve homogeneous equation
2- Use Euler's variation of constants to find inhomogeneous solution

It is easy to derive differential equation in s for 1-loop triangle $\operatorname{Tri}(s)$

$$
\begin{aligned}
\frac{d}{d s} \operatorname{Tri}(s) & =-\frac{1}{s} \operatorname{Tri}(s)+\frac{(d-2)}{8 m^{4}}\left(\frac{1}{s-4 m^{2}}-\frac{1}{s}\right) \operatorname{Tad}(m) \\
& +\frac{(d-3)}{4 m^{2}}\left(\frac{1}{s-4 m^{2}}-\frac{1}{s}\right) \operatorname{Bub}(s)
\end{aligned}
$$

and

$$
\operatorname{Tad}(m)=\int \mathfrak{D}^{d} k \frac{1}{k^{2}+m^{2}}=\frac{m^{d-2}}{(d-2)(d-4)}
$$

In order to solve it:
1- Solve homogeneous equation
2- Use Euler's variation of constants to find inhomogeneous solution

Homogeneous equation is very simple in this case

$$
\begin{gathered}
\frac{d}{d s} h(s)=-\frac{1}{s} h(s) \quad \rightarrow \quad h(s)=\frac{c}{s} \\
\Downarrow
\end{gathered}
$$

Euler's method gives then for inhomogeneous solution

$$
\begin{aligned}
\operatorname{Tri}(s)=\frac{c}{s} & +\frac{(d-2)}{2 s} \int_{0}^{s} \frac{d u}{u-4 m^{2}} \operatorname{Tad}(m) \\
& +\frac{(d-3)}{s} \int_{0}^{s} \frac{d u}{u-4 m^{2}} \operatorname{Bub}(u)
\end{aligned}
$$

Until here nothing new. In order to proceed, include explicitly subtopologies

Let us include Tadpole (trivial) and dispersive representation for the Bubble

$$
\operatorname{Bub}(u)=\frac{1}{\pi} \int_{4 m^{2}}^{\infty} \frac{d t}{t-u-i \epsilon} \operatorname{Im}(\operatorname{Bub}(t))
$$

Note that $c=0$ since the triangle must be regular as $s \rightarrow 0$

Let us include Tadpole (trivial) and dispersive representation for the Bubble

$$
\operatorname{Bub}(u)=\frac{1}{\pi} \int_{4 m^{2}}^{\infty} \frac{d t}{t-u-i \epsilon} \operatorname{Im}(\operatorname{Bub}(t))
$$

$$
\begin{aligned}
\operatorname{Tri}(s) & =\frac{m^{d-2}}{2 s(d-4)} \int_{0}^{s} \frac{d u}{u-4 m^{2}} \\
& +\frac{(d-3)}{s} \frac{1}{\pi} \int_{4 m^{2}}^{\infty} \frac{d t}{t-4 m^{2}} \operatorname{Im}(\operatorname{Bub}(t)) \int_{0}^{s} d u\left(\frac{1}{u-4 m^{2}}+\frac{1}{t-u-i \epsilon}\right)
\end{aligned}
$$

Note that $c=0$ since the triangle must be regular as $s \rightarrow 0$

Integration in $d u$ is trivial - the relation that we find is independent from the explicit value of the imaginary part of $\operatorname{Bub}(t)$!

$$
\begin{aligned}
\operatorname{Tri}(s) & =\frac{m^{d-2}}{2 s(d-4)} \ln \left(1-\frac{s}{4 m^{2}}\right) \\
& +\frac{(d-3)}{s} \frac{1}{\pi} \int_{4 m^{2}}^{\infty} \frac{d t}{t-4 m^{2}} \operatorname{ImBub}(t)\left[\ln \left(1-\frac{s}{4 m^{2}}\right)-\ln \left(1-\frac{s}{t}\right)\right]
\end{aligned}
$$

- Extracting the imaginary part for $s>4 m^{2}$ is straightforward
- Numerical evaluation is simple once $\operatorname{Im}(\operatorname{Bub}(t))$ is known

$$
\Downarrow
$$

Worked out for Kite integral. Provides one-fold integral representation suitable for numerical evaluation, analytic continuation,

SUMMARY (work in progress....!)

- When Feynman Integrals are not multiple polylog, still a lot to understand
- First, we need to collect statistics. At two-loops all known examples require integrals over complete elliptic integrals.
\rightarrow how general is this?
- First step, obtain analytical expressions suitable for phenomenology!
- New idea: When results beyond polylogs, solution of differential equations can be simplified using dispersion relations

Thanks!

