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Dispersion relations and differential equations for Feynman Integrals

Dimensionally regularised Feynman Integrals fulfil differential equations!
[Kotikov ’90, Remiddi ’97, Gehrmann-Remiddi ’00,...]

⇓

Direct consequence of Integration-by-parts (IBPs) identities in d-dimensions!

∫ l∏
j=1

dd kj
(2π)d

(
∂

∂kµj
vµ

Sσ1
1 ... Sσss

Dα1
1 ...Dαn

n

)
= 0 , vµ = kµj , p

µ
k

Reduced to N master integrals, Ii (d ; xk) with i = 1, ...,N.

⇓

Differentiating the masters and using the IBPs we get a system of
N coupled differential equations

∂

∂ xk
Ii (d ; xk) =

N∑
j=1

cij(d ; xk) Ij(d ; xk) .
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Dispersion relations and differential equations for Feynman Integrals

(Relatively) Simple standard case: multiple polylogarithms!

- In this case, one can find a canonical basis [Henn ’13]

∂

∂ xk
Ii (d ; xk) = (d − 4)

N∑
j=1

cij(xk) Ij(d ; xk) , cij(xk) in d-log form .

- Existence of such a basis related to decoupling of diff. eqs. for d → 4.

Decoupling due to degeneracy of IBPs in even integer numbers of dimensions,

i.e. number of master integrals in d = 2 n is smaller than for generic d!

[E.Remiddi, L.T. ’13; L.T. ’15]
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⇓

Let’s talk about what happens when this is not possible

As we’ll see, it’s enough to start putting some masses in the loops!

Interesting because:

1- LHC is pushing precision beyond 5%

2- High energies and High pT → probe massive particles in the loops

a- Top quark corrections to Hj, HH, γγ, jj , ...
b- New massive states?
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Let’s look more in detail - in reality we have

Ij(d ; xk) = (mj(d ; xk) , subj(d ; xk))

⇓

∂

∂ xk
mi (d ; xk) =

N∑
j=1

hij(d ; xk)mj(d ; xk) +
M∑
j=1

nhij(d ; xk) subj(d ; xk) .
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Let’s look more in detail - in reality we have

Ij(d ; xk) = (mj(d ; xk) , subj(d ; xk))

⇓

∂

∂ xk
mi (d ; xk) =

N∑
j=1

hij(d ; xk)︸ ︷︷ ︸
⇓

mj(d ; xk) +
M∑
j=1

nhij(d ; xk) subj(d ; xk) .

homogeneous piece is first source

of complexity - whether

differential equations are coupled

⇓

No way to solve this in general.

Need to do some “statistics”!
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Let’s look more in detail - in reality we have

Ij(d ; xk) = (mj(d ; xk) , subj(d ; xk))

⇓

∂

∂ xk
mi (d ; xk) =

N∑
j=1

hij(d ; xk)mj(d ; xk) +
M∑
j=1

nhij(d ; xk) subj(d ; xk)︸ ︷︷ ︸
⇓

.

non-homogeneous piece is second

source of complexity - we must

integrate over it!

⇓

Systematized using differential

equations and dispersion relations

7 / 31



Dispersion relations and differential equations for Feynman Integrals

Let’s have a look at two completely unrelated examples

S(d ; p2) =

m

-

&%
'$

p

- p2 6= 0, three massive lines

- 2 master integrals

- Satisfy 2 coupled diff. eqs.

- Needed for NNLO tt̄

⇓

massive 3-particle cut
Integrals over elliptic integrals!

T (d ; p2) =

m

�
�

@
@

-

-

-
p

p1

p2

�
�
�
�

AA

AA

- p2
1 = p2

2 = 0, four massive lines

- 2 master integrals

- Satisfy 2 coupled diff. eqs

- Needed for NNLO γγ, tt̄, ...

⇓

NO massive 3-particle cut
SAME Integrals over elliptic integrals!
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In both cases diff. eqs. can be written as (p2 = u , m2 = 1 for simplicity)

d

du

(
h1(d ; u)
h2(d ; u)

)
= B(u)

(
h1

h2

)
+ (d − 4)D(u)

(
h1

h2

)
+

(
N1(d ; u)
N2(d ; u)

)
.

- Matrices B(u) and D(u) different for the two cases → but don’t depend on d!

⇓

Matrices may have only regular singular points 1/(u − a)
Fuchsian differential equations! [Lee, ’14]

- Nj (d ; u) trivial for the sunrise → Tadpole!

- Nj (d ; u) non-trivial for triangle, contains multiple polylogarithms!
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Dispersion relations and differential equations for Feynman Integrals

Start by looking for two independent solutions of the homogeneous equation

G(u) =

(
I1(u) J1(u)
I2(u) J2(u)

)
such that

d

du
G(u) = B(u)G(u) .

Fundamental properties (in both cases):

1- Ik(u) and Jk(u) are linear combinations of complete elliptic integrals

2- The Wronskian of the solutions is trivial → matrix B(u) is traceless

W (u) = detG(u) = I1(u)J2(u)− J1(u)I2(u) = π
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The simple wronskian is crucial to solve the equations.

(
h1(d ; u)
h2(d ; u)

)
= G(u)

(
m1(d ; u)
m2(d ; u)

)
, with G−1(u) =

1

π

(
J2(u) −J1(u)
−I2(u) I1(u)

)
.

And the new functions satisfy the equations

d

du

(
m1(d ; u)
m2(d ; u)

)
= (d − 4)

1

π
M(u)

(
m1(d ; u)
m2(d ; u)

)
+ G (−1)(u)

(
N1(d ; u)
N2(d ; u)

)

with M(u) = G (−1)(u)D(u)G(u), which does not depend on d !!!!

M(u) contains all information needed for iteration at every order in (d − 4)!
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Let’s see example of the two-loop sunrise graph [E.Remiddi, L.T., ’16]
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The differential equations can be put in the form above

d

du

(
h1

h2

)
= B(u)

(
h1

h2

)
+ (d − 4)D(u)

(
h1

h2

)
+

(
0
1

)
.

where the two matrices B(u),D(u) are defined as

B(u) =
1

6 u(u − 1)(u − 9)

(
3(3 + 14u − u2) −9

(u + 3)(3 + 75u − 15u2 + u3) −3(3 + 14u − u2)

)

D(u) =
1

6 u(u − 9)(u − 1)

(
6 u(u − 1) 0

(u + 3)(9 + 63u − 9u2 + u3) 3(u + 1)(u − 9)

)

Four regular singular points: u = 0, 1, 9,±∞
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Matrix of solutions of homogeneous eq. obtained studying the imaginary part

G(u) =

(
I1(u) J1(u)
I2(u) J2(u)

)

I1(u) =

∫ (
√

u−1)2

4
db

1√
R4(b, u)

, I2(u) =

∫ (
√
u−1)2

4
db

b2√
R4(b, u)

J1(u) =

∫ 4

0
db

1√
−R4(d , u)

, J2(u) =

∫ 4

0
db

b2√
−R4(d , u)

+
π

3
(u + 3)

R4(b, u) = b(b − 4)((
√
u − 1)2 − b)((

√
u + 1)2 − b)

Ik(u), Jk(u) are linear combinations of complete elliptic integrals
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Dispersion relations and differential equations for Feynman Integrals

After rotation to solve homogeneous part defining

G(u) =

(
I1(u) J1(u)
I2(u) J2(u)

)

and (
h1(d ; u)
h2(d ; u)

)
= G(u)

(
m1(d ; u)
m2(d ; u)

)

Equations become as we saw

d

du

(
m1(d ; u)
m2(d ; u)

)
= (d − 4)

1

π
M(u)

(
m1(d ; u)
m2(d ; u)

)
+

1

π

(
−J1(u)
I1(u)

)
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And the matrix M(u) can be written as a total differential!!!!

M11(u) = −
d

d u

[(
(u + 3)2

6
I1(u) J1(u)

)
+
π

4
(2 ln (u − 9) + 2 ln (u − 1)− ln (u))

]
,

M12(u) = −
d

d u

(
(u + 3)2

6
I1(u) I1(u)

)
,

M21(u) = +
d

d u

(
(u + 3)2

6
J1(u) J1(u)

)
,

M22(u) = +
d

d u

[(
(u + 3)2

6
I1(u) J1(u)

)
+
π

4
(2 ln (u − 9) + 2 ln (u − 1)− ln (u))

]
,

Derivatives of logs and of products of elliptic integrals and rational functions!

It looks like a natural generalization of a “simple” matrix in d-log form!
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Integral representation of solution for the master integrals at order zero

h
(0)
1 (u) =

1

π

[
J1(u)

∫ u

0
dt I1(t)− I1(u)

(∫ u

0
dt J1(t)− Cl2

(π
3

))]
,

h
(0)
2 (u) =

1

π

[
J2(u)

∫ u

0
dt I1(t)− I2(u)

(∫ u

0
dt J1(t)− Cl2

(π
3

))]
.

Similarly simple (one-fold integral) representation one order higher !

⇓

See [arXiv:1602.01481] for details!
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Same approach can be applied to master integrals of non-planar crossed triangle
To appear soon... [A.von Manteuffel, L.T.]!

m

�
�

@
@

-

-

-
p

p1

p2

�
�
�
�

AA

AA
, x = − p2

m2

All subtopologies can be written in terms of (not trivial!)

ln (f (li )) , Lin(f (li )) , Li2,2(f (li ), g(lj)) ,

with

li = {
√
x , 1

2
(
√
x +
√
x + 4),

√
x + 4, 1

2
(
√
x +
√
x − 4),

√
x − 4}
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Also in this case, analytical result for two master integrals can be written as

T
(0)
1 (x) =

2

π

[
J1(x)

∫ x

0
dt I1(t)Q(t)− I1(x)

∫ x

0
dt J1(t)Q(t)

]
,

T
(0)
2 (x) =

2

π

[
J2(x)

∫ x

0
dt I1(t)Q(t)− I2(x)

∫ x

0
dt J1(t)Q(t)

]
.

Ik (t), Jk (t) are again linear combinations of complete elliptic integrals

Q(t) subtopologies → linear combination of weight 2 polylogs
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Dispersion relations and differential equations for Feynman Integrals

In particular we have

Q(x) = 5 ln2(l2)− l1
3/2 ζ2 + 3 ln2(l4) + 3Li2(−1/l2

4 )

l5

And

I1(t) =
√
x K

( x

16

)
, J1(x) =

√
x K

(
1− x

16

)
.

I2(x) = −
√
x E

( x

16

)
, J2(x) =

√
x
[
E
(

1− x

16

)
− K

(
1− x

16

)]
,
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The integral representation of the solution is also in this case suited for analytic
continuation and, very importantly, fast and precise numerical evaluation
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The integral representation of the solution is also in this case suited for analytic
continuation and, very importantly, fast and precise numerical evaluation

⇓

Comparison against SecDec3 [S.Borowka et al., ’15] for scalar triangle

-8 -6 -4 -2

s

m2

0.5

1.0

1.5

I1111110
s

m2

Euclidean kinematics
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2 4 6 8

s

m2

0.5

1.0

1.5

Re I1111110
s

m2

< Minkoswki kinematics

0 2 4 6 8

s

m2

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Im I1111110
s

m2

= Minkowski kinematics
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How do we go further?

What do we do if these integrals appear in turn as inhomogeneous term of
more complicated graphs?

→ Dispersion relations together with differential equations allow to simplify
this step.

⇓

Worked out explicitly case of the Kite integral [arXiv:1602.01481]

Note that Eq.(4.8) is nothing but the d-dimensional three-body massive phase space and Eq.(4.7) could
indeed have been obtained also by computing first the imaginary part of the sunrise graph using Cutkosky-
Veltman rule, and then writing a dispersion relation for it. Remarkably, the complexity of the result in the
general mass case is practically the same as in the equal mass case m1 = m2 = m3 = m.

Let us further emphasize that Eqs. (4.6), (4.7) and (4.8) are all true for generic, continuous values of
d. Furthermore, their expansion in (d − n), where n is virtually any positive integer (and in particular in
(d − 2)), is completely straightforward and generates only products of logarithms3. This implies in turn
that, at every order in (d − 2), the integral in v in Eq.(4.6) can always be performed in terms of multiple
polylogarithms only. This shows that, at every order in (d − 2), the sunrise integral can be written as a
one-fold integral over the root of a quartic polynomial, times combinations of multiple polylogaritms. The
result is interesting and it resembles similar results found for the finite term of a completely unrelated
massless double box in N = 4 [29,30]4. Finally, the relation of this representation of the imaginary part of
the sunrise Eq.(4.8) with the results obtained by the explicit solution of the system of differential equations
for the two amplitudes of the sunrise problem (which involves two pairs of solutions, i.e. four functions
altogether, see for instance section 8 of this paper) is also intriguing, but will not be further investigated
here. Starting from the next section we will instead focus on the more general problem of computing the
full set of master integrals of the kite graph using the differential equations method.

5 The differential equations for the kite master integrals

Let us consider the family of the integrals of the QED kite graph with three massive propagators and two
massless ones, defined as

I(n1, n2, n3, n4, n5) = ✲ "
"

"
"

p

=

∫
Ddk Ddl

1

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5

(5.1)

where dashed lines represent massless propagators. The five denominators are chosen as

D1 = k2 + m2 , D2 = l2 , D3 = (k − l)2 + m2 ,

D4 = (k − p)2 , D5 = (l − p)2 + m2 , (5.2)

with −p2 = s and p2 > 0 when p is spacelike. The integration measure is defined as in Eq.(2.1) such that
according to Eq.(2.3) the one-loop tadpole reads

∫
Ddk

k2 + m2
=

md−2

(d − 2)(d − 4)
. (5.3)

The integral family (5.2) can be very easily reduced to master integrals using, for example, Reduze 2 [31,32].
In order to simplify the notation we put m = 1 and define u = s/m2. We find 8 independent master integrals
which we choose as follows

M1(d; u) = I(2, 0, 2, 0, 0) , M2(d; u) = I(2, 0, 2, 1, 0) ,

M3(d; u) = I(0, 2, 2, 1, 0) , M4(d; u) = I(0, 2, 1, 2, 0) ,

M5(d; u) = I(2, 1, 0, 1, 2) , M6(d; u) = I(1, 0, 1, 0, 1) ,

M7(d; u) = I(2, 0, 1, 0, 1) , M8(d; u) = I(1, 1, 1, 1, 1) . (5.4)

Most of the master integrals are very simple and have been already studied thoroughly in the literature. In
particular M1,...,M5 are known and can be written in terms of HPLs only. The remaining three integrals,

3Note that in odd numbers of dimensions, d = 2 n + 1, the imaginary part becomes particularly simple since the square
root in Eq.(4.8) cancels.

4One should compare in particular our Eq.(4.6) with Eq.(3.23) in [30].

8

D1 = k2 + m2 , D2 = l2 , D3 = (k − l)2 + m2 ,

D4 = (k − p)2 , D5 = (l − p)2 + m2 ,
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Let’s see how this works for a simple 1-loop example

Tri(s) = -

-

-

�
�

@
@

q
p1

p2

with q2 = s, p2
1 = p2

2 = 0

Tri(s) =

∫
D dk

1

(k2 + m2)((k − p1)2 + m2)((k − p1 − p2)2 + m2)
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It is easy to derive differential equation in s for 1-loop triangle Tri(s)

d

ds
Tri(s) = −1

s
Tri(s) +

(d − 2)

8m4

(
1

s − 4m2
− 1

s

)
Tad(m)

+
(d − 3)

4m2

(
1

s − 4m2
− 1

s

)
Bub(s) ,

and

Tad(m) =

∫
D dk

1

k2 + m2
=

md−2

(d − 2)(d − 4)

In order to solve it:

1- Solve homogeneous equation

2- Use Euler’s variation of constants to find inhomogeneous solution
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2- Use Euler’s variation of constants to find inhomogeneous solution
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Homogeneous equation is very simple in this case

d

ds
h(s) = −1

s
h(s) → h(s) =

c

s

⇓

Euler’s method gives then for inhomogeneous solution

Tri(s) =
c

s
+

(d − 2)

2 s

∫ s

0

du

u − 4m2
Tad(m)

+
(d − 3)

s

∫ s

0

du

u − 4m2
Bub(u) ,

Until here nothing new. In order to proceed, include explicitly subtopologies
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Let us include Tadpole (trivial) and dispersive representation for the Bubble

Bub(u) =
1

π

∫ ∞
4 m2

dt

t − u − i ε
Im(Bub(t))

Tri(s) =
md−2

2 s (d − 4)

∫ s

0

du

u − 4m2

+
(d − 3)

s

1

π

∫ ∞
4m2

dt

t − 4m2
Im(Bub(t))

∫ s

0

du

(
1

u − 4m2
+

1

t − u − i ε

)

Note that c = 0 since the triangle must be regular as s → 0
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Integration in du is trivial – the relation that we find is independent from the
explicit value of the imaginary part of Bub(t)!

Tri(s) =
md−2

2 s (d − 4)
ln
(

1− s

4m2

)
+

(d − 3)

s

1

π

∫ ∞
4m2

dt

t − 4m2
ImBub(t)

[
ln
(

1− s

4m2

)
− ln

(
1− s

t

)]
.

- Extracting the imaginary part for s > 4m2 is straightforward

- Numerical evaluation is simple once Im(Bub(t)) is known

⇓
Worked out for Kite integral. Provides one-fold integral representation suitable
for numerical evaluation, analytic continuation, ....
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SUMMARY (work in progress....!)

- When Feynman Integrals are not multiple polylog, still a lot to understand

- First, we need to collect statistics. At two-loops all known examples
require integrals over complete elliptic integrals.

→ how general is this?

- First step, obtain analytical expressions suitable for phenomenology!

⇓

- New idea: When results beyond polylogs, solution of differential
equations can be simplified using dispersion relations
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Thanks!
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