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Dispersion relations and differential equations for Feynman Integrals

Dimensionally regularised Feynman Integrals fulfil differential equations!
[Kotikov '90, Remiddi '97, Gehrmann-Remiddi '00,...]

I

Direct consequence of Integration-by-parts (IBPs) identities in d-dimensions!

S7t...57¢
/H G ( K DD) =0 V=KL

Reduced to N master integrals, l;(d; xx) with i =1,..., N.

4
Differentiating the masters and using the IBPs we get a system of
N coupled differential equations

N

aiXk/,-(d;xk) = ci(di xe) fi(d; xi) -

j=1
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(Relatively) Simple standard case: multiple polylogarithms!

- In this case, one can find a canonical basis [Henn '13]

) - :
a—Xkl,-(d;Xk) =(d—4) Z ci(xk) li(d; xk), cij(xx) in d-log form.

j=1

- Existence of such a basis related to decoupling of diff. egs. for d — 4.

Decoupling due to degeneracy of IBPs in even integer numbers of dimensions,
i.e. number of master integrals in d = 2 n is smaller than for generic d!
[E.Remiddi, L.T. '13; L.T. '15]
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I

Let's talk about what happens when this is not possible

As we'll see, it's enough to start putting some masses in the loops!

Interesting because:

1- LHC is pushing precision beyond 5%

2- High energies and High pr — probe massive particles in the loops

a- Top quark corrections to Hj, HH, ~~, jj, ...
b- New massive states?
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Let’s look more in detail - in reality we have

li(d; xic) = (mj(d; ), subj(d; x«))
4

0

N M
a—x‘(m,-(d; Xk) = Z hij(d; xk) mj(d; xk) + Z nhii(d; x) subj(d; x«) .

j=1 =1
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Let’s look more in detail - in reality we have

li(d; ) = (mj(di x) , subj(d; x))

)

N

0
6—ka,-(d;xk Z i(d; xk ) m;(d; xk)—|—z nhj;(d; xk) subj(d; xx) .

Jj=1 1
i} Jj=

homogeneous piece is first source
of complexity - whether
differential equations are coupled

¢

No way to solve this in general.
Need to do some “statistics!

6/31
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Let's look more in detail - in reality we have

li(d; xic) = (mj(d; ), subj(d; xi))

I
P N M
Dxt mi(d; xk) = Z hij(d; xk) mj(d; xk) + Z nhi(d; xi) subj(d; xx) .
Jj=1 j=1

¥

non-homogeneous piece is second
source of complexity - we must
integrate over it!

¢

Systematized using differential
equations and dispersion relations
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Let's have a look at two completely unrelated examples
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Let's have a look at two completely unrelated examples

S(d; p°) = p: Q

- p? # 0, three massive lines
- 2 master integrals

- Satisfy 2 coupled diff. egs.
- Needed for NNLO tt

¥

massive 3-particle cut
Integrals over elliptic integrals!
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Let's have a look at two completely unrelated examples

S(d; p°) = p: O

- p? # 0, three massive lines
- 2 master integrals

- Satisfy 2 coupled diff. egs.
- Needed for NNLO tt

¥

massive 3-particle cut
Integrals over elliptic integrals!

p1

P2

- p% = p% = 0, four massive lines
- 2 master integrals

- Satisfy 2 coupled diff. egs

- Needed for NNLO ~~, tt, ...

¥

NO massive 3-particle cut
SAME Integrals over elliptic integrals!
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In both cases diff. egs. can be written as (p2 =u, m* =1 for simplicity)

S man ) =sw () +e-aow (m)+( e ).

9/31
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In both cases diff. egs. can be written as (p2 =u, m* =1 for simplicity)

%( Z;gjzg )_B(u)( Z; )+(d—4)D(u) ( h )+< Nl(df”g ) .

ho

- Matrices B(u) and D(u) different for the two cases — but don’t depend on d!

\

Matrices may have only regular singular points 1/(u — a)
Fuchsian differential equations! [Lee, '14]
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In both cases diff. egs. can be written as (p2 =u, m* =1 for simplicity)

%( Z;gjzg )_B(u)( Z; )+(d—4)D(u) ( h )+< Nl(df”g ) .

ho

- Matrices B(u) and D(u) different for the two cases — but don’t depend on d!

\

Matrices may have only regular singular points 1/(u — a)
Fuchsian differential equations! [Lee, '14]

- N;j(d; u) trivial for the sunrise — Tadpole!

- N;(d; u) non-trivial for triangle, contains multiple polylogarithms!

9/31
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Start by looking for two independent solutions of the homogeneous equation
h(u)  i(u)
G =
(1) ( b(u)  Jo(u)

d
EG(U) = B(u) G(u) .

such that

Fundamental properties (in both cases):

1- I(u) and Jk(u) are linear combinations of complete elliptic integrals
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Start by looking for two independent solutions of the homogeneous equation
h(u)  i(u)
G =
(1) ( b(u)  Jo(u)

d
EG(U) = B(u) G(u) .

such that

Fundamental properties (in both cases):

1- I(u) and Jk(u) are linear combinations of complete elliptic integrals

2- The Wronskian of the solutions is trivial — matrix B(u) is traceless

W(u) =det G(u) = h(u)h(u) — h(u)b(u) =7



Dispersion relations and differential equations for Feynman Integrals

The simple wronskian is crucial to solve the equations.

(i) )= (g ). win e tw=1 (A0 A ).

11/31
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The simple wronskian is crucial to solve the equations.
hi(d;u) \ _ my(d; u) ) 1 b)) —h(w)
(has ) =cw (s ). wim etw=2 (A 08 )

And the new functions satisfy the equations

S (g Y =@—a Zm (g )+ e ()
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The simple wronskian is crucial to solve the equations.
hi(d;u) \ _ my(d; u) ) 1 b)) —h(w)
(has ) =cw (s ). wim etw=2 (A 08 )

And the new functions satisfy the equations

S (g Y =@—a Zm (g )+ e ()

with M(u) = GY(u) D(u) G(u), which does not depend on d !!!!

M(u) contains all information needed for iteration at every order in (d — 4)!

11/31
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Let's see example of the two-loop sunrise graph [E.Remiddi, L.T., '16]
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The differential equations can be put in the form above
d hy 1\ _ hy h 0
E( hy )—B(u)( By + (d —4) D(u) B +1 1 )

where the two matrices B(u), D(u) are defined as

B(u) 1 3(3 + 14u — v?) -9 )

T bu(u—1)(u-9) ( (u43)(B+75u — 150 + u3)  —3(3 4 14u — u?)

B 1 6u(u—1) 0
PW) = S ua—9w=1) ( (u+3)(9+63u—9u? + u®) 3(u+1)(u—09) )

Four regular singular points: v =0,1,9, +00

13/31
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Matrix of solutions of homogeneous eq. obtained studying the imaginary part
h(u)  Ji(u)
G(u) =
©=(4 A

hw) /m—l)z Wb 1 (w) /(ﬁ—1>2 Wb b2
u) = _ u) = _—
! 4 JRibw) 4 J/Ra(b, 1)

4 1 4
J1(u):/0 b J2(u):/0 m Z(u+3)

Ra(b, u) = b(b — 4)((vu — 1) = b)((vu + 1)* - b)

Ik(u), Jk(u) are linear combinations of complete elliptic integrals

14 /31
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After rotation to solve homogeneous part defining
_( h(u)  S(u) )
se=( 460 h0)
and
hi(d; u) B mi(d; u)
( ha(d; u) ) = G(u) ( my(d; u)
Equations become as we saw

4 (e ) om0 )+ (A9

15/31
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Mii(u) = —
Mio(u) = —
Moi(u) =

Moo (u) =

And the matrix M(u) can be written as a total differential!!!!

» K D 0) ))+%(2|n(u—9)+2|n(u—1)—In(u)):| ,
(e i3y K@ W) |
- ((”“) Mu)h(u))
» K P 1) (o )) +%(2|n(u—9)+2|n(u—1)—In(u)):| ,

Derivatives of logs and of products of elliptic integrals and rational functions!

It looks like a natural generalization of a “simple” matrix in d-log form!

16

31
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Integral representation of solution for the master integrals at order zero

[Jl(u)/ dt I (t) — h(u (/ dt h(t) — 012( ))]
[Jz(u)/o dt i (£) — b(u) (/0 dt i (t) — Cl (g))]

Similarly simple (one-fold integral) representation one order higher!

Al A e

I

See [arXiv:1602.01481] for details!

17 /31
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Same approach can be applied to master integrals of non-planar crossed triangle
To appear soon... [A.von Manteuffel, L.T.]!

p1

P2

All subtopologies can be written in terms of (not trivial!)

In(f(h)), Lin(f(h)), Liz2(f(h),&(h)),
with

b= (V5 AR+ VXA VR A, L (VR + VX = A), VX — 8}
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Also in this case, analytical result for two master integrals can be written as

TO () = [Jl(x)/oxdtll(t)Q(t)—l1(x) /OxdtJl(t)Q(t)} ,

[JQ(X) /OX dt h(t) Q(t) — h(x) /OX dt Ji(t) Q(t):| .

N 3N

T(x) =

I (t), Jk(t) are again linear combinations of complete elliptic integrals

Q(t) subtopologies — linear combination of weight 2 polylogs

19/31
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In particular we have

2 . 2
Q(x) =5In*(h) — h 3/2¢2+3In (/4/2 + 3Lio(—1/12)

And
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The integral representation of the solution is also in this case suited for analytic
continuation and, very importantly, fast and precise numerical evaluation
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The integral representation of the solution is also in this case suited for analytic
continuation and, very importantly, fast and precise numerical evaluation

U

Comparison against SecDec3 [S.Borowka et al., '15] for scalar triangle

s
11111110 —
m?

1.0

'
@
'
&
!
IS
|
N
3
to

Euclidean kinematics
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s
Re{11111110| —
m

e

0.55

R Minkoswki kinematics

3 Minkowski kinematics
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How do we go further?

What do we do if these integrals appear in turn as inhomogeneous term of
more complicated graphs?

— Dispersion relations together with differential equations allow to simplify
this step.

I

Worked out explicitly case of the Kite integral [arXiv:1602.01481]

Z(n1,n2,n3,M4,M5) =

1
= [ D% DY S
/ D" Dy*Dy* Dy* Dg®

Di=K+m, Dy=F, Dy=(k—I>+m?,
Dy=(k—p), Ds=(l—p)P+m,

24 /31
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Let's see how this works for a simple 1-loop example

—— P1
q
Tri(s) = 4»/ with ¢g°=s, pP=p3=0

1

N d
Tle) = [ Dk e e N )

25 /31
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It is easy to derive differential equation in s for 1-loop triangle Tri(s)

d.,.v_ 1. (d—=12) 1 1
dsTm(s) = sTm(s) g <7s s s> Tad(m)
(d —=3) 1 1
* 4 m? s—4m? s Bub(s) ,
and
1 ma—2

Tad(m) :/@dk K+m  (d—2)(d-4)

26

31
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It is easy to derive differential equation in s for 1-loop triangle Tri(s)

d.,.v_ 1. (d —2) 1 1
dsTn(s) = sTm(s) g <7s s s> Tad(m)
(d —=3) 1 1
Y \s—am s Bub(s) ,
and
1 md72

Tad(m) :/Qdk K+m  (d—2)(d-4)

In order to solve it:

1- Solve homogeneous equation

2- Use Euler's variation of constants to find inhomogeneous solution

26

31
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Homogeneous equation is very simple in this case

d 1 c
Eh(s) = fgh(s) — h(s) = <

Euler's method gives then for inhomogeneous solution

. c , (d=2) (¢ du
Tr1(s)=;+ 25  Jo u—4m?

(d —3) /s du
S 0 u—4m? Bub(u),

Tad(m)

Until here nothing new. In order to proceed, include explicitly subtopologies

27 /31
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Let us include Tadpole (trivial) and dispersive representation for the Bubble

Bub(u) = * /4 T (Bub(y)

T Jamt—U—1I€

28 /31
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Let us include Tadpole (trivial) and dispersive representation for the Bubble

Bub(u) = * /4 T (Bub(y)

T Jamt—U—1I€

. m?? du
Tri(s) = 2s(d —4) /0 u—4m?

(d—3)l/°° dt /5 1 1
+ S T Jame t—4m2hn(Bub(t)) 0 du u—4m2+t—u—ie

m

Note that ¢ = 0 since the triangle must be regular as s — 0
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Integration in du is trivial — the relation that we find is independent from the
explicit value of the imaginary part of Bub(t)!

d—2

Tri(s) = % in(1- #)

+ @% /402 %Inﬂ%ub(t) [In (1 — #) —In (1 — ;)] .

m

2

- Extracting the imaginary part for s > 4m- is straightforward

- Numerical evaluation is simple once Im(Bub(t)) is known

I

Worked out for Kite integral. Provides one-fold integral representation suitable
for numerical evaluation, analytic continuation, ....

29 /31



Dispersion relations and differential equations for Feynman Integrals

SUMMARY (work in progress....!)

- When Feynman Integrals are not multiple polylog, still a lot to understand
- First, we need to collect statistics. At two-loops all known examples
require integrals over complete elliptic integrals.
— how general is this?
- First step, obtain analytical expressions suitable for phenomenology!

4

- New idea: When results beyond polylogs, solution of differential
equations can be simplified using dispersion relations

30/31
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Thanks!



