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Electroweak	Sudakov	logarithms	arise	from	exchanges	of	
electroweak	gauge	bosons

2

Consider example of qq production 

Have contributions from virtual and real emission
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FIG. 1: Graphs contributing to the αW correction to the J → qq̄ rate.

⊗

FIG. 2: Virtual correction to J → qq.

⊗ ⊗

FIG. 3: Real radiation from J → qqW .

where σ0 is the tree-level cross section. The − ln2 r and
−3 ln r terms lead to large corrections at high energy.
The real radiation J → qqW arises from the graphs in

Fig. 3, and is

σR =
CFαW

2π
σ0

{
5(1− r2) + (3 + 4r + 3r2) ln r

+ (1 + r)2
[
ln2 r − 4 ln r ln(1 + r) − 4 Li2 (−r)−

π2

3

]}
.

(7)

Expanding in r gives

σR =
CFαW

2π
σ0

{
ln2 r + 3 ln r −

π2

3
+ 5 + . . .

}
. (8)

The total radiative correction is

σT = σR + σV

=
CFαW

2π
σ0

{
3

2
− 2r − 5r2 + (2 + 3r)r ln r

− 2(1 + r)2 [ln r ln(1 + r) + Li2 (−r)]

}
(9)
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FIG. 4: Plot of the real and virtual corrections to J → qq̄.
Plotted are the exact virtual correction (solid blue), the vir-
tual corrections using SCETEW (dashed blue), real radiation
(red), exact total rate (black) and the total rate using the
SCETEW virtual correction (dashed black).

and as r → 0 gives

σT =
3CFαW

4π
σ0 . (10)

The ln2 r and ln r terms cancel between σR,V . The cor-
rection to R in QCD is given by Eq. (10) with the re-
placement αW → αs and CF → 4/3.
The real and virtual corrections are shown in Fig. 4.

Also shown is the virtual correction computed using the
SCETEW result of Eq. (A2). The SCETEW and exact cal-
culations for the virtual correction have only very small
differences, which are below 1% for E > 2MW ∼ 160
GeV, and < 0.5% by 400GeV, whereas the real and
virtual corrections each exceed 5% by the time E >
15MW ∼ 1.2 TeV. This shows that in the regime where
the electroweak corrections are relevant at the LHC, the
SCETEW computation is sufficiently accurate. The fig-
ure also shows that the large real and virtual electroweak
corrections cancel in the total cross section.
The above calculation demonstrates the usual cancel-

lation of the L2 and L terms between real and virtual
graphs for the total cross section summed over all final
states. This cancellation is not guaranteed to hold if
the cross section is modified by restrictions on the final
state. One can impose phase space restrictions on the
kinematics of the emitted gauge boson. Consequences
of doing so were studied in detail in Ref. [6], and lead
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and as r → 0 gives

σT =
3CFαW

4π
σ0 . (10)

The ln2 r and ln r terms cancel between σR,V . The cor-
rection to R in QCD is given by Eq. (10) with the re-
placement αW → αs and CF → 4/3.
The real and virtual corrections are shown in Fig. 4.

Also shown is the virtual correction computed using the
SCETEW result of Eq. (A2). The SCETEW and exact cal-
culations for the virtual correction have only very small
differences, which are below 1% for E > 2MW ∼ 160
GeV, and < 0.5% by 400GeV, whereas the real and
virtual corrections each exceed 5% by the time E >
15MW ∼ 1.2 TeV. This shows that in the regime where
the electroweak corrections are relevant at the LHC, the
SCETEW computation is sufficiently accurate. The fig-
ure also shows that the large real and virtual electroweak
corrections cancel in the total cross section.
The above calculation demonstrates the usual cancel-

lation of the L2 and L terms between real and virtual
graphs for the total cross section summed over all final
states. This cancellation is not guaranteed to hold if
the cross section is modified by restrictions on the final
state. One can impose phase space restrictions on the
kinematics of the emitted gauge boson. Consequences
of doing so were studied in detail in Ref. [6], and lead

For massless gauge boson, get IR divergences in both virtual 
and real that cancel by KLN 
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and as r → 0 gives

σT =
3CFαW

4π
σ0 . (10)

The ln2 r and ln r terms cancel between σR,V . The cor-
rection to R in QCD is given by Eq. (10) with the re-
placement αW → αs and CF → 4/3.
The real and virtual corrections are shown in Fig. 4.

Also shown is the virtual correction computed using the
SCETEW result of Eq. (A2). The SCETEW and exact cal-
culations for the virtual correction have only very small
differences, which are below 1% for E > 2MW ∼ 160
GeV, and < 0.5% by 400GeV, whereas the real and
virtual corrections each exceed 5% by the time E >
15MW ∼ 1.2 TeV. This shows that in the regime where
the electroweak corrections are relevant at the LHC, the
SCETEW computation is sufficiently accurate. The fig-
ure also shows that the large real and virtual electroweak
corrections cancel in the total cross section.
The above calculation demonstrates the usual cancel-

lation of the L2 and L terms between real and virtual
graphs for the total cross section summed over all final
states. This cancellation is not guaranteed to hold if
the cross section is modified by restrictions on the final
state. One can impose phase space restrictions on the
kinematics of the emitted gauge boson. Consequences
of doing so were studied in detail in Ref. [6], and lead

For massive W,  IR divergences turn into log(mW2/s), and 
generally have two powers per power of alpha

Both virtual and real sensitive to log(mW2/s)



The	numerical	effect	of	EW	Sudakov	logarithms	becomes	
large	at	high	energies
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Fixed	order	results	at	a	future	100	TeV	machine	show	that	EW	
correc@ons	are	much	larger	than	QcD	correc@ons
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QCD corrections

‣  mostly moderate and stable QCD corrections

EW corrections

‣  Sudakov behaviour in both tails: -20–100% EW corrections at 1-20 TeV  

‣  EW corrections everywhere larger than QCD uncertainties! 

‣  Still large difference between QCD+EW and QCDxEW!  
      
 

      ⟹ inclusive W+1jet requires W+2 jets at NLO QCD+EW! 
    ⟹ NLO QCD+EW multi-jet merging necessary!

Δ!j1j2 < 3π/4
(veto on dijet configurations)
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p
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QCD corrections

‣  mostly moderate and stable QCD corrections

EW corrections

‣  Sudakov behaviour in both tails: -20–100% EW corrections at 1-20 TeV  

‣  EW corrections everywhere larger than QCD uncertainties! 

‣  Still large difference between QCD+EW and QCDxEW!  
      
 

      ⟹ inclusive W+1jet requires W+2 jets at NLO QCD+EW! 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(veto on dijet configurations)
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MUNICH + OpenLoops

Lindert,  
QCD and EW at 100 TeV colliders 
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Look at “Drell-Yan” production and keep onto terms 
with 𝛼2. The coefficient of Log2(mV2/s)/4𝜋 is

V R V+R

uu 2/3 𝛼22 - 𝛼22 -1/3 𝛼22

dd 2/3 𝛼22 - 𝛼22 - 1/3 𝛼22

ud 4/3 𝛼22 - 𝛼22 1/3 𝛼22

du 4/3 𝛼22 - 𝛼22 1/3 𝛼22

sum 4 𝛼22 - 4 𝛼22 0

Cancellation for completely inclusive observables (KLN)
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1. Most experimental analyses are not inclusive over 
final states

2. Averaging over initial states is impossible, since 
beams (pdf ’s) are not SU(2) symmetric

Cancellation only happens if 
we include both real and 
virtual corrections, and 

average over initial states

V R V+R
uu 2/3 𝛼22 - 𝛼22 -1/3 𝛼22

dd 2/3 𝛼22 - 𝛼22 - 1/3 𝛼22

ud 4/3 𝛼22 - 𝛼22 1/3 𝛼22

du 4/3 𝛼22 - 𝛼22 1/3 𝛼22

sum 4 𝛼22 - 4 𝛼22 0

Look at “Drell-Yan” production and keep onto terms 
with 𝛼2. The double logarithmic terms are
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Review of resummed virtual

Resummation of the real

Results
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Figure 1: The cross-section summed over all lepton flavors for the 13 TeV LHC. On

the top we show the individual corrections relative to the Born cross-section as defined

in Eq. (5.1), in the middle the relative size of the resummation as defined in Eq. (5.2),

while on the bottom we show the total perturbartive correction relative to the Born as

defined in Eq. (5.3). Virtual corrections are shown in black, while real corrections with a

Z, W+, W� are shown in green, red and blue. Resummed corrections are shown in solid

lines, while fixed order results are dashed. The x-axis denotes the fraction of the partonic

center of mass energy relative to the collider center of mass energy.

and real

Virt :
�pp!`1`2 � �B

pp!`1`2

�B
pp!`1`2

Real (V) :
�pp!`1`2V

�B
pp!`1`2

, (5.1)

using either the resummed or fixed order expression. In the middle we show for the virtual

– 14 –
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Kuhn, Penin, Smirnov (’95) 
Ciafaloni, Comelli (’99, ‘00) 

Fadin, Lipton, Martin, Melles (’00) 
Denner, Pozzorini (’91)



Problem	is	tailor	made	for	SCET.	Was	worked	out	in	beau@ful	
set	of	papers	by	Chiu,	Golf,	Kelley	and	Manohar	
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Logarithms arise from collinear and soft “divergences” in 
loop diagrams

These “divergences” are regulated by the mass of the 
vector boson

Can be resummed using standard SCET RGE running

Chiu, Golf, Kelley, Manohar,  (’08)
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𝜇 = Q

𝜇 = mV

Full theory
SCETW,Z,𝛾 (M=0)

SCETW,Z,𝛾 (M≠0)

SCET𝛾

𝛾SCET

C(Q,𝜇)

D(mV,𝜇)

Problem is completely solved at NLL’ 
for any process
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For Drell-Yan production, 7 operators in SCETZ,W,𝛾

From these results one can obtain the inclusive cross-sections, which have been summed

over all final state flavors
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�̂dū = N
↵W L2

W

4⇡

↵2
1 � 3↵2

2

9
. (3.10)

From these expressions one can very easily validate that in
P

ab �̂ab all double logarithms

cancel.

4 LL resummation of the leading logarithms

4.1 Virtual corrections

To resum the electroweak Sudakov logarithms for for the virtual contributions we follow

the work of [18, 27], which uses renormalization group equations in SCET. The calculation

proceeds in three steps. At the scale µ2
Q ⇠ ŝ, one matches the full theory onto 4-fermion

operators in SCET, where each of the fermion is represented by a di↵erent collinear sector

in SCET. One then runs the theory from the scale µQ to the scale µV ⇠ mV , at which

point the massive gauge bosons are integrated out of the theory and electroweak symmetry

is broken. As long as ŝ � m2
V , the mass of the vector boson can be set to zero in the

matching onto SCET at the scale µQ, and in the calculation of the anomalous dimension

which governs the running from µQ to µV . This implies that one can use an unbroken

SU(2), simplifying these calculations substantially.

In [18, 27], this resummation was carried out in full generality to NLL0 accuracy. For

the purposes of this work, we only work to LL accuracy, which simplifies the structure

significantly. The first simplification is that only tree level matching is required both at

the high and low scale. Furthermore, no operator mixing arises in the running from the

high to the low scale. This will allow us to write relatively simple analytical formulae.

As already mentioned, in the e↵ective theory between µQ and µV one can use unbroken

electroweak symmetry, such that there are a total of 7 operator that contribute

L =CQLT QTLT + CQLS QSLS + CULS USLS + CDLS DSLS

+ CQESQ
SES + CUES USES + CDES DSES , (4.1)

where we have defined the fermion bilinears in either triplet or singlet representation

FS = F̄�µF , F T = F̄ ⌧a�µF . (4.2)

Here Q and L denote left-handed quark and lepton fields, respectively, while U , D and E

denote the right handed up-type quarks, down-type quarks and electron fields. The tree

– 7 –
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Q ⇠ ŝ, one matches the full theory onto 4-fermion

operators in SCET, where each of the fermion is represented by a di↵erent collinear sector

in SCET. One then runs the theory from the scale µQ to the scale µV ⇠ mV , at which

point the massive gauge bosons are integrated out of the theory and electroweak symmetry

is broken. As long as ŝ � m2
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with

Q, L      : left handed quark and lepton doublets 
U, D, E : right handed u, d, e fields
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NLL’ LL

C(Q,𝜇) 1-loop tree

D(mV,𝜇) 1-loop tree

𝛾(Q,𝜇)
2-loop cusp 

1-loop non-cusp 
op  mixing

1-loop cusp 
no op mixing
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From these results one can obtain the inclusive cross-sections, which have been summed

over all final state flavors
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the purposes of this work, we only work to LL accuracy, which simplifies the structure
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sC(0)
QLT (Q) = 4⇡↵2

sC(0)
IFS(Q) = 4⇡↵1YIYF

Matching onto SCET
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From these results one can obtain the inclusive cross-sections, which have been summed

over all final state flavors

�̂uū = �N
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W
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2

9

�̂dd̄ = �N
↵W L2

W

4⇡

↵2
1 � 3↵2

2

9

�̂ud̄ = N
↵W L2

W

4⇡
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1 � 3↵2

2

9

�̂dū = N
↵W L2

W

4⇡

↵2
1 � 3↵2

2

9
. (3.10)

From these expressions one can very easily validate that in
P

ab �̂ab all double logarithms

cancel.

4 LL resummation of the leading logarithms

4.1 Virtual corrections

To resum the electroweak Sudakov logarithms for for the virtual contributions we follow

the work of [18, 27], which uses renormalization group equations in SCET. The calculation

proceeds in three steps. At the scale µ2
Q ⇠ ŝ, one matches the full theory onto 4-fermion

operators in SCET, where each of the fermion is represented by a di↵erent collinear sector

in SCET. One then runs the theory from the scale µQ to the scale µV ⇠ mV , at which

point the massive gauge bosons are integrated out of the theory and electroweak symmetry

is broken. As long as ŝ � m2
V , the mass of the vector boson can be set to zero in the

matching onto SCET at the scale µQ, and in the calculation of the anomalous dimension

which governs the running from µQ to µV . This implies that one can use an unbroken

SU(2), simplifying these calculations substantially.

In [18, 27], this resummation was carried out in full generality to NLL0 accuracy. For

the purposes of this work, we only work to LL accuracy, which simplifies the structure

significantly. The first simplification is that only tree level matching is required both at
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+ CQESQ
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where we have defined the fermion bilinears in either triplet or singlet representation

FS = F̄�µF , F T = F̄ ⌧a�µF . (4.2)

Here Q and L denote left-handed quark and lepton fields, respectively, while U , D and E

denote the right handed up-type quarks, down-type quarks and electron fields. The tree
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Putting these results together, we obtain the simple results for the resummed virtual

corrections

�̂LL
uū!e�e+ = N

4
⇣
4U2

UL + U2
QE + 16U2

UE

⌘
↵2
1 + U2

QL (↵1 + 3↵2)
2

54

�̂LL
uū!⌫⌫̄ = N

16U2
UL↵

2
1 + U2

QL (↵1 � 3↵2)
2

54

�̂LL
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4
⇣
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DL + U2
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DE

⌘
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QL (↵1 � 3↵2)
2

54
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2
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QL (↵1 + 3↵2)
2

54

�̂LL
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2U2
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2
2

3

�̂LL
dū!e�⌫ = N

2U2
QL↵

2
2

3
. (4.10)

Note that since ↵1/↵2 = s2W ⇠ 0.24, the term proportional to ↵2
1 (which depends on various

di↵erent evolution Kernels) is numerically suppressed compared to the term proportional

to (↵1 ± 3↵2)2. Thus, to a good approximation, each leptonic final state gets the same

suppression factor UQL from the resummation.

A simple check of our results is that they reproduce the Born results given in Eq. (3.1)

if we set all resummation Kernels to unity, and that they reproduce the fixed order results

inEqs. (3.4) and (3.5) if we use the expansion ULL
i = 1� �i ln

2 µV /µQ + . . ..

4.2 Real corrections

In this section we will show how one can calculate the resummation of the real emissions

using the results of the previous subsection. To do this, we will start by rewriting the

results obtained in Sec. 4.1 in a slightly di↵erent form, separating the contributions to

Eq. (4.10) from the di↵erent helicities
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qH1 qH2 !`H1 `H2

= �̂B
qH1 qH2 !`H1 `H2

�qH1 qH2 `H1 `H2
, (4.11)

where at the double logarithmic level the factor � factors into pieces for each fermion

�qH1 qH2 `H1 `H2
= �qH1

�qH2
�`H1

�`H2
. (4.12)

The superscript H denotes that each fermion has a fixed helicity. The Born cross-sections

are given by

�̂B
qHqH!`H`H = N

8
⇣
↵2 T 3

qH
⌧3
`H

+ ↵1 YqHY`H
⌘2

3

�̂B
qL1 qL2 !`L1 `

L
2
= N

2↵2
2

3
, (4.13)
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from both photon and Z exchange. They are given by
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2
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2
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2

3
. (3.1)

where we have defined the constant

N =
⇡

8NC ŝ
, (3.2)

with NC = 3 denoting the number of colors. To simplify the notation, we have written our

results in terms of the coupling constants of the unbroken theory

↵1 =
↵ew
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, ↵2 =

↵ew

sin2 ✓W
. (3.3)

The virtual corrections from W exchange that are enhanced by two powers of the logarithm

are easily obtained and are given by
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9
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2

27
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2

9
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3
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3
. (3.4)
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This gives the final result
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There	are	good	arguments	that	the	resumma@on	of	the	real	is	
not	as	important	as	that	of	the	virtual

5

Conclusion: substantial increase of W production at large energy, but W-emission probability small 
enough that fixed-order PT is likely the most reliable way to model rates and kinematics

W emission rates from jets Slide from M. Mangano 
at CERN workshop on 100 TeV



But	real	radia@on	of	W	and	Z	bosons	has	double	logarithmic	
sensi@vity,	just	as	the	virtual	correc@ons

For completely SU(2) symmetric observables (for example 
production with gg in initial state) the sum over all real 

emissions has the same logarithms as virtual corrections

A priori no reason why real double logarithmic sensitivity 
should be less for real than for virtual



But	real	radia@on	of	W	and	Z	bosons	has	double	logarithmic	
sensi@vity,	just	as	the	virtual	correc@ons

For completely SU(2) symmetric observables (for example 
production with gg in initial state) the sum over all real 

emissions has the same logarithms as virtual corrections

A priori no reason why real double logarithmic sensitivity 
should be less for real than for virtual

Very important to understand EW Sudakov logarithms for real 
radiation



Resumming	the	LL	dependence	in	real	radia@on	possible	by	
using	analogy	with	parton	shower

Let’s first rewrite the virtual corrections for a pure SU(2) theory
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We obtain the simple results for the resummed virtual corrections,

σ̂LL
uū→e−e+ = N

4
(
4U2

UL + U2
QE + 16U2

UE

)
α2
1 + U2

QL (α1 + 3α2)
2

54

[
U em
26/9 (Λ,mV ; s)

]2

σ̂LL
uū→νν̄ = N

16U2
ULα

2
1 + U2

QL (α1 − 3α2)
2

54

[
U em
8/9 (Λ,mV ; s)

]2

σ̂LL
dd̄→e−e+ = N

4
(
U2
DL + U2

QE + 4U2
DE

)
α2
1 + U2

QL (α1 − 3α2)
2

54

[
U em
20/9 (Λ,mV ; s)

]2

σ̂LL
dd̄→νν̄ = N

4U2
DLα

2
1 + U2

QL (α1 + 3α2)
2

54

[
U em
2/9 (Λ,mV ; s)

]2

σ̂LL
ud̄→νe+ = N

2U2
QLα

2
2

3

[
U em
14/9 (Λ,mV ; s)

]2

σ̂LL
dū→e−ν = N

2U2
QLα

2
2

3

[
U em
14/9 (Λ,mV ; s)

]2
. (4.14)

Note that since α1/α2 = tan2(θW ) ∼ 0.32, the term proportional to α2
1 (which depends

on various different evolution Kernels) is numerically suppressed compared to the term

proportional to (α1 ± 3α2)2. Thus, to a good approximation, each leptonic final state gets

the same suppression factor UQL from the resummation.

A simple check of our results is that they reproduce the Born results given in eq. (3.1)

if we set all resummation Kernels to unity, and that they reproduce the fixed order results

in eqs. (3.4), (3.5), and (3.6) if we use the expansion U2
i = 1 − 2Γi ln

2 mV√
s
+ . . . and

[
U em
Q2

tot
(Λ,mV ; s)

]2
= 1 + αem(µ)

π Q2
tot

(
ln2 mV√

s
− ln2 Λ√

s

)
+ . . ..

4.2 Real corrections

In this section we will calculate the resummation of the real emissions. We first give the

results for the case of a single SU(2) gauge symmetry, and then extend the results to the

case of the broken SU(2) ⊗ U(1) of the standard model.

4.2.1 Simple SU(2)

For a single SU(2) symmetry, the virtual results can be obtained from eq. (4.14) by setting

α1 = αem = 0. It will be useful to rewrite them in a slightly different form, separating the

contributions from the different helicities

σ̂LL
qH1 qH2 →ℓH1 ℓH2

= σ̂B
qH1 qH2 →ℓH1 ℓH2

∆SU(2)
qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)
. (4.15)

The resummed logarithms are now contained in the factor ∆SU(2)
qH1 qH2 ℓH1 ℓH2

(m2
V , s; s). The su-

perscript H denotes that each fermion has a fixed helicity. The Born cross-sections are

given by

σ̂B
qHqH→ℓHℓH = N

8α2
2

(
T 3
qHT

3
ℓH

)2

3

σ̂B
qL1 qL2 →ℓL1 ℓ

L
2
= N

2α2
2

3
, (4.16)
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1 (which depends

on various different evolution Kernels) is numerically suppressed compared to the term

proportional to (α1 ± 3α2)2. Thus, to a good approximation, each leptonic final state gets

the same suppression factor UQL from the resummation.

A simple check of our results is that they reproduce the Born results given in eq. (3.1)
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4.2 Real corrections

In this section we will calculate the resummation of the real emissions. We first give the

results for the case of a single SU(2) gauge symmetry, and then extend the results to the

case of the broken SU(2) ⊗ U(1) of the standard model.

4.2.1 Simple SU(2)

For a single SU(2) symmetry, the virtual results can be obtained from eq. (4.14) by setting

α1 = αem = 0. It will be useful to rewrite them in a slightly different form, separating the

contributions from the different helicities

σ̂LL
qH1 qH2 →ℓH1 ℓH2
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(m2
V , s; s). The su-

perscript H denotes that each fermion has a fixed helicity. The Born cross-sections are
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Born cross-section
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no-branching of 4f system  
between s and mV2Born cross-section
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where T 3
qH denotes the weak isospin of the fermion q/ℓ with helicity H. The factor

∆SU(2)resums the leading logarithms and is given by

∆SU(2)
qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)
= exp

⎡

⎣−
ASU(2)

qH1 qH1 ℓH1 ℓH2

2
ln2

m2
V

s

⎤

⎦ , (4.17)

where

ASU(2)
qH1 qH1 ℓH1 ℓH2

=
α2

2π

∑

i

T 2
i , (4.18)

and the sum over i runs over all particles i ∈ {qH1 , qH1 , ℓH1 , ℓH2 }. Summing eq. (4.15) over

all possible helicity structures, we reproduce eq. (4.14) in the limit α1 = αem = 0.

By rewriting our result as in eq. (4.15), one notices that it can be interpreted as the

exclusive cross-section for the scattering process qH1 qH2 → ℓH1 ℓH2 , where ∆SU(2)
qH1 qH2 ℓH1 ℓH2

(m2, s; s)

is a Sudakov factor describing the probability of not having an emission of electroweak gauge

bosons between the scales s and m2
V for a process with center of mass energy s. Since of

course the emission of a massive gauge boson always gives rise to a scale above m2
V , this

exclusive cross-section is by definition equal to the virtual result.

Eq. (4.15) is precisely the result that a parton shower would predict for the exclu-

sive cross-section,1 and one can use insight from parton shower evolution to derive the

expressions for real gauge boson radiation. The real emission of a gauge boson is given in

a parton shower by the product of Altarelli-Parisi splitting functions, which describe the

emission with a given transverse momentum k2T , multiplied by a Sudakov factor, which

gives the no-branching probability above the value of k2T as explained in [29]. Thus, the

total inclusive real radiation cross-section (the cross section with one or more extra gauge

bosons in the final state) is given by

σ̂LL
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. (4.19)

Such an inclusive cross-section makes sense only if the measurement is not breaking the

SU(2) symmetry. This is because the inclusive cross section is defined at a scale µ ∼ kT ,

while the SU(2) symmetry is only broken at the scale µ ∼ mV . This implies that the flavor

structure one would obtain at the scale kT can be changed by the further emissions of

extra gauge bosons, making an inclusive measurement with definite flavor structure (which

is what breaks the symmetry) ill defined.

Continuing to work in an unbroken SU(2) theory, one can also define the exclusive real

radiation cross section (the cross section with exactly one extra gauge boson in the final

state). This requires adding an extra no-branching probability from the scale k2T to the

scale m2
V , which accounts for the fact that no extra gauge bosons are emitted from the

1Note that our Sudakov factor for the initial state particles does not include the ratios of PDFs that

usually arise in backward evolution. This ratio of PDFs only contributes to NLL.
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Such an inclusive cross-section makes sense only if the measurement is not breaking the
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while the SU(2) symmetry is only broken at the scale µ ∼ mV . This implies that the flavor

structure one would obtain at the scale kT can be changed by the further emissions of

extra gauge bosons, making an inclusive measurement with definite flavor structure (which

is what breaks the symmetry) ill defined.
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Note that since α1/α2 = tan2(θW ) ∼ 0.32, the term proportional to α2
1 (which depends

on various different evolution Kernels) is numerically suppressed compared to the term

proportional to (α1 ± 3α2)2. Thus, to a good approximation, each leptonic final state gets

the same suppression factor UQL from the resummation.

A simple check of our results is that they reproduce the Born results given in eq. (3.1)

if we set all resummation Kernels to unity, and that they reproduce the fixed order results

in eqs. (3.4), (3.5), and (3.6) if we use the expansion U2
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+ . . ..

4.2 Real corrections

In this section we will calculate the resummation of the real emissions. We first give the

results for the case of a single SU(2) gauge symmetry, and then extend the results to the

case of the broken SU(2) ⊗ U(1) of the standard model.

4.2.1 Simple SU(2)

For a single SU(2) symmetry, the virtual results can be obtained from eq. (4.14) by setting

α1 = αem = 0. It will be useful to rewrite them in a slightly different form, separating the

contributions from the different helicities
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The resummed logarithms are now contained in the factor ∆SU(2)
qH1 qH2 ℓH1 ℓH2

(m2
V , s; s). The su-

perscript H denotes that each fermion has a fixed helicity. The Born cross-sections are

given by

σ̂B
qHqH→ℓHℓH = N

8α2
2

(
T 3
qHT

3
ℓH

)2

3

σ̂B
qL1 qL2 →ℓL1 ℓ

L
2
= N

2α2
2
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, (4.16)
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uū→e−e+ = N

4
(
4U2

UL + U2
QE + 16U2

UE

)
α2
1 + U2

QL (α1 + 3α2)
2

54

[
U em
26/9 (Λ,mV ; s)

]2

σ̂LL
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uū→e−e+ = N

4
(
4U2

UL + U2
QE + 16U2

UE

)
α2
1 + U2

QL (α1 + 3α2)
2

54

[
U em
26/9 (Λ,mV ; s)

]2

σ̂LL
uū→νν̄ = N

16U2
ULα

2
1 + U2

QL (α1 − 3α2)
2

54

[
U em
8/9 (Λ,mV ; s)

]2

σ̂LL
dd̄→e−e+ = N

4
(
U2
DL + U2

QE + 4U2
DE

)
α2
1 + U2

QL (α1 − 3α2)
2

54

[
U em
20/9 (Λ,mV ; s)

]2

σ̂LL
dd̄→νν̄ = N

4U2
DLα

2
1 + U2

QL (α1 + 3α2)
2

54

[
U em
2/9 (Λ,mV ; s)

]2

σ̂LL
ud̄→νe+ = N

2U2
QLα

2
2

3

[
U em
14/9 (Λ,mV ; s)

]2

σ̂LL
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Note that since α1/α2 = tan2(θW ) ∼ 0.32, the term proportional to α2
1 (which depends

on various different evolution Kernels) is numerically suppressed compared to the term
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This is precisely the result how a parton shower would predict 
an exclusive (no extra V radiation) DY cross-section

Exclusive = Born x (no-branching Prob)
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results for the case of a single SU(2) gauge symmetry, and then extend the results to the

case of the broken SU(2) ⊗ U(1) of the standard model.

4.2.1 Simple SU(2)

For a single SU(2) symmetry, the virtual results can be obtained from eq. (4.14) by setting

α1 = αem = 0. It will be useful to rewrite them in a slightly different form, separating the

contributions from the different helicities

σ̂LL
qH1 qH2 →ℓH1 ℓH2

= σ̂B
qH1 qH2 →ℓH1 ℓH2

∆SU(2)
qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)
. (4.15)

The resummed logarithms are now contained in the factor ∆SU(2)
qH1 qH2 ℓH1 ℓH2

(m2
V , s; s). The su-

perscript H denotes that each fermion has a fixed helicity. The Born cross-sections are

given by

σ̂B
qHqH→ℓHℓH = N

8α2
2

(
T 3
qHT

3
ℓH

)2

3

σ̂B
qL1 qL2 →ℓL1 ℓ

L
2
= N

2α2
2

3
, (4.16)
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This is precisely the result how a parton shower would predict 
an exclusive (no extra V radiation) DY cross-section

Exclusive = Born x (no-branching Prob)

Since emission of massive V has resolution t > mV2 no 
branching probability (Sudakov) is from s=Q2 to mV2 
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We obtain the simple results for the resummed virtual corrections,

σ̂LL
uū→e−e+ = N

4
(
4U2

UL + U2
QE + 16U2

UE

)
α2
1 + U2

QL (α1 + 3α2)
2

54

[
U em
26/9 (Λ,mV ; s)

]2

σ̂LL
uū→νν̄ = N

16U2
ULα

2
1 + U2

QL (α1 − 3α2)
2

54

[
U em
8/9 (Λ,mV ; s)

]2

σ̂LL
dd̄→e−e+ = N

4
(
U2
DL + U2

QE + 4U2
DE

)
α2
1 + U2

QL (α1 − 3α2)
2

54

[
U em
20/9 (Λ,mV ; s)

]2

σ̂LL
dd̄→νν̄ = N

4U2
DLα

2
1 + U2

QL (α1 + 3α2)
2

54

[
U em
2/9 (Λ,mV ; s)

]2

σ̂LL
ud̄→νe+ = N

2U2
QLα

2
2

3

[
U em
14/9 (Λ,mV ; s)

]2

σ̂LL
dū→e−ν = N

2U2
QLα

2
2

3

[
U em
14/9 (Λ,mV ; s)

]2
. (4.14)

Note that since α1/α2 = tan2(θW ) ∼ 0.32, the term proportional to α2
1 (which depends

on various different evolution Kernels) is numerically suppressed compared to the term

proportional to (α1 ± 3α2)2. Thus, to a good approximation, each leptonic final state gets

the same suppression factor UQL from the resummation.

A simple check of our results is that they reproduce the Born results given in eq. (3.1)

if we set all resummation Kernels to unity, and that they reproduce the fixed order results

in eqs. (3.4), (3.5), and (3.6) if we use the expansion U2
i = 1 − 2Γi ln

2 mV√
s
+ . . . and

[
U em
Q2

tot
(Λ,mV ; s)

]2
= 1 + αem(µ)

π Q2
tot

(
ln2 mV√

s
− ln2 Λ√

s

)
+ . . ..

4.2 Real corrections

In this section we will calculate the resummation of the real emissions. We first give the

results for the case of a single SU(2) gauge symmetry, and then extend the results to the

case of the broken SU(2) ⊗ U(1) of the standard model.

4.2.1 Simple SU(2)

For a single SU(2) symmetry, the virtual results can be obtained from eq. (4.14) by setting

α1 = αem = 0. It will be useful to rewrite them in a slightly different form, separating the

contributions from the different helicities

σ̂LL
qH1 qH2 →ℓH1 ℓH2

= σ̂B
qH1 qH2 →ℓH1 ℓH2

∆SU(2)
qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)
. (4.15)

The resummed logarithms are now contained in the factor ∆SU(2)
qH1 qH2 ℓH1 ℓH2

(m2
V , s; s). The su-

perscript H denotes that each fermion has a fixed helicity. The Born cross-sections are

given by

σ̂B
qHqH→ℓHℓH = N

8α2
2

(
T 3
qHT

3
ℓH

)2

3

σ̂B
qL1 qL2 →ℓL1 ℓ

L
2
= N

2α2
2

3
, (4.16)
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From a no-branching probability one can of course derive a 
branching probability

P
br

(m2

V , s) = 1� P
no�br

(m2

V , s)

from which one can write

The probability to emit a gauge boson with resolution t is  
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where T 3
qH denotes the weak isospin of the fermion q/ℓ with helicity H. The factor

∆SU(2)resums the leading logarithms and is given by

∆SU(2)
qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)
= exp

⎡

⎣−
ASU(2)

qH1 qH1 ℓH1 ℓH2

2
ln2

m2
V

s

⎤

⎦ , (4.17)

where

ASU(2)
qH1 qH1 ℓH1 ℓH2

=
α2

2π

∑

i

T 2
i , (4.18)

and the sum over i runs over all particles i ∈ {qH1 , qH1 , ℓH1 , ℓH2 }. Summing eq. (4.15) over

all possible helicity structures, we reproduce eq. (4.14) in the limit α1 = αem = 0.

By rewriting our result as in eq. (4.15), one notices that it can be interpreted as the

exclusive cross-section for the scattering process qH1 qH2 → ℓH1 ℓH2 , where ∆SU(2)
qH1 qH2 ℓH1 ℓH2

(m2, s; s)

is a Sudakov factor describing the probability of not having an emission of electroweak gauge

bosons between the scales s and m2
V for a process with center of mass energy s. Since of

course the emission of a massive gauge boson always gives rise to a scale above m2
V , this

exclusive cross-section is by definition equal to the virtual result.

Eq. (4.15) is precisely the result that a parton shower would predict for the exclu-

sive cross-section,1 and one can use insight from parton shower evolution to derive the

expressions for real gauge boson radiation. The real emission of a gauge boson is given in

a parton shower by the product of Altarelli-Parisi splitting functions, which describe the

emission with a given transverse momentum k2T , multiplied by a Sudakov factor, which

gives the no-branching probability above the value of k2T as explained in [29]. Thus, the

total inclusive real radiation cross-section (the cross section with one or more extra gauge

bosons in the final state) is given by

σ̂LL
qH1 qH2 →ℓH1 ℓH2 +nV = σ̂B

qH1 qH2 →ℓH1 ℓH2

∫ s

m2
V

dk2T
d

dk2T
∆SU(2)

qH1 qH2 ℓH1 ℓH2

(
k2T , s; s

)

= σ̂B
qH1 qH2 →ℓH1 ℓH2

[
1−∆SU(2)

qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)]

. (4.19)

Such an inclusive cross-section makes sense only if the measurement is not breaking the

SU(2) symmetry. This is because the inclusive cross section is defined at a scale µ ∼ kT ,

while the SU(2) symmetry is only broken at the scale µ ∼ mV . This implies that the flavor

structure one would obtain at the scale kT can be changed by the further emissions of

extra gauge bosons, making an inclusive measurement with definite flavor structure (which

is what breaks the symmetry) ill defined.

Continuing to work in an unbroken SU(2) theory, one can also define the exclusive real

radiation cross section (the cross section with exactly one extra gauge boson in the final

state). This requires adding an extra no-branching probability from the scale k2T to the

scale m2
V , which accounts for the fact that no extra gauge bosons are emitted from the

1Note that our Sudakov factor for the initial state particles does not include the ratios of PDFs that

usually arise in backward evolution. This ratio of PDFs only contributes to NLL.
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where T 3
qH denotes the weak isospin of the fermion q/ℓ with helicity H. The factor

∆SU(2)resums the leading logarithms and is given by

∆SU(2)
qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)
= exp

⎡

⎣−
ASU(2)

qH1 qH1 ℓH1 ℓH2

2
ln2

m2
V

s

⎤

⎦ , (4.17)

where

ASU(2)
qH1 qH1 ℓH1 ℓH2

=
α2

2π

∑

i

T 2
i , (4.18)

and the sum over i runs over all particles i ∈ {qH1 , qH1 , ℓH1 , ℓH2 }. Summing eq. (4.15) over

all possible helicity structures, we reproduce eq. (4.14) in the limit α1 = αem = 0.

By rewriting our result as in eq. (4.15), one notices that it can be interpreted as the

exclusive cross-section for the scattering process qH1 qH2 → ℓH1 ℓH2 , where ∆SU(2)
qH1 qH2 ℓH1 ℓH2

(m2, s; s)

is a Sudakov factor describing the probability of not having an emission of electroweak gauge

bosons between the scales s and m2
V for a process with center of mass energy s. Since of

course the emission of a massive gauge boson always gives rise to a scale above m2
V , this

exclusive cross-section is by definition equal to the virtual result.

Eq. (4.15) is precisely the result that a parton shower would predict for the exclu-

sive cross-section,1 and one can use insight from parton shower evolution to derive the

expressions for real gauge boson radiation. The real emission of a gauge boson is given in

a parton shower by the product of Altarelli-Parisi splitting functions, which describe the

emission with a given transverse momentum k2T , multiplied by a Sudakov factor, which

gives the no-branching probability above the value of k2T as explained in [29]. Thus, the

total inclusive real radiation cross-section (the cross section with one or more extra gauge

bosons in the final state) is given by

σ̂LL
qH1 qH2 →ℓH1 ℓH2 +nV = σ̂B

qH1 qH2 →ℓH1 ℓH2

∫ s

m2
V

dk2T
d

dk2T
∆SU(2)

qH1 qH2 ℓH1 ℓH2

(
k2T , s; s

)

= σ̂B
qH1 qH2 →ℓH1 ℓH2

[
1−∆SU(2)

qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)]

. (4.19)

Such an inclusive cross-section makes sense only if the measurement is not breaking the

SU(2) symmetry. This is because the inclusive cross section is defined at a scale µ ∼ kT ,

while the SU(2) symmetry is only broken at the scale µ ∼ mV . This implies that the flavor

structure one would obtain at the scale kT can be changed by the further emissions of

extra gauge bosons, making an inclusive measurement with definite flavor structure (which

is what breaks the symmetry) ill defined.

Continuing to work in an unbroken SU(2) theory, one can also define the exclusive real

radiation cross section (the cross section with exactly one extra gauge boson in the final

state). This requires adding an extra no-branching probability from the scale k2T to the

scale m2
V , which accounts for the fact that no extra gauge bosons are emitted from the

1Note that our Sudakov factor for the initial state particles does not include the ratios of PDFs that

usually arise in backward evolution. This ratio of PDFs only contributes to NLL.

– 10 –

p
r
o
o
f
s
 
J
H
E
P
_
0
4
0
P
_
0
3
1
6

where T 3
qH denotes the weak isospin of the fermion q/ℓ with helicity H. The factor

∆SU(2)resums the leading logarithms and is given by

∆SU(2)
qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)
= exp

⎡

⎣−
ASU(2)

qH1 qH1 ℓH1 ℓH2

2
ln2

m2
V

s

⎤

⎦ , (4.17)

where

ASU(2)
qH1 qH1 ℓH1 ℓH2

=
α2

2π

∑

i

T 2
i , (4.18)

and the sum over i runs over all particles i ∈ {qH1 , qH1 , ℓH1 , ℓH2 }. Summing eq. (4.15) over

all possible helicity structures, we reproduce eq. (4.14) in the limit α1 = αem = 0.

By rewriting our result as in eq. (4.15), one notices that it can be interpreted as the

exclusive cross-section for the scattering process qH1 qH2 → ℓH1 ℓH2 , where ∆SU(2)
qH1 qH2 ℓH1 ℓH2

(m2, s; s)

is a Sudakov factor describing the probability of not having an emission of electroweak gauge

bosons between the scales s and m2
V for a process with center of mass energy s. Since of

course the emission of a massive gauge boson always gives rise to a scale above m2
V , this

exclusive cross-section is by definition equal to the virtual result.

Eq. (4.15) is precisely the result that a parton shower would predict for the exclu-

sive cross-section,1 and one can use insight from parton shower evolution to derive the

expressions for real gauge boson radiation. The real emission of a gauge boson is given in

a parton shower by the product of Altarelli-Parisi splitting functions, which describe the

emission with a given transverse momentum k2T , multiplied by a Sudakov factor, which

gives the no-branching probability above the value of k2T as explained in [29]. Thus, the

total inclusive real radiation cross-section (the cross section with one or more extra gauge

bosons in the final state) is given by

σ̂LL
qH1 qH2 →ℓH1 ℓH2 +nV = σ̂B

qH1 qH2 →ℓH1 ℓH2

∫ s

m2
V

dk2T
d

dk2T
∆SU(2)

qH1 qH2 ℓH1 ℓH2

(
k2T , s; s

)

= σ̂B
qH1 qH2 →ℓH1 ℓH2

[
1−∆SU(2)

qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)]

. (4.19)

Such an inclusive cross-section makes sense only if the measurement is not breaking the

SU(2) symmetry. This is because the inclusive cross section is defined at a scale µ ∼ kT ,

while the SU(2) symmetry is only broken at the scale µ ∼ mV . This implies that the flavor

structure one would obtain at the scale kT can be changed by the further emissions of

extra gauge bosons, making an inclusive measurement with definite flavor structure (which

is what breaks the symmetry) ill defined.

Continuing to work in an unbroken SU(2) theory, one can also define the exclusive real

radiation cross section (the cross section with exactly one extra gauge boson in the final

state). This requires adding an extra no-branching probability from the scale k2T to the

scale m2
V , which accounts for the fact that no extra gauge bosons are emitted from the

1Note that our Sudakov factor for the initial state particles does not include the ratios of PDFs that

usually arise in backward evolution. This ratio of PDFs only contributes to NLL.
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where T 3
qH denotes the weak isospin of the fermion q/ℓ with helicity H. The factor

∆SU(2)resums the leading logarithms and is given by

∆SU(2)
qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)
= exp

⎡

⎣−
ASU(2)

qH1 qH1 ℓH1 ℓH2

2
ln2

m2
V

s

⎤

⎦ , (4.17)

where

ASU(2)
qH1 qH1 ℓH1 ℓH2

=
α2

2π

∑

i

T 2
i , (4.18)

and the sum over i runs over all particles i ∈ {qH1 , qH1 , ℓH1 , ℓH2 }. Summing eq. (4.15) over

all possible helicity structures, we reproduce eq. (4.14) in the limit α1 = αem = 0.

By rewriting our result as in eq. (4.15), one notices that it can be interpreted as the

exclusive cross-section for the scattering process qH1 qH2 → ℓH1 ℓH2 , where ∆SU(2)
qH1 qH2 ℓH1 ℓH2

(m2, s; s)

is a Sudakov factor describing the probability of not having an emission of electroweak gauge

bosons between the scales s and m2
V for a process with center of mass energy s. Since of

course the emission of a massive gauge boson always gives rise to a scale above m2
V , this

exclusive cross-section is by definition equal to the virtual result.

Eq. (4.15) is precisely the result that a parton shower would predict for the exclu-

sive cross-section,1 and one can use insight from parton shower evolution to derive the

expressions for real gauge boson radiation. The real emission of a gauge boson is given in

a parton shower by the product of Altarelli-Parisi splitting functions, which describe the

emission with a given transverse momentum k2T , multiplied by a Sudakov factor, which

gives the no-branching probability above the value of k2T as explained in [29]. Thus, the

total inclusive real radiation cross-section (the cross section with one or more extra gauge

bosons in the final state) is given by

σ̂LL
qH1 qH2 →ℓH1 ℓH2 +nV = σ̂B

qH1 qH2 →ℓH1 ℓH2

∫ s

m2
V

dk2T
d

dk2T
∆SU(2)

qH1 qH2 ℓH1 ℓH2

(
k2T , s; s

)

= σ̂B
qH1 qH2 →ℓH1 ℓH2

[
1−∆SU(2)

qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)]

. (4.19)

Such an inclusive cross-section makes sense only if the measurement is not breaking the

SU(2) symmetry. This is because the inclusive cross section is defined at a scale µ ∼ kT ,

while the SU(2) symmetry is only broken at the scale µ ∼ mV . This implies that the flavor

structure one would obtain at the scale kT can be changed by the further emissions of

extra gauge bosons, making an inclusive measurement with definite flavor structure (which

is what breaks the symmetry) ill defined.

Continuing to work in an unbroken SU(2) theory, one can also define the exclusive real

radiation cross section (the cross section with exactly one extra gauge boson in the final

state). This requires adding an extra no-branching probability from the scale k2T to the

scale m2
V , which accounts for the fact that no extra gauge bosons are emitted from the

1Note that our Sudakov factor for the initial state particles does not include the ratios of PDFs that

usually arise in backward evolution. This ratio of PDFs only contributes to NLL.
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fermions and the extra gauge boson with lower k2T . This extra factor is given by

∆SU(2)
qH1 qH2 ℓH1 ℓH2 V

(
m2

V , k
2
T ; s
)
≡ ∆V

(
m2

V , k
2
T ; k̂

2
T

)
∆SU(2)

qH1 qH2 ℓH1 ℓH2

(
m2

V , k
2
T ; s
)
, (4.20)

where the term ∆V gives the probability of not emitting extra gauge bosons off the emitted

vector boson

∆V
(
m2

V , k
2
T ; k

2
T

)
= exp

[
−α2CA

4π
ln2

m2
V

k2T

]
, (4.21)

while the second term describes the no-emissions probability below kT off the fermions

∆SU(2)
qH1 qH2 ℓH1 ℓH2

(
m2

V , k
2
T ; s
)
≡

∆SU(2)
qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)

∆SU(2)
qH1 qH2 ℓH1 ℓH2

(
k2T , s; s

) . (4.22)

Combining everything together, one therefore finds

σ̂LL
qH1 qH2 →ℓH1 ℓH2 +V

= σ̂B
qH1 qH2 →ℓH1 ℓH2

∫ s

m2
V

dk2T
d

dk2T

[
∆SU(2)

qH1 qH2 ℓH1 ℓH2

(
k2T , s; s

)]
∆SU(2)

qH1 qH2 ℓH1 ℓH2 V

(
m2

V , k
2
T ; s
)

= σ̂B
qH1 qH2 →ℓH1 ℓH2

ASU(2)
qH1 qH1 ℓH1 ℓH2

∆SU(2)
qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
) ∫ s

m2
V

dk2T
k2T

ln
s

k2T
∆V

(
m2

V , k
2
T ; k

2
T

)
. (4.23)

The integral can be performed easily, and we write a general result

Iβ
(
m2

V , s
)
≡
∫ s

m2
V

dk2T
k2T

ln
s

k2T

[
∆V

(
m2

V , k
2
T ; k

2
T

)]β
(4.24)

=
2π

α2 β CA

[√
α2 β CA

2
ln

m2
V

s
Erf

(√
α2 β CA

4π
ln

m2
V

s

)
+
[
∆V
(
m2

V , s; s
)]β − 1

]
.

With this result, the exclusive cross section for a single emission is given by

σ̂LL
qH1 qH2 →ℓH1 ℓH2 +V = σ̂B

qH1 qH2 →ℓH1 ℓH2
ASU(2)

qH1 qH1 ℓH1 ℓH2
∆SU(2)

qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)
I1
(
m2

V , s
)
. (4.25)

4.2.2 Full SU(2) ⊗ U(1)

We now extend the results of section 4.2.1 to include the full SU(2) ⊗ U(1) gauge structure.

The Born cross-section is now given by

σ̂B
qHqH→ℓHℓH = N

8
(
α2T 3

qHT
3
ℓH + α1YqHYℓH

)2

3

σ̂B
qL1 qL2 →ℓL1 ℓ

L
2
= N

2α2
2

3
, (4.26)

where as before T 3
fH denotes the weak isospin of the fermion f = q/ℓ with helicity H and

YfH denotes the hypercharge of the fermion f = q/ℓ with helicity H. The hypercharge

normalization used is given by eq. (4.4).

– 11 –
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fermions and the extra gauge boson with lower k2T . This extra factor is given by

∆SU(2)
qH1 qH2 ℓH1 ℓH2 V

(
m2

V , k
2
T ; s
)
≡ ∆V

(
m2

V , k
2
T ; k̂

2
T

)
∆SU(2)

qH1 qH2 ℓH1 ℓH2

(
m2

V , k
2
T ; s
)
, (4.20)

where the term ∆V gives the probability of not emitting extra gauge bosons off the emitted

vector boson

∆V
(
m2

V , k
2
T ; k

2
T

)
= exp

[
−α2CA

4π
ln2

m2
V

k2T

]
, (4.21)

while the second term describes the no-emissions probability below kT off the fermions

∆SU(2)
qH1 qH2 ℓH1 ℓH2

(
m2

V , k
2
T ; s
)
≡

∆SU(2)
qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)

∆SU(2)
qH1 qH2 ℓH1 ℓH2

(
k2T , s; s

) . (4.22)

Combining everything together, one therefore finds

σ̂LL
qH1 qH2 →ℓH1 ℓH2 +V

= σ̂B
qH1 qH2 →ℓH1 ℓH2

∫ s

m2
V

dk2T
d

dk2T

[
∆SU(2)

qH1 qH2 ℓH1 ℓH2

(
k2T , s; s

)]
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qH1 qH2 ℓH1 ℓH2 V

(
m2
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2
T ; s
)

= σ̂B
qH1 qH2 →ℓH1 ℓH2
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qH1 qH1 ℓH1 ℓH2

∆SU(2)
qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
) ∫ s

m2
V

dk2T
k2T

ln
s

k2T
∆V

(
m2

V , k
2
T ; k

2
T

)
. (4.23)

The integral can be performed easily, and we write a general result

Iβ
(
m2

V , s
)
≡
∫ s

m2
V

dk2T
k2T

ln
s

k2T

[
∆V

(
m2

V , k
2
T ; k

2
T

)]β
(4.24)

=
2π

α2 β CA

[√
α2 β CA

2
ln

m2
V

s
Erf

(√
α2 β CA

4π
ln

m2
V

s

)
+
[
∆V
(
m2

V , s; s
)]β − 1

]
.

With this result, the exclusive cross section for a single emission is given by

σ̂LL
qH1 qH2 →ℓH1 ℓH2 +V = σ̂B

qH1 qH2 →ℓH1 ℓH2
ASU(2)

qH1 qH1 ℓH1 ℓH2
∆SU(2)

qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)
I1
(
m2

V , s
)
. (4.25)

4.2.2 Full SU(2) ⊗ U(1)

We now extend the results of section 4.2.1 to include the full SU(2) ⊗ U(1) gauge structure.

The Born cross-section is now given by

σ̂B
qHqH→ℓHℓH = N

8
(
α2T 3

qHT
3
ℓH + α1YqHYℓH

)2

3

σ̂B
qL1 qL2 →ℓL1 ℓ

L
2
= N

2α2
2

3
, (4.26)

where as before T 3
fH denotes the weak isospin of the fermion f = q/ℓ with helicity H and

YfH denotes the hypercharge of the fermion f = q/ℓ with helicity H. The hypercharge

normalization used is given by eq. (4.4).

– 11 –

This requires an extra no-branching probability

no-branching of extra  
V from kT to mV



Resumming	the	LL	dependence	in	real	radia@on	possible	by	
using	analogy	with	parton	shower

p
r
o
o
f
s
 
J
H
E
P
_
0
4
0
P
_
0
3
1
6

fermions and the extra gauge boson with lower k2T . This extra factor is given by

∆SU(2)
qH1 qH2 ℓH1 ℓH2 V
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2
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)
≡ ∆V
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2
T ; k̂

2
T

)
∆SU(2)

qH1 qH2 ℓH1 ℓH2

(
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V , k
2
T ; s
)
, (4.20)

where the term ∆V gives the probability of not emitting extra gauge bosons off the emitted

vector boson

∆V
(
m2

V , k
2
T ; k

2
T

)
= exp

[
−α2CA

4π
ln2

m2
V

k2T

]
, (4.21)

while the second term describes the no-emissions probability below kT off the fermions
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∆SU(2)
qH1 qH2 ℓH1 ℓH2
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)

∆SU(2)
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(
k2T , s; s

) . (4.22)

Combining everything together, one therefore finds

σ̂LL
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)
. (4.23)

The integral can be performed easily, and we write a general result

Iβ
(
m2

V , s
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≡
∫ s

m2
V

dk2T
k2T

ln
s

k2T

[
∆V

(
m2

V , k
2
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2
T

)]β
(4.24)

=
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[√
α2 β CA
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V

s
Erf

(√
α2 β CA

4π
ln

m2
V

s

)
+
[
∆V
(
m2

V , s; s
)]β − 1

]
.

With this result, the exclusive cross section for a single emission is given by

σ̂LL
qH1 qH2 →ℓH1 ℓH2 +V = σ̂B

qH1 qH2 →ℓH1 ℓH2
ASU(2)

qH1 qH1 ℓH1 ℓH2
∆SU(2)

qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)
I1
(
m2

V , s
)
. (4.25)

4.2.2 Full SU(2) ⊗ U(1)

We now extend the results of section 4.2.1 to include the full SU(2) ⊗ U(1) gauge structure.

The Born cross-section is now given by

σ̂B
qHqH→ℓHℓH = N

8
(
α2T 3

qHT
3
ℓH + α1YqHYℓH

)2

3

σ̂B
qL1 qL2 →ℓL1 ℓ

L
2
= N

2α2
2

3
, (4.26)

where as before T 3
fH denotes the weak isospin of the fermion f = q/ℓ with helicity H and

YfH denotes the hypercharge of the fermion f = q/ℓ with helicity H. The hypercharge

normalization used is given by eq. (4.4).
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fermions and the extra gauge boson with lower k2T . This extra factor is given by

∆SU(2)
qH1 qH2 ℓH1 ℓH2 V

(
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V , k
2
T ; s
)
≡ ∆V

(
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V , k
2
T ; k̂

2
T

)
∆SU(2)

qH1 qH2 ℓH1 ℓH2

(
m2

V , k
2
T ; s
)
, (4.20)

where the term ∆V gives the probability of not emitting extra gauge bosons off the emitted

vector boson

∆V
(
m2

V , k
2
T ; k

2
T

)
= exp

[
−α2CA

4π
ln2

m2
V

k2T

]
, (4.21)

while the second term describes the no-emissions probability below kT off the fermions

∆SU(2)
qH1 qH2 ℓH1 ℓH2

(
m2

V , k
2
T ; s
)
≡

∆SU(2)
qH1 qH2 ℓH1 ℓH2

(
m2
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)

∆SU(2)
qH1 qH2 ℓH1 ℓH2

(
k2T , s; s

) . (4.22)

Combining everything together, one therefore finds

σ̂LL
qH1 qH2 →ℓH1 ℓH2 +V

= σ̂B
qH1 qH2 →ℓH1 ℓH2

∫ s
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)
. (4.23)

The integral can be performed easily, and we write a general result

Iβ
(
m2
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∫ s

m2
V
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ln
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k2T

[
∆V
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m2
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2
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2
T

)]β
(4.24)

=
2π
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V
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(√
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4π
ln
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V

s

)
+
[
∆V
(
m2

V , s; s
)]β − 1

]
.

With this result, the exclusive cross section for a single emission is given by

σ̂LL
qH1 qH2 →ℓH1 ℓH2 +V = σ̂B

qH1 qH2 →ℓH1 ℓH2
ASU(2)

qH1 qH1 ℓH1 ℓH2
∆SU(2)

qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)
I1
(
m2

V , s
)
. (4.25)

4.2.2 Full SU(2) ⊗ U(1)

We now extend the results of section 4.2.1 to include the full SU(2) ⊗ U(1) gauge structure.

The Born cross-section is now given by

σ̂B
qHqH→ℓHℓH = N

8
(
α2T 3

qHT
3
ℓH + α1YqHYℓH

)2

3

σ̂B
qL1 qL2 →ℓL1 ℓ

L
2
= N

2α2
2

3
, (4.26)

where as before T 3
fH denotes the weak isospin of the fermion f = q/ℓ with helicity H and

YfH denotes the hypercharge of the fermion f = q/ℓ with helicity H. The hypercharge

normalization used is given by eq. (4.4).
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fermions and the extra gauge boson with lower k2T . This extra factor is given by

∆SU(2)
qH1 qH2 ℓH1 ℓH2 V

(
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2
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)
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2
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2
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)
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2
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)
, (4.20)

where the term ∆V gives the probability of not emitting extra gauge bosons off the emitted

vector boson

∆V
(
m2

V , k
2
T ; k

2
T

)
= exp

[
−α2CA

4π
ln2

m2
V

k2T

]
, (4.21)

while the second term describes the no-emissions probability below kT off the fermions
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)
≡
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)
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) . (4.22)

Combining everything together, one therefore finds
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)
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The integral can be performed easily, and we write a general result
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2
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2
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)]β
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=
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4π
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s

)
+
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(
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V , s; s
)]β − 1

]
.

With this result, the exclusive cross section for a single emission is given by
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∆SU(2)
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)
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)
. (4.25)

4.2.2 Full SU(2) ⊗ U(1)

We now extend the results of section 4.2.1 to include the full SU(2) ⊗ U(1) gauge structure.

The Born cross-section is now given by

σ̂B
qHqH→ℓHℓH = N

8
(
α2T 3

qHT
3
ℓH + α1YqHYℓH

)2

3

σ̂B
qL1 qL2 →ℓL1 ℓ

L
2
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2

3
, (4.26)

where as before T 3
fH denotes the weak isospin of the fermion f = q/ℓ with helicity H and

YfH denotes the hypercharge of the fermion f = q/ℓ with helicity H. The hypercharge

normalization used is given by eq. (4.4).
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As in section 4.2.1, we can write the LL cross section as the Born cross section times a

Sudakov factor. However, contrary to the case of a single SU(2) symmetry, in the broken

SU(2)⊗U(1) symmetry of the standard model, below the scale µ = mV one needs to

continue to evolve the operators with the electromagnetic running. This gives

σ̂LL
qH1 qH2 →ℓH1 ℓH2

= σ̂B
qH1 qH2 →ℓH1 ℓH2

∆qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)
∆em

qH1 qH2 ℓH1 ℓH2

(
Λ2,m2

V ; s
)
. (4.27)

The Sudakov factor from s to m2
V factors into two pieces, one for the SU(2) symmetry and

one for the U(1)

∆qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)
= ∆SU(2)

qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)
∆U(1)

qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)
. (4.28)

The SU(2) contribution was given in eq. (4.17), while the term coming from the U(1)

symmetry is given by

∆U(1)
qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)
) = exp

⎡

⎣−
AU(1)

qH1 qH2 ℓH1 ℓH2

2
ln2

m2
V

s

⎤

⎦ , (4.29)

with

AU(1)
qH1 qH1 ℓH1 ℓH2

=
α1

2π

∑

i

Y 2
i . (4.30)

The running below mV is determined only by the total charge of the operator, and one finds

∆em
qH1 qH2 ℓH1 ℓH2

(
Λ2,m2

V ; s
)
= exp

[
−αemQ2

tot

4π

(
ln2

Λ2

s
− ln2

m2
V

s

)]
. (4.31)

Summing over all possible helicity structures, we reproduce the resummed results of sec-

tion 4.1.

To obtain the resummation of the real radiation, we follow the steps of section 4.2.1,

taking into account the full SU(2)⊗U(1) structure above m2
V and the running due to the

photon below m2
V . For the W± bosons, the U(1) symmetry does not contribute, but one

needs to be careful about the flavor structure when breaking the electroweak symmetry.

One finds

σ̂LL
qH1 qH2 →ℓH1 ℓH2 +W±

=

[
∆qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)
∆em

qH1 qH2 ℓH1 ℓH2 W±

(
Λ2,m2

V ; s
) ∫ s

m2
V

dk2T
k2T

ln
s

k2T
∆V
(
m2

V , k
2
T ; k

2
T

)
]

×
(
σ̂B
q′H1 qH2 →ℓH1 ℓH2

AW±

qH1
+ σ̂B

qH1 q′H2 →ℓH1 ℓH2
AW±

qH2
+ σ̂B

qH1 qH2 →ℓ′H1 ℓH2
AW±

ℓH1
+ σ̂B

qH1 qH2 →ℓH1 ℓ′H2
AW±

ℓH2

)

=
[
∆qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)
∆em

qH1 qH2 ℓH1 ℓH2 W±

(
Λ2,m2

V ; s
)
I1
(
m2

V , s
)]

×
(
σ̂B
q′H1 qH2 →ℓH1 ℓH2

AW±

qH1
+ σ̂B

qH1 q′H2 →ℓH1 ℓH2
AW±

qH2
+ σ̂B

qH1 qH2 →ℓ′H1 ℓH2
AW±

ℓH1
+ σ̂B

qH1 qH2 →ℓH1 ℓ′H2
AW±

ℓH2

)
,

(4.32)

where f ′ is the fermion f becomes after having radiated a W± that is u′ = d, d′ = u, l′ = ν

and ν ′ = l and for any flavor set which allows a W± emission there is one of the Born cross
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we obtain the final result for the Z boson emission cross section

σ̂LL
qH1 qH2 →ℓH1 ℓH2 +Z = σ̂B

qH1 qH2 →ℓH1 ℓH2
∆qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)
∆em

qH1 qH2 ℓH1 ℓH2

(
Λ2,m2

V ; s
)

(4.42)

×
∫ s

m2
V

dk2T
k2T

ln
s

k2T

(
s2WAU(1)

qH1 qH2 ℓH1 ℓH2
−Amixing

qH1 qH2 ℓH1 ℓH2

√
∆W

(
m2

V , k
2
T ; k

2
T

)

+ c2WAW 3

qH1 qH2 ℓH1 ℓH2
∆W

(
m2

V , k
2
T ; k

2
T

)
)

= σ̂B
qH1 qH2 →ℓH1 ℓH2

∆qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)
∆em

qH1 qH2 ℓH1 ℓH2

(
Λ2,m2

V ; s
)

(
s2WAU(1)

qH1 qH2 ℓH1 ℓH2

1

2
ln2

m2
V

s

−Amixing
qH1 qH2 ℓH1 ℓH2

I 1
2
(m2

V , s) + c2W AW 3

qH1 qH2 ℓH1 ℓH2
I1
(
m2

V , s
)
)
, (4.43)

where

Amixing
qH1 qH2 ℓH1 ℓH2

=
αem

π

∑

i

T 3
i Yi . (4.44)

For the emission of a photon, we use that, for a scale higher than the electroweak

bosons masses, the photon is a mixing of the B and W 3 bosons.

γ = cWB + sWW 3 , (4.45)

while, for a scale lower than the electroweak bosons masses, the photon can still be produced

proportionally to the derivative of its no-branching probability ∆em
qH1 qH2 ℓH1 ℓH2

(k2T ,m
2
V ; s).

σ̂LL
qH1 qH2 →ℓH1 ℓH2 +γ = σ̂B

qH1 qH2 →ℓH1 ℓH2
∆qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)

×
[
∆em

qH1 qH2 ℓH1 ℓH2

(
Λ2,m2

V ; s
)(

c2WAU(1)
qH1 qH2 ℓH1 ℓH2

1

2
log2

(
m2

V

s

)

+Amixing
qH1 qH2 ℓH1 ℓH2

I 1
2

(
m2

V , s
)
+ s2WAW 3

qH1 qH2 ℓH1 ℓH2
I1
(
m2

V , s
))

+

∫ m2
V

Λ2
dk2T

d

dk2T

[
∆em

qH1 qH2 ℓH1 ℓH2

(
k2T ,m

2
V ; s

)]
∆em

qH1 qH2 ℓH1 ℓH2

(
Λ2, k2T ; s

)
]

= σ̂B
qH1 qH2 →ℓH1 ℓH2

∆qH1 qH2 ℓH1 ℓH2

(
m2

V , s; s
)
∆em

qH1 qH2 ℓH1 ℓH2

(
Λ2,m2

V ; s
)

×
[
c2WAU(1)

qH1 qH2 ℓH1 ℓH2

1

2
log2

(
m2

V

s

)
+Amixing

qH1 qH2 ℓH1 ℓH2
I 1

2

(
m2

V , s
)
+

s2WAW 3

qH1 qH2 ℓH1 ℓH2
I1
(
m2

V , s
)
+

αQ2
tot

4π

(
ln2

Λ2

s
− ln2

m2
V

s

)]
. (4.46)

5 Results

In this section we analyze the results presented in the last two sections for both the the

13TeV LHC and a 100TeV proton-proton collider. The main reason to present the results
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Figure 1: The cross-section summed over all lepton flavors for the 13 TeV LHC. On

the top we show the individual corrections relative to the Born cross-section as defined

in Eq. (5.1), in the middle the relative size of the resummation as defined in Eq. (5.2),

while on the bottom we show the total perturbartive correction relative to the Born as

defined in Eq. (5.3). Virtual corrections are shown in black, while real corrections with a

Z, W+, W� are shown in green, red and blue. Resummed corrections are shown in solid

lines, while fixed order results are dashed. The x-axis denotes the fraction of the partonic

center of mass energy relative to the collider center of mass energy.

and real

Virt :
�pp!`1`2 � �B

pp!`1`2

�B
pp!`1`2

Real (V) :
�pp!`1`2V

�B
pp!`1`2

, (5.1)

using either the resummed or fixed order expression. In the middle we show for the virtual
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Figure 1. The cross-section summed over all lepton flavors for the 13TeV LHC. On the top we
show the individual corrections relative to the Born cross-section as defined in eq. (5.1), in the
middle the relative size of the resummation as defined in eq. (5.2), while on the bottom we show
the total perturbartive correction relative to the Born as defined in eq. (5.3). Virtual corrections
are shown in black, while real corrections with a Z, photon, W+, W− are shown in green, orange,
red and blue. Resummed corrections are shown in solid lines, while fixed order results are dashed.
The x-axis denotes the fraction of the partonic center of mass energy relative to the collider center
of mass energy.

compared to the virtual correction. This clearly shows that the size of the resummation

effect cannot be inferred from the size of the fixed order correction alone. The relative

effect of the resummation for the virtual reaches from O(10%) at
√
s ∼ 1TeV to O(20%)

at
√
s ∼ 3TeV while the relative effect of the resummation for the real reaches from O(20%)

at
√
s ∼ 1TeV to O(50%) at

√
s ∼ 3TeV.

In the lower part of the plot for the fixed order, one can see that after summing the

virtual and real, the perturbative corrections largely cancel, but a small effect at the O(1%)

level persists. For a fully inclusive cross section the logarithmically enhanced virtual and
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Figure 2. The cross-section summed over all lepton flavors for a 100TeV pp collider on the right.
All colors are the same as in figure 1.

real corrections cancel against each other, up to the fact that the pp initial state is not an

iso-singlet. The large cancellation can be understood from eq. (3.13), which shows that

switching the flavor of initial state anti-quark changes the sign of the partonic cross-section.

Since pdf’s for sea quarks are similar in magnitude, one expects fū/p ∼ fd̄/p, explaining the

cancellation. For the resummed result on the other hand, there is no cancellation. That is

because even if the initial state is an SU(2) singlet, the cancellation would occur only for

an inclusive result, that is summing the virtual to the real for any number of gauge boson.

The remaining correction for the resummed result is thus mostly due to the production of

more than one gauge boson with also an order 1% correction due to the initial state not

being an SU(2) singlet. This remaining correction ranges from 2% at
√
s ∼ 5TeV to 7%

at
√
s ∼ 25TeV.

For the 100TeV collider, the results are qualitatively the same, but given the much

larger reach in energy, the overall size of the effects are much larger. The virtual con-

– 17 –



The	results	clearly	indicate	that	resumma@on	for	the	real	is	at	
least	as	important	as	for	the	virtual

p
r
o
o
f
s
 
J
H
E
P
_
0
4
0
P
_
0
3
1
6

���� ���� ���� ���� ���� ����
�

�

��

��
��
��
��
��
��
��
�

��

��

��

�

��

��

(a) 13TeV LHC
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(b) 100TeV collider

Figure 3. The cross-section for e+e− for the 13TeV LHC on the left, and 100TeV pp collider on
the right. All colors are the same as in figure 1. Note that the scaling of the y axis is different for
the LHC and the 100TeV collider.

tributions range from O(30%) at
√
s ∼ 5TeV to O(60%) at

√
s ∼ 25TeV, with the real

corrections again roughly a factor of 3 smaller. The relative size of the resummation,

is also much larger, and at
√
s ∼ 25TeV changes the result by O(50%) for the virtual

and by O(200%) for the real corrections. Thus, at such large energies, resummation

has to be included to get a reliable estimate of the effects, not only for virtual correc-

tions but also for the real emissions. Once the virtual and real corrections are added

at fixed order, the total corrections again are very small, at the percent level; while for

the resummed result, the total correction ranges from O(10%) at
√
s ∼ 5TeV to O(30%)

at
√
s ∼ 25TeV.

Next, we consider the results for final states with specific leptons flavors. From the

figures 3 to 6, one can see that at the LHC, the virtual corrections range from O(15%) at√
s ∼ 1TeV to O(30%) at

√
s ∼ 3TeV, with the exact numbers depending on the leptonic

final state chosen, while at a 100TeV collider they can exceed 50% at
√
s ∼ 25TeV.

Resummation at the LHC changes the virtual corrections by O(10%) at
√
s ∼ 1TeV to

O(20%) at
√
s ∼ 3TeV, while at a 100TeV collider the effect can become as large as 50%.

Resummation at the LHC changes the real corrections by O(20%) at
√
s ∼ 1TeV toO(60%)

at
√
s ∼ 3TeV, while at a 100TeV collider the effect can become as large as 200%. After

summing over virtual and real corrections, the remaining perturbative corrections grow

with energy are much larger than in the fully inclusive case. This is of course expected,

since by specifying the leptonic final state, we are not considering an inclusive final state

any longer.
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Figure 3. The cross-section for e+e− for the 13TeV LHC on the left, and 100TeV pp collider on
the right. All colors are the same as in figure 1. Note that the scaling of the y axis is different for
the LHC and the 100TeV collider.

tributions range from O(30%) at
√
s ∼ 5TeV to O(60%) at

√
s ∼ 25TeV, with the real

corrections again roughly a factor of 3 smaller. The relative size of the resummation,

is also much larger, and at
√
s ∼ 25TeV changes the result by O(50%) for the virtual

and by O(200%) for the real corrections. Thus, at such large energies, resummation

has to be included to get a reliable estimate of the effects, not only for virtual correc-

tions but also for the real emissions. Once the virtual and real corrections are added

at fixed order, the total corrections again are very small, at the percent level; while for

the resummed result, the total correction ranges from O(10%) at
√
s ∼ 5TeV to O(30%)

at
√
s ∼ 25TeV.

Next, we consider the results for final states with specific leptons flavors. From the

figures 3 to 6, one can see that at the LHC, the virtual corrections range from O(15%) at√
s ∼ 1TeV to O(30%) at

√
s ∼ 3TeV, with the exact numbers depending on the leptonic

final state chosen, while at a 100TeV collider they can exceed 50% at
√
s ∼ 25TeV.

Resummation at the LHC changes the virtual corrections by O(10%) at
√
s ∼ 1TeV to

O(20%) at
√
s ∼ 3TeV, while at a 100TeV collider the effect can become as large as 50%.

Resummation at the LHC changes the real corrections by O(20%) at
√
s ∼ 1TeV toO(60%)

at
√
s ∼ 3TeV, while at a 100TeV collider the effect can become as large as 200%. After

summing over virtual and real corrections, the remaining perturbative corrections grow

with energy are much larger than in the fully inclusive case. This is of course expected,

since by specifying the leptonic final state, we are not considering an inclusive final state

any longer.
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