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Motivation
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triple-Higgs coupling 

→ Higgs pair production

Measurements of Higgs couplings 
agree with SM predictions, but

Test of Higgs potential & 
EW symmetry breaking

not established yet
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Higgs Pair Production channels
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• gluon fusion
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• vector boson fusion

• top-quark associated

• Higgs strahlung
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gg→HH known results
1. LO, including full           Glover, van der Bij `88 

2. NLO  (                    limit)  
  Dawson, Dittmaier, Spira `98 

• including full         dependence in real radiation  
Maltoni, Vryonidou, Zaro `14 

• including             expansion  
Grigo, Hoff, Melnikov, Steinhauser `13; Grigo, Hoff, Steinhauser `15 
Degrassi, Giardino, Gröber `16  

3. NNLO  (                    limit)  
  de Florian, Mazzitelli `13 

• including all matching coefficients  
Grigo, Melnikov, Steinhauser `14 

• including             expansion 
Grigo, Hoff, Steinhauser `15 

• NNLL soft gluon resummation  
Shao, Li, Li, Wang `13 

• NNLL + NNLO matching  
de Florian, Mazzitelli `15 

• fully differential  
de Florian, Grazzini, Hanga, Kallweit,  
Lindert, Maierhöfer, Mazzitelli, Rathlev `16 

 

mT

1/mT

mT

1/mT

mt ! 1

mt ! 1

4

K ≈ 2

+20%
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•                limit (Higgs EFT)mT ! 1

• Born-improved NLO HEFT

• further improvements:

d�V,HEFT
NLO

d�R
NLO(mt)

Maltoni Vryonidou, Zaro `14

-10%

K ≈ 2
Spira et al. (HPAIR)

d�NLO ⇡ d�HEFT
NLO =

d�NLO(mt ! 1)

d�LO(mt ! 1)
d�LO(mt)

5

HEFT and approximated NLO results

(valid for               )
p
s ⌧ 2mT

Grigo, Hoff, Melnikov, Steinhauser `13

�exp =
6X

n

cn⇢
n, ⇢ =

m2
H

m2
t

�NLO = �NLO
exp · �

LO

�LO
exp

+10%
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•                limit (Higgs EFT)mT ! 1

• Born-improved NLO HEFT

• further improvements:

d�V,HEFT
NLO

d�R
NLO(mt)

Maltoni Vryonidou, Zaro `14

-10%

Grigo, Hoff, Steinhauser `15

K ≈ 2
Spira et al. (HPAIR)

±10%�exp =
6X

n

cn⇢
n, ⇢ =

m2
H

m2
t

�NLO =

Z
dQ2 d�

NLO
exp

dQ2
· d�

LO/dQ2

d�LO
exp/dQ

2

d�NLO ⇡ d�HEFT
NLO =

d�NLO(mt ! 1)

d�LO(mt ! 1)
d�LO(mt)

6

HEFT and approximated NLO results

(valid for               )
p
s ⌧ 2mT
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•                limit (Higgs EFT)mT ! 1

• Born-improved NLO HEFT

• further improvements:

d�V,HEFT
NLO

d�R
NLO(mt)

Maltoni Vryonidou, Zaro `14

-10%

Grigo, Hoff, Steinhauser `15

K ≈ 2

mass effects largest uncertainty
→ NLO calculation with full mass dependence needed

Spira et al. (HPAIR)

±10%�exp =
6X

n

cn⇢
n, ⇢ =

m2
H

m2
t

�NLO =

Z
dQ2 d�

NLO
exp

dQ2
· d�

LO/dQ2

d�LO
exp/dQ

2

d�NLO ⇡ d�HEFT
NLO =

d�NLO(mt ! 1)

d�LO(mt ! 1)
d�LO(mt)

7

HEFT and approximated NLO results

(valid for               )
p
s ⌧ 2mT
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Diagrams
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• LO and Real Radiation

• Virtual Corrections — GoSam-2Loop

amplitude generationreduction loop integrals

- Gosam  
Cullen, van Deurzen, Greiner, Heinrich, Luisoni, 
Mastrolia, Mirabella, Ossola, Peraro, Schlenk, 
von Soden-Fraunhofen, Tramontano

- dipole  
subtraction 
Catani Seymour

S3,3 = −2m2
t + 2i ·mt · Γt (19j)

S3,4 = −2m2
t + 2i ·mt · Γt (19k)

S3,5 = −2m2
t + s34 + 2i ·mt · Γt (19l)

S4,4 = −2m2
t + 2i ·mt · Γt (19m)

S4,5 = −2m2
t +m2

H + 2i ·mt · Γt (19n)

S5,5 = −2m2
t + 2i ·mt · Γt (19o)

4.1.1 Diagrams (2)
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S′ = SQ→−q−(−k3−k4), rk = 5

4.2 Group 1 (5-Point)

General Information

The maximum effective rank in this group is 5.

r1 = −k2 + k5 + k4, m1 = mt, Γ1 = Γt (20a)

r2 = −k2 + k5, m2 = mt, Γ2 = Γt (20b)

r3 = −k2, m3 = mt, Γ3 = Γt (20c)

r4 = 0, m4 = mt, Γ4 = Γt (20d)

r5 = −k3, m5 = mt, Γ5 = Γt (20e)

S =
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⎞
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(21)

S1,1 = −2m2
t + 2i ·mt · Γt (22a)

S1,2 = −2m2
t +m2

H + 2i ·mt · Γt (22b)

S1,3 = −2m2
t + s45 + 2i ·mt · Γt (22c)

S1,4 = −2m2
t − s23 + s45 − s12 + 2i ·mt · Γt (22d)

6
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S′ = SQ→q−(k3), rk = 4
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S′ = SQ→q−(k3), rk = 4

4.2 Group 1 (4-Point)

General Information

The maximum effective rank in this group is 4.

r1 = k5 + k4, m1 = mt, Γ1 = Γt (19a)

r2 = k5, m2 = mt, Γ2 = Γt (19b)

r3 = 0, m3 = mt, Γ3 = Γt (19c)

r4 = −k3, m4 = mt, Γ4 = Γt (19d)

S =

⎛

⎜
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⎝
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S1,1 = −2m2
t + 2i ·mt · Γt (21a)

S1,2 = −2m2
t +m2

H + 2i ·mt · Γt (21b)

S1,3 = −2m2
t + s45 + 2i ·mt · Γt (21c)

S1,4 = −2m2
t + s12 + 2i ·mt · Γt (21d)

S2,2 = −2m2
t + 2i ·mt · Γt (21e)

S2,3 = −2m2
t +m2

H + 2i ·mt · Γt (21f)

S2,4 = −2m2
t − s45 + s12 + 2m2

H − s34 + 2i ·mt · Γt (21g)

S3,3 = −2m2
t + 2i ·mt · Γt (21h)

S3,4 = −2m2
t + 2i ·mt · Γt (21i)

S4,4 = −2m2
t + 2i ·mt · Γt (21j)

4.2.1 Diagrams (2)

6

GoSam-2Loop 
GoSam-1L collaboration + 

Jahn, Jones, MK, Zirke

• Reduze 
von Manteuffel, Studerus`12 
• FIRE 

Smirnov, Smirnov `13 
• LiteRed 

Lee `13 

• integrand reduction  
Mastrolia, Ossola, Peraro,  
Schubert

using QGRAF (Nogueira `93) 
and     FORM (Vermaseren et al. `12 )

HH: 2nd implementation  
using QGRAF, Reduze, Mathematica

this calculation 
future?

9

Tools

• SecDec 
Borowka, Heinrich,  Jahn, 
Jones, MK, Schlenk, Zirke  

• analytic results  
Mastrolia, Schubert 

• Loopedia 
Papara, et.al.
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Two Loop Amplitude

choose tensor decomposition such that

Glover, van der Bij ‘88

amplitude structure:

example gg ! hh

(independent of #loops) 

diagrams with trilinear couplings 
enter only here

• tensor structure  Glover, van der Bij `88

choose tensor decomposition such that

Glover, van der Bij ‘88

amplitude structure:

example gg ! hh

(independent of #loops) 

diagrams with trilinear couplings 
enter only here

choose tensor decomposition such that

Glover, van der Bij ‘88

amplitude structure:

example gg ! hh

(independent of #loops) 

diagrams with trilinear couplings 
enter only here

with
choose tensor decomposition such that

Glover, van der Bij ‘88

amplitude structure:

example gg ! hh

(independent of #loops) 

diagrams with trilinear couplings 
enter only here

• projectors

construct Pµ⌫
i =

X

j

cijT
µ⌫
j such that

form factors/reduction

construct projectors such thatPµ⌫
j

current status:
projectors as input to GoSam-2L 
algebra done automatically by GoSam-2L (FORM)

interface to Reduze to identify integral symmetries

reduction: interface to Reduze, LiteRed, FIRE

triangle diagrams gg→H→HH  
only contribute to A1
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Integral Reduction

Integrals 1-loop 2-loop

Direct 63 9865

+ Symmetries 21 1601

+ IBPs 8 ~260-270 
currently: 327 

Reduction to master integrals using Reduze
• integral families with 9 propagators:  

5(3) planar(non-planar) families 

• full dependence on  
                          challenging  
➡ simplification: fix 

• (mostly) finite basis 
von Manteuffel, Panzer, Schabinger 

• non-planar sectors still unreduced

s, t, m2
t , m

2
H

mt = 173GeV, mH = 125GeV

Non-planar integrals
Z

ddp1d
dp2

(p1 + k1)2

p21
f(pi, ki) =

Z
ddp1d

dp2

✓
1 +

k21
p21

+
2 p1 · k1

p21

◆
f(pi, ki)

rewrite  inverse prop. → scalar products

rank-2 rank-1

up to 4 inverse propagators  → up to rank-4 tensors

145 (+83 crossed) planar masters 
70 (+29) non-planar integrals (mostly unreduced)  



12

Amplitude — Loop Integrals
SecDec

• sector decomposition of loop integrals 
• contour deformation 
→ numerical integration possible

Amplitude & numerical integration
• using Quasi-Monte-Carlo (QMC) integration 

           scaling of integration error 
• split each integral into sectors 
• dynamically set n for each integral, minimizing 
 
 

• avoid reevaluation of integrals for different 
orders in     and form factors 

• parallelization on gpu

{. . . } = fractional part

~g = generating vector

~
�k = randomized shift

~xi,k =

⇢
i · ~g
n

+ ~�k

�
I =

Z
d~xf(~x) ⇡ Ik =

1

n

nX

i=1

f(~xi,k)

QMC rank-1 lattice rule

m di↵erent estimates I1 . . . Im
! error estimate

O(n�1)

T =
X

integral i

ti + �

 
�2 �

X

i

�2
i

!

�i = ci · t�e
i

�i = error estimate (including coe�cients in amplitude)

� = Lagrange multiplier � = precision goal

interface

"

156 J. Dick, F. Y. Kuo and I. H. Sloan
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Figure 2.3. Applying a (0.1, 0.3)-shift to a 64-point lattice rule in
two dimensions: (a) original lattice rule, (b) moving all points by
(0.1, 0.3), (c) wrapping the points back inside the unit cube.

For a random shift ∆ ∈ [0, 1]s, the shifted QMC points {ti + ∆}, i =
0, 1, . . . , n− 1 are correlated. Therefore we cannot estimate the variance of
the shifted QMC rule using the sample variance as in (2.1). Instead, we
need to use a number of independent random shifts as follows.

(1) We generate q independent random shifts ∆0,∆1, . . . ,∆q−1 from the
uniform distribution on [0, 1]s.

(2) For a given QMC rule, we form the approximations Q(0)
n,s(f), Q

(1)
n,s(f),

. . . , Q(q−1)
n,s (f), where

Q(k)
n,s(f) =

1

n

n−1∑

i=0

f({ti +∆k}), k = 0, 1, . . . , q − 1,

is the approximation of the integral using a ∆k-shift of the original
QMC rule.

(3) We take the average

Q̄n,s,q(f) =
1

q

q−1∑

k=0

Q(k)
n,s(f)

as our final approximation to the integral.

(4) An unbiased estimate for the mean-square error of Q̄n,s,q(f) is given
by

1

q(q − 1)

q−1∑

k=0

(Q(k)
n,s(f)− Q̄n,s,q(f))

2.

Typically we take n in the thousands or more while keeping q small, say
around 10–50. To obtain a fair comparison between the MC method and

Binoth, Heinrich
Nagy, Soper

Li, Wang, Yan, Zhao `15 
Review: Dick, Kuo, Sloan
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Amplitude Structure

and the mass counter-term in the on-shell scheme is given by

�m2
t =

✓

m2
t

µ2
R

◆�✏

m2
t CF

✓

�3

✏
� 4

◆

+O(✏) . (2.25)

The integrals Ir,s(s, t,m2
h,m

2
t ) appearing in the coe�cients (2.17), (2.18) have mass

dimension [Ir,s] = DL � 2r + 2s, with L the number of loops. We may therefore

factor a dimensionful parameter M out of each integral such that they depend only on

dimensionless ratios

Ir,s(s, t,m
2
h,m

2
t ) = (M2)�L✏(M2)2L�r+sIr,s

✓

s

M2
,

t

M2
,
m2

h

M2
,
m2

t

M2

◆

. (2.26)

The renormalized amplitude may then be written as

Avirt =
Y

n
g

Z
1
2
A AB

�

a0 ! aZa

�

µ2
R/µ

2
0

�✏
,m2

t0 ! m2
t + a �m2

t

�

= aA(1) + a2(
ng

2
�ZA + �Za)A(1) + a2�m2

tAct,(1) + a2A(2) +O(a3), (2.27)

A(1) =

✓

µ2
R

M2

◆✏
h

b(1)0 + b(1)1 ✏+ b(1)2 ✏2 +O(✏3)
i

, (2.28)

Act,(1) =

✓

µ2
R

M2

◆✏
h

c(1)0 + c(1)1 ✏+O(✏2)
i

, (2.29)

A(2) =

✓

µ2
R

M2

◆2✏
"

b(2)�2

✏2
+

b(2)�1

✏
+ b(2)0 +O(✏)

#

, (2.30)

where

b̃(L) = (M2)�L✏b(L) , c̃(L) = (M2)�L✏c(L). (2.31)

Since �m2
t contains poles of O(✏�1) the coe�cient c of the top mass counter-term must

be expanded to O(✏). It is obtained by insertion of a mass counterterm into heavy

quark propagators.

⇧�m
ab (p) =

i�ac
6 p�m

(�i�m)
i�cb

6 p�m
, (2.32)

where a, b, c are colour indices in the fundamental representation. Alternatively, the

mass counterterm can be obtained by taking the derivative of the one-loop amplitude

with respect to m.

It is clear that renormalizing the one-loop real radiation amplitudes and expanding the

renormalization constants to O(a) generates terms of O(a
5
2 ) which do not contribute

at NLO, their renormalization is therefore trivial.

– 10 –

rewrite loop integrals with r propagators and s inverse propagators as

and write renormalized form factors as

F virt = aF (1) + a2(
ng

2
�ZA + �Za)F

(1) + a2�m2
tF

ct,(1) + a2F (2) +O(a3)

F (1) =

✓
µ2
R

M2

◆" h
b(1)0 + b(1)1 "+ b(1)2 "2 +O("3)

i
,

F ct,(1) =

✓
µ2
R

M2

◆" h
c(1)0 + c(1)1 "+O("2)

i
,

F (2) =

✓
µ2
R

M2

◆2"
"
b(2)�2

"2
+

b(2)�1

"
+ b(2)0 +O(")

#
,

(1-loop)

(mass counter-term)

(2-loop)

arbitrary scale

→ scale variations do not require re-computation of b(n)i , c(n)i
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Amplitude Evaluation — Example

k1

p2

g

H

g

H

integral value error time [s]

. . .

F1 011111110 ord0 (0.484, 4.96e-05) (4.40e-05, 4.23e-05) 11.8459

. . .

N3 111111100 k1p2k2p2 ord0 (0.0929, -0.224) (6.32e-05, 5.93e-05) 235.412

N3 111111100 1 ord0 (-0.0282, 0.179) (8.01e-05, 9.18e-05) 265.896

N3 111111100 k1p2k1p2 ord0 (0.0245, 0.0888) (5.06e-05, 5.31e-05) 282.794

N3 111111100 k1p2 ord0 (-0.00692, -0.108) (3.05e-05, 3.05e-05) 433.342

1

⇡ 700
integrals

I(s, t,m2
t ,m

2
h) = �

✓
µ2

M2

◆2"

�(3 + 2✏)M�4

✓
A�2

✏2
+

A�1

✏1
+A0 +O(✏)

◆

}
p
s = 327.25GeV,

p
�t = 170.05GeV, M2 = s/4

contributing integrals:

1414
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Amplitude Evaluation — Example
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p2
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sector integral value error time [s] #points
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. . .

41 (0.179, -0.856) (1.10e-05, 1.22e-05) 29.484 79952820

42 (0.359, -1.308) (1.40e-06, 1.58e-06) 80.24 211436900

44 (0.0752, -1.185) (5.44e-07, 6.76e-07) 99.301 282904860
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N3 111111100 k1p2 ord0 (-0.00692, -0.108) (3.05e-05, 3.05e-05) 433.342

1

⇡ 700
integrals

I(s, t,m2
t ,m

2
h) = �

✓
µ2

M2

◆2"

�(3 + 2✏)M�4

✓
A�2

✏2
+

A�1

✏1
+A0 +O(✏)

◆

}
p
s = 327.25GeV,

p
�t = 170.05GeV, M2 = s/4

contributing integrals:

sector decomposition

15
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Amplitude Evaluation — Example
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contributing integrals:

sector decomposition

m = 20

R
el

. E
rr.

n (Function Evaluations/m)

N3_111111100_k1p2_ord0, sector 44

QMC
1/√n
1/n

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

104 105 106 107 108 109 1010



Amplitude Evaluation — Example
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Results - Amplitude

comparison to HEFT and expansion in 

VN =
�
d�̂virt

exp,N + d�̂LO
exp,N (✏)⌦ I

� d�̂LO(✏)

d�̂LO
exp,N (✏)

d�̂
exp,N =

NX

⇢=0

d�̂(⇢)

✓
⇤

mt

◆
2⇢

⇤ 2
np

ŝ,
p

t̂,
p
û,mh

o

1/mt

V 0
N = VN · B

BN

VN≥4: thanks to J. Hoff
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Results - Cross Section

�NLO
HEFT = 38.32+18%

�15% fb

�LO = 19.85+28%
�21% fb

Born-improved HEFT:

LO:

LHC@14TeV

�NLO = 32.91+14%
�13% fb± 0.3% (stat.)± 0.1% (int.)

0.00

0.05

0.10

0.15

0.20

0.25

d
�
/d

p T
,h

[f
b
/G

eV
]

LO

B-i. NLO HEFT

NLO FTapprox

LO basic HEFT

NLO basic HEFT

NLO

0 100 200 300 400 500
pT,h [GeV]

0.5
1.0
1.5
2.0

K
fa

ct
or

0.00

0.05

0.10

0.15

0.20

d
�
/d

m
h
h
[f
b
/G

eV
]

LO

B-i. NLO HEFT

NLO FTapprox

LO basic HEFT

NLO basic HEFT

NLO

300 400 500 600 700 800 900 1000
mhh [GeV]

0.5
1.0
1.5
2.0

K
fa

ct
or



20

Results - Cross Section
New in arXiv 1608.xxxx

• results @ 100 TeV
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finite      effects pronounced  
compared to 14TeV results

mt
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Results - Cross Section
New in arXiv 1608.xxxx

• modified Higgs self-interaction: ghhh = � · gSM
hhh

� = 0 � = 2

mhh = mh

p
1 + 3�

destructive interference 
of     and     contributions 
for 
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Results - Combination with NNLOHEFT

Figure 3: Distributions in the rapidity of the harder (left) and the softer (right) Higgs boson. Curves
and bands as in Fig. 2.

Figure 4: Invariant-mass distribution mHH (left) and rapidity distribution yHH (right) of the produced
Higgs boson pair. Curves and bands as in Fig. 2. Additionally, in the left plot we show the mHH

distribution as obtained with the calculation of Ref. [31].

In the right plot of Fig. 4 predictions for the rapidity of the Higgs boson pair, yHH , are presented.
Again, we observe a mild phase-space dependence, with increasing NNLO corrections only for large
rapidities. In all distributions in Figs. 2–4, NNLO scale uncertainties are reduced to the level of
±(5%� 12%), compared to ±(15%� 20%) at NLO.

8

de Florian, Grazzini, Hanga, 
Kallweit, Lindert, Maierhöfer,  
Mazzitelli, Rathlev `16

first attempt to combine NLOfull with NNLOHEFT
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Summary

Higgs pair production at NLO

• full       dependence 
• significant deviations from Born-improved HEFT 
• reduce cross section by 14% relative to Born-improved HEFT 
→ relevant contribution to cross section   

• numerical integration of loop integrals using SecDec 
- new interface to amplitude code 
- dynamically adjust #sampling points 
- Quasi Monte Carlo

mt

First step towards automated 2-loop calculations using GoSam-2L
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Backup



scaling behavior
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Figure 9: Higgs boson pair invariant mass distribution (a) and transverse momentum

distribution (b) at
p

s = 14 TeV on a logarithmic scale. The di↵erent high-energy

scaling behaviour of the amplitude in the full and the basic HEFT calculation can be

clearly seen in the tails of the distributions.

(a) 14 TeV, mhh (b) 14 TeV, pT,h

Figure 10: Invariant mass distribution of the Higgs boson pair (a) and pT distribution

of any Higgs (b) at
p

s = 14 TeV combining the full real emission with the virtual

contribution expanded in 1/m2
t up to order N . Note that N = 0 corresponds to

FTapprox.

couplings (and Higgs-gluon couplings which can di↵er from the SM HEFT ones), see

e.g. [37–39]. However, the conclusions drawn from the calculation of NLO corrections in

the mt ! 1 limit to the extended set of EFT Wilson coe�cients have to be taken with
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modified Higgs self-interactions
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Figure 12: Total cross sections for various values of the triple Higgs coupling. Panel

(b) zooms into the region around the minimum. The curves are the result of an inter-

polation of integer values for � 2 {�1, . . . , 5}.

given e.g. by vacuum stability), do not lead to destructive interference and therefore

result in a much larger cross section. For large positive values, � ⇠ 5, the total cross

section is of comparable size to the one for � ' 0, but the shape of the mhh distribution

is completely di↵erent. This can be seen in Fig. 13, where we show the Higgs boson

pair invariant mass distribution for various values of the Higgs boson self-coupling, atp
s = 14 TeV and

p
s = 100 TeV. For � = 5, the di↵erential cross section is mainly

dominated by contributions containing the Higgs boson self coupling and peaks at low

mhh values. In contrast, the � = 0 case, which does not contain any triple Higgs

coupling contribution, peaks shortly beyond the 2mt threshold at mhh ⇠ 400 GeV, as

does the case � = �1. In the latter case, however, the total cross section is much larger.

The case � = 2 shows a dip at mhh ⇠ 300 GeV, which is due to destructive interference

e↵ects as mentioned above. At 100 TeV, the shape of the distributions is very similar.

However, the fact that the cross sections are much larger can be exploited to place cuts

which enlarge the sensitivity to the Higgs boson self coupling. For example, one can try

to enhance the self-coupling contribution by cuts favouring highly boosted virtual Higgs

bosons, decaying into a Higgs boson pair which could be detected in the bb̄ bb̄ channel.

A highly boosted virtual Higgs boson must recoil against a high-pT jet. Therefore,

an enhancement of the boosted component could be achieved by imposing a pmin
T,jet cut

on the recoiling jet in Higgs boson pair plus jet production [110, 111]. An additional

advantage of boosted Higgs bosons is the fact that they lend themselves to the use

of the bb̄bb̄ rather than the bb̄�� decay channel, as the decay channel into b-quarks is

accessible through boosted techniques. This leads to a gain in the rate which easily

makes up for the loss in statistics due to a high pmin
T,jet cut.

Fig. 14 shows a comparison to the di↵erent approximations for various values of �, as

– 28 –
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Figure 13: NLO and LO results with full top quark mass dependence for the mhh

distribution at 14 TeV and 100 TeV, for various values of the triple Higgs coupling,

where � = 1 corresponds to the Standard Model value.

well as the K-factors. For all values of �, the K-factors are far from being uniform,

while the HEFT approximation suggests almost uniform K-factors for �  1. For

� = 2, we see a pronounced “interference dip” at mhh ⇠ 330 GeV, which is present at

LO already. We can get an idea about the destructive interference e↵ect by observing

the following: In the basic HEFT approximation, the squared Born amplitude is given

by Eq. (2.14) This expression has a double zero at ŝ = m2
h(1 + 3�). Therefore, the

re-weighting factor BFT /BHEFT can get large when BHEFT approaches zero, i.e. atp
s ' 330.72 GeV for � = 2,

p
s ' 395.29 GeV for � = 3,

p
s ' 450.7 GeV for � = 4

and 500 GeV for � = 5. In the full theory, the amplitude does not vanish completely at

these points, but nonetheless also gets small, which should be the reason for the dips

in the mhh distributions for � = 2 and 3.

– 29 –
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Checks

Real Emission / Subtraction Terms
• Independence of dipole-cut     parameter  Nagy `03 
• Agreement with  Maltoni, Vryonidou, Zaro `14  

↵

Virtual Corrections
• Two calculations of amplitude up to reduction 
• Amplitude result invariant under   t ↔ u 
• Pole cancellation 
• Mass renormalization using two methods: 

counter-term insertion vs. calculating                   numerically 

• Agreement of contributions gg → H → HH with SusHi 
• Convergence of           expansion to full result  

where agreement is expected

Harlander,Liebler, Mantler1/mT

dMLO/dm2
t
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LO calculation

unweighted events

sampling points 
virtual amplitude

• Importance  
sampling:

~1000 phase-space points

�V with 2.5% accuracy} using

• Accuracy goal: - 3% for form factor F1 
- 5-20% for form factor F2 (depending on F2/F1)

• Run time:
(gpu time)

- 80 min - 2 d  (≙wall-clock limit)  
- median: 2h

Calculation of σV



30

0

0.2

0.4

0.6

0.8

1

300 400 500 600 700 800

δσ
N
L
O

[f
b
]

√
s [GeV]

SV+H

SV(DF)+H

ρ0

ρ1

ρ2

ρ3

ρ4

ρ5

ρ6

Figure 2: Partonic cross section as a function the center-of-mass energy including various
orders in the inverse top quark mass. The dashed and solid curves correspond to the
factorization for the total and differential cross section, respectively. The colour coding
is taken over from Fig. 1.

Note that in Ref. [15] it has been observed that the soft-virtual approximation constructed
in Mellin space approximates the full (effective-theory) result with an accuracy of 2%.

It is interesting to look at the partonic K factor which is defined via

KNLO =
σLO + δσNLO

σLO
. (20)

Results for the two methods to factorize the exact LO term are plotted in Fig. 3 as a
function of

√
s where the dashed curves are already shown in Ref. [12]. One observes that

DF leads to a lower K factor and that the spread among the various ρ orders is smaller.
Furthermore, it is interesting to note that for DF the top quark pair threshold behaviour
of the LO term is not washed out in contrast to the dashed curves. It is common to
both factorization methods that there is a strong raise when approaching the threshold
for Higgs boson pair production (see also discussion in Ref. [12]).

Fig. 4 shows the hadronic cross section σH for Higgs boson pair production including
NLO corrections as a function of

√
scut which is a technical upper cut on the partonic

center-of-mass collision energy. It is introduced via

σH(sH , scut) =

∫ 1

4m2
H/sH

dτ

(

dLgg

dτ

)

(τ) σ(τsH) θ(scut − τsH) , (21)

9

Grigo, Hoff, Steinhauser `15
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Figure 3: Partonic NLO K factor for the factorization performed at the level of the total
(dashed) and differential (solid) cross section.

where the luminosity function is given by
(

dLgg

dτ

)

(τ) =

∫ 1

0

dx1

∫ 1

0

dx2fg(x1)fg(x2)δ(τ − x1x2) . (22)

fg(x) are the gluon distribution functions in the MS scheme. Note that in the soft limit√
scut is a good approximation to Q2. The various lines in Fig. 4 correspond to the

inclusion of different orders in ρ at NLO. For convenience we show on the right end of
Fig. 4 the total cross section for

√
sH = 14 TeV. Note that the approximation used for

the computation of the ρn terms is not valid for large values of
√
scut (neither is the

effective-theory result). However, it can be used as an estimate of the mass correction
terms. Using the spread as an estimate for the uncertainty we conclude that a finite top
mass induces a ±10% uncertainty on top of the infinite top quark mass result.

The lower panel of Fig. 4 shows the hadronic K factor which is obtaind from Eq. (20)
by replacing σ by σH and using NLO PDFs in the numerator and LO PDFs in the
denominator. KNLO raises close to threshold, however, for

√
scut ∼> 500 GeV one observes

a flat behaviour of KNLO ≈ 1.6 (for µ = 2mH).

Top quark mass effects to double Higgs boson production have also been considered in
Ref. [13]. In the approximation used in that reference the real corrections are treated
exactly, however, the infinite top quark mass approximation is used for the virtual cor-
rections. A decrease of the cross section by about 10% due to finite top quark mass is

10
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Differential Cross Section
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Figure 4. The differential Higgs pair production cross-section at leading order for the triangle,
box, and both diagrams (including their interference). All contributions are obtained using both
EFT and exact calculations (see legend).
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Figure 5. Left plot: comparison between the distributions of the opening angle between the two
Higgs momenta in EFT (thin lines) and exact calculation (thick lines) for the triangle (red lines) and
box (green lines). Right plot: Comparison between the inclusive Higgs pseudorapidity distributions
for EFT (thin light line) and exact (thick dark line) calculation.

reproduce the kink at 2 ⇥mq (which is the result of using the approximate form factor of
eq. (2.8) instead of the one in eqs. (2.4) and (2.5), see Fig. 2). In the left plot in Fig. 5
we compare the angle between the two Higgses in the laboratory frame (exact– thick lines,
EFT– thin lines) for the box (dotted) and triangle (dashed-dotted) contributions. For the
triangle, both approaches give similar shapes. For the box, the difference between exact and
EFT calculations decreases when the Higgses get more back-to-back. The exact calculations
show a larger preference for the two Higgses to have a small opening angle. This effect is less
pronounced in the EFT calculations and can be explained by analysing the right graph in
Fig. 5. Here, the rapidity of each Higgs is presented. Loop calculations result in a broader
distribution which, is caused by larger differences between the Bjorken x of the colliding

– 7 –
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NNLO and NNLL results
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Figure 1: The Higgs pair invariant mass distribution for Ecm = 14 TeV and the central scale µ0 = Q, for
the fixed order (left) and resummed (right) predictions. In the left (right) we show the LO (LL), NLO
(NLL) and NNLO (NNLL) curves, with blue dotted, red dashed and black solid lines respectively.

300 400 500 600 700
0.00

0.05

0.10

0.15

0.20

Q H GeVL

ds
êdQ

Hfb
êGe

V
L

LO

NLO

NNLO

14 TeV , m0=Qê 2

300 400 500 600 700
0.00

0.05

0.10

0.15

0.20

Q H GeVL

ds
êdQ

Hfb
êGe

V
L

LL

NLL

NNLL

14 TeV , m0=Qê 2

Figure 2: The Higgs pair invariant mass distribution for Ecm = 14 TeV and the central scale µ0 = Q/2,
for the fixed order (left) and resummed (right) predictions. The color coding is the same of Figure 1.

3 NNLL phenomenology

We present in this section the phenomenological results. For the computation we take the Higgs
mass to be MH = 125 GeV. All the results are normalized by the exact LO top mass dependence,
with Mt = 173.21 GeV. For the parton luminosities and strong coupling we use the MSTW2008
sets, consistently at each perturbative order (i.e. LO PDFs and one-loop ↵S evolution for LO
and LL cross sections, etc.). The scale uncertainty was evaluated by varying independently the
renormalization and factorization scales in the range µ0/2  µR, µF  2µ0 with the constraint
1/2  µR/µF < 2, where µ0 is the central scale. The analysis was performed for two choices of
the central scale: µ0 = Q and µ0 = Q/2, being Q the invariant mass of the Higgs pair system.

The contributions from all the relevant partonic channels are always included in our numerical
results. As described in the previous section, the threshold resummation only applies for the gg
channel. With the corresponding matching we also account for the other partonic subprocesses at
the corresponding fixed order accuracy.

We start by showing the Higgs pair invariant mass distribution for a collider center of mass
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Figure 3: The K-factors for the fixed order and resummed cross sections as a function of the Higgs pair
invariant mass, for Ecm = 14 TeV. The left (right) panel shows the results for µ0 = Q (µ0 = Q/2). The
color coding is the same of Figure 1.

energy Ecm = 14 TeV. In Figure 1 we present the results corresponding to the central scale
µ0 = Q, while in Figure 2 the ones corresponding to µ0 = Q/2 are shown. For both figures, in the
left plot we present the fixed order prediction (at LO, NLO and NNLO) while in the right one we
show the resummed cross section (at LL, NLL and NNLL). ‡

In the first place we can observe that, with the exception of the µ0 = Q/2 resummed distribu-
tions, there is no overlap between the LO (LL) and NLO (NLL) bands, and it is only at second
order that a sensible superposition of the bands occurs. We can also see from the plots that at
every order the inclusion of the resummed contributions results in an increase of the cross section.
Also, we can observe that the size of the uncertainty band at NNLL is always smaller than the
corresponding NNLO one. This e↵ect is more clear with the choice µ0 = Q, for which also a better
overlap between the NNLL and NLL bands is observed, with respect to the NNLO and NLO ones.
The fixed order and resummed distributions have less di↵erences for µ0 = Q/2, as was already
observed for single Higgs production, where the choice µ0 = MH/2 partially mimics some of the
threshold resummation e↵ects. Regarding the shape of the distributions, we observe very small
di↵erences after the resummation is performed. This is due to the fact that the relative size of
the resummed contributions has a rather small dependence on the Higgs pair invariant mass.

In Figure 3 we present the K-factors, defined as the ratio between a given prediction and the
LO one. For the denominator we fix µR = µF = µ0. We observe, in more detail, the same features
described above at the level of the cross section. In particular, it is visible that the resummed
series has a better convergence than the fixed order one, exhibiting a larger overlap between the

‡For simplicity, we always label our resummed predictions as LL, NLL and NNLL. As explained before, these
results include the matching to the fixed order cross section, so they should be interpreted as LL+LO, NLL+NLO
and NNLL+NNLO respectively.
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Figure 4: The ratio between the NNLL and the NNLO predictions as a function of the Higgs pair
invariant mass, for the scales µ = Q (left) and µ = Q/2 (right). Results are shown for center of mass
energies of 8 TeV (orange solid), 14 TeV (magenta dashed), 33 TeV (purple dot-dashed) and 100 TeV
(black dotted).

µ0 = Q NNLO (fb) scale unc. (%) NNLL (fb) scale unc. (%) PDF unc. (%) PDF+↵S unc. (%)
8 TeV 9.92 +9.3� 10 10.8 +5.4� 5.9 +5.6� 6.0 +9.3� 9.2

13 TeV 34.3 +8.3� 8.9 36.8 +5.1� 6.0 +4.0� 4.3 +7.7� 7.5
14 TeV 40.9 +8.2� 8.8 43.7 +5.1� 6.0 +3.8� 4.0 +7.5� 7.3
33 TeV 247 +7.1� 7.4 259 +5.0� 6.1 +2.2� 2.8 +6.1� 6.1
100 TeV 1660 +6.8� 7.1 1723 +5.2� 6.1 +2.1� 3.0 +5.7� 5.8

µ0 = Q/2 NNLO (fb) scale unc. (%) NNLL (fb) scale unc. (%) PDF unc. (%) PDF+↵S unc. (%)
8 TeV 10.8 +5.7� 8.5 11.0 +4.0� 5.6 +5.8� 6.1 +9.6� 9.3

13 TeV 37.2 +5.5� 7.6 37.4 +4.2� 5.8 +4.1� 4.3 +7.8� 7.6
14 TeV 44.2 +5.5� 7.6 44.5 +4.2� 5.9 +3.9� 4.1 +7.6� 7.4
33 TeV 264 +5.3� 6.6 265 +4.6� 6.1 +2.4� 2.7 +6.3� 6.1
100 TeV 1760 +5.3� 6.7 1762 +4.9� 6.4 +2.2� 3.1 +6.2� 7.0

Table 1: The total cross section and theoretical uncertainties for di↵erent center of mass energies, at
NNLO and NNLL, for µ0 = Q and µ0 = Q/2. PDF and PDF+↵S uncertainties correspond to the
resummed predictions, and are estimated using the sets of MSTW2008 at 90% confidence level.

first and second order bands.

In Figure 4 we show the ratio between the NNLL and the NNLO predictions, again as a
function of the Higgs pair invariant mass, for di↵erent collider energies. The ratio shows an
almost linear dependence on Q, increasing for higher invariant masses. Actually, this is expected
because resummation contributions are enhanced when the process becomes closer to the partonic
threshold. The same feature is reflected by the fact that the resummation contributions are
relatively smaller for larger collider energies. We can also observe, as it was already clear from
Figures 1 and 2, that the ratio between NNLL and NNLO is significantly smaller for the scale
choice µR = µF = µ = Q/2. At the total cross section level, for example, we find that the increase
in the NNLL result with respect to the NNLO prediction is of 6.8% for Ecm = 14 TeV and µ = Q,
while it drops down to 0.65% for µ = Q/2.

We focus now on the theoretical uncertainty arising from the missing higher order contributions,
which is estimated by the scale variation indicated above. In Table 1 we present the total cross
section predictions at NNLO and NNLL, together with the scale uncertainty. We can observe
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Analytically known integrals

3-point, 1 off-shell leg 3-point, 2 off-shell leg

Gehrmann, Guns, Kara `15

→HPLs
→ generalized HPLs, 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Amplitude StructureAmplitude Structure (II)

Form factors are sums of rational functions multiplied by integrals that 
depend on ratios of the scales                    and the arbitrary scale     

Additionally, all   -loop form factors are computed simultaneously 
without re-evaluating common integrals

18

Note:                  is a loop induced process, real subtraction and mass 
factorisation contained in             operators (not discussed here)
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Phase-Space SamplingPhase-Space Sampling

Phase-space implemented by hand  
limited to 2-3 w/ 2 massive particles 

Events for virtual: 

1) VEGAS algorithm applied to LO 
matrix element               events 
computed  

2) Using LO events unweighted 
events generated using accept/reject 
method             events remain 

3) Randomly select 666 Events 
(woops), compute at NLO, exclude 1

20

O(100k)

O(30k)

Note: No grids used either for integrals or phase-space
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