NLO corrections to Higgs boson pair production in gluon fusion with full top quark mass dependence

Matthias Kerner
LoopFest XV
Buffalo - August 17, 2016

$=\Delta_{p} \cdot \Delta_{q \geqslant \frac{1}{2} \hbar}$
Max-Planck-Institut für Physik
(Werner-Heisenberg-Institut)

In collaboration with:
S. Borowka, N. Greiner, G. Heinrich, S. Jones, J. Schlenk, U. Schubert, T. Zirke

$$
V(\Phi)=\frac{1}{2} \mu^{2} \Phi^{2}+\frac{1}{4} \lambda \Phi^{4}
$$

EW symmetry breaking

$$
\left.\frac{m_{H}^{2}}{2} H^{2}+\frac{m_{H}^{2}}{2 v} H^{3}\right)+\frac{m_{H}^{2}}{8 v^{2}} H^{4}
$$

Measurements of Higgs couplings agree with SM predictions, but
triple-Higgs coupling not established yet
\rightarrow Higgs pair production

Test of Higgs potential \&
EW symmetry breaking

Higgs Pair Production channels

- gluon fusion

$g \mathrm{~mm}$		
	Q	

- vector boson fusion NLO:[1,2]

- top-quark associated nLo: [2]

- Higgs strahlung nlo: [1,2]

$$
\text { NNLO: }[1,4]
$$

[1] Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira `12 [2] Frederix, Frixione, Hirschi, Maltoni, Mattelaer Torrielli Vryonidou, Zaro `14
[3] Ling, Zhang, Ma, Guo, Li, Li `14 [4] Li, Wang`16
gg \rightarrow HH known results

1. LO, including full m_{T} Glover, van der Bij ‘88
2. NLO ($m_{t} \rightarrow \infty$ limit)
$K \approx 2$
Dawson, Dittmaier, Spira `98

- including full m_{T} dependence in real radiation Maltoni, Vryonidou, Zaro `14
- including $1 / m_{T}$ expansion

Grigo, Hoff, Melnikov, Steinhauser `13; Grigo, Hoff, Steinhauser `15 Degrassi, Giardino, Gröber `16 3. NNLO (\(m_{t} \rightarrow \infty\) limit) \(+\mathbf{2 0 \%}\) de Florian, Mazzitelli `13

- including all matching coefficients Grigo, Melnikov, Steinhauser `14
- including $1 / m_{T}$ expansion

Grigo, Hoff, Steinhauser `15

- NNLL soft gluon resummation

Shao, Li, Li, Wang `13

- NNLL + NNLO matching de Florian, Mazzitelli `15
- fully differential

HEFT and approximated NLO results

- $m_{T} \rightarrow \infty$ limit (Higgs EFT) (valid for $\sqrt{s} \ll 2 m_{T}$)

\rightarrow かぁ
- Born-improved NLO HEFT

$$
\left.d \sigma_{N L O} \approx d \sigma_{N L O}^{H E F T}=\frac{d \sigma_{N L O}\left(m_{t} \rightarrow \infty\right)}{d \sigma_{L O}\left(m_{t} \rightarrow \infty\right)} d \sigma_{L O}\left(m_{t}\right) \quad \mathbf{K}\right)_{\text {Spira et al. (HPAIR) }} \approx \mathbf{2}
$$

- further improvements:

Maltoni Vryonidou, Zaro `14
$\begin{array}{ll}d \sigma_{N L O}^{V, H E F T} & \mathbf{- 1 0 \%} \\ d \sigma_{N L O}^{R}\left(m_{t}\right) & \end{array}$
$\sigma_{e x p}=\sum_{n}^{6} c_{n} \rho^{n}, \quad \rho=\frac{m_{H}^{2}}{m_{t}^{2}}$
$\sigma^{N L O}=\sigma_{e x p}^{N L O} \cdot \frac{\sigma^{L O}}{\sigma_{e x p}^{L O}}$

HEFT and approximated NLO results

- $m_{T} \rightarrow \infty$ limit (Higgs EFT) (valid for $\sqrt{s} \ll 2 m_{T}$)

\rightarrow 2.
- Born-improved NLO HEFT

$$
\left.d \sigma_{N L O} \approx d \sigma_{N L O}^{H E F T}=\frac{d \sigma_{N L O}\left(m_{t} \rightarrow \infty\right)}{d \sigma_{L O}\left(m_{t} \rightarrow \infty\right)} d \sigma_{L O}\left(m_{t}\right) \quad \mathbf{K}\right)_{\text {Spira et al. (HPAIR) }} \approx \mathbf{2}
$$

- further improvements:

Maltoni Vryonidou, Zaro `14
$\begin{array}{lr}d \sigma_{N L O}^{V, H E F T} & \mathbf{- 1 0 \%} \\ d \sigma_{N L O}^{R}\left(m_{t}\right) & \end{array}$

Grigo, Hoff, Steinhauser ` 15

$$
\begin{aligned}
& \sigma_{\text {exp }}=\sum_{n}^{6} c_{n} \rho^{n}, \quad \rho=\frac{m_{H}^{2}}{m_{t}^{2}} \\
& \sigma^{N L O}=\int \mathrm{d} Q^{2} \frac{\mathrm{~d} \sigma_{\text {exp }}^{N L O}}{\mathrm{~d} Q^{2}} \cdot \frac{\mathrm{~d} \sigma^{L O} / \mathrm{d} Q^{2}}{\mathrm{~d} \sigma_{\text {exp }}^{L O} / \mathrm{d} Q^{2}}
\end{aligned}
$$

HEFT and approximated NLO results

- $m_{T} \rightarrow \infty$ limit (Higgs EFT) (valid for $\sqrt{s} \ll 2 m_{T}$)

- Born-improved NLO HEFT

$$
\left.d \sigma_{N L O} \approx d \sigma_{N L O}^{H E F T}=\frac{d \sigma_{N L O}\left(m_{t} \rightarrow \infty\right)}{d \sigma_{L O}\left(m_{t} \rightarrow \infty\right)} d \sigma_{L O}\left(m_{t}\right) \quad \mathbf{K}\right)_{\text {Spira et al. (HPAIR) }} \approx \mathbf{2}
$$

- further improvements:

Maltoni Vryonidou, Zaro `14
$\begin{array}{ll}d \sigma_{N L O}^{V, H E F T} & \mathbf{- 1 0 \%} \\ d \sigma_{N L O}^{R}\left(m_{t}\right) & \end{array}$

Grigo, Hoff, Steinhauser ` 15

$$
\sigma_{\exp }=\sum_{n}^{6} c_{n} \rho^{n}, \quad \rho=\frac{m_{H}^{2}}{m_{t}^{2}}
$$

$\pm 10 \%$
mass effects largest uncertainty
\rightarrow NLO calculation with full mass dependence needed

Two Loop Diagrams

- LO and Real Radiation
- Gosam

Cullen, van Deurzen, Greiner, Heinrich, Luisoni, Mastrolia, Mirabella, Ossola, Peraro, Schlenk, von Soden-Fraunhofen, Tramontano

- dipole subtraction Catani Seymour

GoSam-2Loop

- Reduze
von Manteuffel, Studerus`12
- FIRE

Smirnov, Smirnov `13

- LiteRed

Lee `13
integrand reduction Mastrolia, Ossola, Peraro, Schubert

HH: 2nd implementation using QGRAF, Reduze, Mathematica

GoSam-2Loop

GoSam-1L collaboration + Jahn, Jones, MK, Zirke
using QGRAF (Nogueira `93)
and FORM (Vermaseren et al. ‘12)

- SecDec

Borowka, Heinrich, Jahn, Jones, MK, Schlenk, Zirke

- analytic results Mastrolia, Schubert
- Loopedia

Papara, et.al.

Two Loop Amplitude

- tensor structure Glover, van der Bij ` 88

$$
\begin{aligned}
\mathcal{M} & =\epsilon_{\mu}\left(p_{1}, n_{1}\right) \epsilon_{\nu}\left(p_{2}, n_{2}\right) \mathcal{M}^{\mu \nu} \\
\mathcal{M}^{\mu \nu} & =A_{1}\left(s, t, m_{H}^{2}, m_{t}^{2}, D\right) T_{1}^{\mu \nu}+A_{2}\left(s, t, m_{H}^{2}, m_{t}^{2}, D\right) T_{2}^{\mu \nu}
\end{aligned}
$$

$$
\begin{array}{cr}
\text { with } & \begin{array}{l}
\mathcal{M}^{++}=\mathcal{M}^{--}=-A_{1} \\
\mathcal{M}^{+-}=\mathcal{M}^{-+}=-A_{2}
\end{array} \\
\begin{aligned}
& T_{1}^{\mu \nu}=g^{\mu \nu}-\frac{p_{1}^{\nu} p_{2}^{\mu}}{p_{1} \cdot p_{2}} \begin{aligned}
\text { triangle diagrams } \mathrm{gg} \rightarrow \mathrm{H} \rightarrow \mathrm{HH} \\
\text { only contribute to } \mathrm{A}_{1}
\end{aligned} \\
& T_{2}^{\mu \nu}=g^{\mu \nu}+\frac{1}{p_{T}^{2}\left(p_{1} \cdot p_{2}\right)}\left\{m_{H}^{2} p_{1}^{\nu} p_{2}^{\mu}-2\left(p_{1} \cdot p_{3}\right) p_{3}^{\nu} p_{2}^{\mu}-2\left(p_{2} \cdot p_{3}\right) p_{3}^{\nu} p_{1}^{\mu}+2\left(p_{1} \cdot p_{2}\right) p_{3}^{\nu} p_{3}^{\mu}\right\}
\end{aligned}
\end{array}
$$

- projectors
construct $P_{i}^{\mu \nu}=\sum_{j} c_{i j} T_{j}^{\mu \nu}$ such that $\begin{aligned} & P_{1}^{\mu \nu} \mathcal{M}_{\mu \nu}=A_{1}\left(s, t, m_{H}^{2}, m_{t}^{2}, D\right) \\ & P_{2}^{\mu \nu} \mathcal{M}_{\mu \nu}=A_{2}\left(s, t, m_{H}^{2}, m_{t}^{2}, D\right)\end{aligned}$

Integral Reduction

Reduction to master integrals using Reduze

- integral families with 9 propagators: 5(3) planar(non-planar) families
- full dependence on
$s, t, m_{t}^{2}, m_{H}^{2} \quad$ challenging
- simplification: fix $m_{t}=173 \mathrm{GeV}, m_{H}=125 \mathrm{GeV}$
- (mostly) finite basis von Manteuffel, Panzer, Schabinger
- non-planar sectors still unreduced

Direct	63	9865		
+ Symmetries	21	1601		
	+ IBPs	8		$\sim 260-270$
:---:				
currently: 327				

Non-planar integrals rewrite inverse prop. \rightarrow scalar products

$$
\int \mathrm{d}^{d} p_{1} \mathrm{~d}^{d} p_{2} \frac{\left(p_{1}+k_{1}\right)^{2}}{p_{1}^{2}} f\left(p_{i}, k_{i}\right)=\int \mathrm{d}^{d} p_{1} \mathrm{~d}^{d} p_{2}\left(1+\frac{k_{1}^{2}}{p_{1}^{2}}+\frac{2 p_{1} \cdot k_{1}}{p_{1}^{2}}\right) f\left(p_{i}, k_{i}\right)
$$

up to 4 inverse propagators \rightarrow up to rank- 4 tensors

Amplitude - Loop Integrals

SecDec

- sector decomposition of loop integrals Binoth, Heinrich
- contour deformation Nagy, Soper
\rightarrow numerical integration possible

interface

Amplitude \& numerical integration

- using Quasi-Monte-Carlo (QMC) integration $\mathcal{O}\left(n^{-1}\right)$ scaling of integration error
- split each integral into sectors
- dynamically set n for each integral, minimizing

$$
T=\sum_{\substack{\text { integrali } i \\ \sigma_{i}=\text { error estimate (including coefficients in amplitude) } \\ \lambda \\ \lambda=\text { Lagrange multiplier } \\ \sigma=\text { precision goal }}} \sigma_{i}+\lambda\left(\sigma^{2}-\sum_{i} \sigma_{i}^{2}\right)
$$

- avoid reevaluation of integrals for different orders in ε and form factors
- parallelization on gpu

QMC rank-1 lattice rule

$$
\begin{aligned}
& I=\int \mathrm{d} \vec{x} f(\vec{x}) \approx I_{k}=\frac{1}{n} \sum_{i=1}^{n} f\left(\vec{x}_{i, k}\right) \\
& \vec{x}_{i, k}=\left\{\frac{i \cdot \vec{g}}{n}+\vec{\Delta}_{k}\right\} \quad \begin{array}{l}
\because \because \because \because \\
\therefore \because \because \\
\therefore \ldots\}=\text { fractional part } \because \because \because \because
\end{array} \\
& \{\ldots \because
\end{aligned}
$$

$\vec{g}=$ generating vector
$\vec{\Delta}_{k}=$ randomized shift
m different estimates $I_{1} \ldots I_{m}$
\rightarrow error estimate
Li, Wang, Yan, Zhao `15 Review: Dick, Kuo, Sloan

Amplitude Structure

rewrite loop integrals with r propagators and s inverse propagators as

$$
I_{r, s}\left(s, t, m_{h}^{2}, m_{t}^{2}\right)=\left(M^{2}\right)^{-L \epsilon}\left(M^{2}\right)^{2 L-r+s} I_{r, s}\left(\frac{s}{M^{2}}, \frac{t}{M^{2}}, \frac{m_{h}^{2}}{M^{2}}, \frac{m_{t}^{2}}{M^{2}}\right)
$$

and write renormalized form factors as

$$
\begin{array}{rlrl}
F^{\mathrm{virt}} & =a F^{(1)}+a^{2}\left(\frac{n_{g}}{2} \delta Z_{A}+\delta Z_{a}\right) F^{(1)}+a^{2} \delta m_{t}^{2} F^{c t,(1)}+a^{2} F^{(2)}+\mathcal{O}\left(a^{3}\right) \\
F^{(1)} & =\left(\frac{\mu_{R}^{2}}{M^{2}}\right)^{\varepsilon}\left[b_{0}^{(1)}+b_{1}^{(1)} \varepsilon+b_{2}^{(1)} \varepsilon^{2}+\mathcal{O}\left(\varepsilon^{3}\right)\right], & & \text { (1-loop) } \\
F^{c t,(1)} & =\left(\frac{\mu_{R}^{2}}{M^{2}}\right)^{\varepsilon}\left[c_{0}^{(1)}+c_{1}^{(1)} \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)\right], & & \text { (mass counter-term) } \\
F^{(2)} & =\left(\frac{\mu_{R}^{2}}{M^{2}}\right)^{2 \varepsilon}\left[\frac{b_{-2}^{(2)}}{\varepsilon^{2}}+\frac{b_{-1}^{(2)}}{\varepsilon}+b_{0}^{(2)}+\mathcal{O}(\varepsilon)\right], & & \text { (2-loop) }
\end{array}
$$

\rightarrow scale variations do not require re-computation of $b_{i}^{(n)}, c_{i}^{(n)}$

Amplitude Evaluation - Example

contributing integrals:

$$
\sqrt{s}=327.25 \mathrm{GeV}, \sqrt{-t}=170.05 \mathrm{GeV}, M^{2}=s / 4
$$

Amplitude Evaluation - Example

contributing integrals:

$$
\sqrt{s}=327.25 \mathrm{GeV}, \sqrt{-t}=170.05 \mathrm{GeV}, M^{2}=s / 4
$$

integral	value		error	time $[\mathrm{s}]$

Amplitude Evaluation - Example

contributing integrals:

$$
\sqrt{s}=327.25 \mathrm{GeV}, \sqrt{-t}=170.05 \mathrm{GeV}, M^{2}=s / 4
$$

Amplitude Evaluation - Example

contributing integrals:

$$
\sqrt{s}=327.25 \mathrm{GeV}, \sqrt{-t}=170.05 \mathrm{GeV}, M^{2}=s / 4
$$

Results - Amplitude

comparison to HEFT and expansion in $1 / m_{t}$

$$
\begin{gathered}
V_{N}=\left(d \hat{\sigma}_{\exp , N}^{\mathrm{virt}}+d \hat{\sigma}_{\exp , N}^{\mathrm{LO}}(\epsilon) \otimes I\right) \frac{d \hat{\sigma}^{\mathrm{LO}}(\epsilon)}{d \hat{\sigma}_{\exp , N}^{\mathrm{LO}}(\epsilon)} \\
d \hat{\sigma}_{\exp , N}=\sum_{\rho=0}^{N} d \hat{\sigma}^{(\rho)}\left(\frac{\Lambda}{m_{t}}\right)^{2 \rho} \\
\Lambda \in\left\{\sqrt{\hat{s}}, \sqrt{\hat{t}}, \sqrt{\hat{u}}, m_{h}\right\} \\
V_{N}^{\prime}=V_{N} \cdot \frac{B}{B_{N}}
\end{gathered}
$$

$\mathrm{V}_{\mathrm{N} \geq 4}$: thanks to J. Hoff

Results - Cross Section

LHC@14TeV

$$
\sigma^{N L O}=32.91_{-13 \%}^{+14 \%} \mathrm{fb} \pm 0.3 \% \text { (stat.) } \pm 0.1 \% \text { (int.) }
$$

Born-improved HEFT: $\quad \sigma_{H E F T}^{N L O}=38.32_{-15 \%}^{+18 \%} \mathrm{fb}$

$$
\text { LO: } \quad \sigma^{L O}=19.85_{-21 \%}^{+28 \%} \mathrm{fb}
$$

Results - Cross Section

New in arXiv 1608.xxxx

- results @ 100 TeV

finite m_{t} effects pronounced compared to 14 TeV results

Results - Cross Section

New in arXiv 1608.xxxx

- modified Higgs self-interaction: $g_{h h h}=\lambda \cdot g_{h h h}^{S M}$

> destructive interference
> of Δ and \square contributions
> for $m_{h h}=m_{h} \sqrt{1+3 \lambda}$

Results - Combination with NNLOHEFT

de Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev `16
first attempt to combine $\mathrm{NLO}_{\text {full }}$ with $\mathrm{NNLO}_{\text {heft }}$
NLO-improved NNLO HEFT:

$$
\frac{\mathrm{d} \sigma_{\mathrm{NLO}}^{\text {full }}}{\mathrm{d} m_{h h}} \cdot \frac{\mathrm{~d} \sigma_{\mathrm{NNLO}}^{\mathrm{HEFT}} / \mathrm{d} m_{h h}}{\mathrm{~d} \sigma_{\mathrm{NLO}}^{\mathrm{HEFT}} / \mathrm{d} m_{h h}}
$$

Higgs pair production at NLO

- full m_{t} dependence
- significant deviations from Born-improved HEFT
- reduce cross section by 14% relative to Born-improved HEFT
\rightarrow relevant contribution to cross section
- numerical integration of loop integrals using SecDec
- new interface to amplitude code
- dynamically adjust \#sampling points
- Quasi Monte Carlo

First step towards automated 2-loop calculations using GoSam-2L

Backup

scaling behavior

modified Higgs self-interactions

modified Higgs self-interactions

Checks

Real Emission / Subtraction Terms

- Independence of dipole-cut α parameter Nagy `03
- Agreement with Maltoni, Vryonidou, Zaro `14

Virtual Corrections

- Two calculations of amplitude up to reduction
- Amplitude result invariant under $t \leftrightarrow u$
- Pole cancellation
- Mass renormalization using two methods: counter-term insertion vs. calculating $\mathrm{d} \mathcal{M}^{\mathrm{LO}} / \mathrm{d} m_{t}^{2}$ numerically
- Agreement of contributions $\mathrm{gg} \rightarrow \mathrm{H} \rightarrow \mathrm{HH}$ with SusHi
- Convergence of $1 / m_{T}$ expansion to full result where agreement is expected

Calculation of ov

- Importance sampling:

- Accuracy goal: - 3% for form factor F_{1}
- $5-20 \%$ for form factor F_{2} (depending on F_{2} / F_{1})
- Run time: (gpu time)
- 80 min - 2 d (今, wall-clock limit)
- median: 2h

Grigo, Hoff, Steinhauser `15

Grigo, Hoff, Steinhauser `15

Differential Cross Section

Slawinska, van den Wollenberg, van Eijk, Bentvelsen `14

NNLO and NNLL results

de Florian, Mazzitelli `15

$\mu_{0}=Q$	NNLO (fb)	scale unc. (\%)	NNLL (fb)	scale unc. (\%)	PDF unc. (\%)	PDF+ α_{S} unc. (\%)
8 TeV	9.92	$+9.3-10$	10.8	$+5.4-5.9$	$+5.6-6.0$	$+9.3-9.2$
13 TeV	34.3	$+8.3-8.9$	36.8	$+5.1-6.0$	$+4.0-4.3$	$+7.7-7.5$
14 TeV	40.9	$+8.2-8.8$	43.7	$+5.1-6.0$	$+3.8-4.0$	$+7.5-7.3$
33 TeV	247	$+7.1-7.4$	259	$+5.0-6.1$	$+2.2-2.8$	$+6.1-6.1$
100 TeV	1660	$+6.8-7.1$	1723	$+5.2-6.1$	$+2.1-3.0$	$+5.7-5.8$
$\mu_{0}=Q / 2$	NNLO (fb)	scale unc. (\%)	NNLL (fb)	scale unc. $(\%)$	PDF unc. (\%)	PDF $+\alpha_{\text {S }}$ unc. (\%)
8 TeV	10.8	$+5.7-8.5$	11.0	$+4.0-5.6$	$+5.8-6.1$	$+9.6-9.3$
13 TeV	37.2	$+5.5-7.6$	37.4	$+4.2-5.8$	$+4.1-4.3$	$+7.8-7.6$
14 TeV	44.2	$+5.5-7.6$	44.5	$+4.2-5.9$	$+3.9-4.1$	$+7.6-7.4$
33 TeV	264	$+5.3-6.6$	265	$+4.6-6.1$	$+2.4-2.7$	$+6.3-6.1$
100 TeV	1760	$+5.3-6.7$	1762	$+4.9-6.4$	$+2.2-3.1$	$+6.2-7.0$

Analytically known integrals

3-point, 1 off-shell leg

Spira, Djouadi et al. `93, ` 95
Bonciani, Mastrolia `03, `04
Anastasiou, Beerli et al. `06
\rightarrow HPLs

3-point, 2 off-shell leg

Gehrmann, Guns, Kara ` 15
\rightarrow generalized HPLs, 12 letters

Amplitude Structure

Form factors are sums of rational functions multiplied by integrals that depend on ratios of the scales $s, t, m_{h}^{2}, m_{t}^{2}$ and the arbitrary scale M^{2}

$$
\begin{aligned}
F^{(L)}= & \sum_{i}\left[\left(\sum_{j} C_{i, j}^{(L)} \epsilon^{j}\right) \cdot\left(\sum_{k} I_{i, k}^{(L)} \epsilon^{k}\right)\right] \\
= & \epsilon^{-2}\left[C_{1,-2}^{(L)} \cdot I_{1,0}^{(L)}+C_{1,-1}^{(L)} \cdot I_{1,-1}^{(L)}+\ldots\right] \\
& +\epsilon^{-1}\left[C_{1,-1}^{(L)} \cdot I_{1,0}^{(L)}+\ldots\right]+\ldots \\
& \text { compute only once }
\end{aligned}
$$

Additionally, all L-loop form factors are computed simultaneously without re-evaluating common integrals

Note: $g g \rightarrow H H$ is a loop induced process, real subtraction and mass factorisation contained in I, P, K operators (not discussed here)

Catani, Seymour 96
Slide: Stephen Jones — L\&L 2016

Phase-Space Sampling

Phase-space implemented by hand

 limited to 2-3 w/ 2 massive particles Events for virtual:1) VEGAS algorithm applied to LO matrix element $\mathcal{O}(100 k)$ events computed
2) Using LO events unweighted events generated using accept/reject method $\mathcal{O}(30 k)$ events remain
3) Randomly select 666 Events (woops), compute at NLO, exclude 1

Phase-Space Point Distribution

Note: No grids used either for integrals or phase-space

