Factorization and Resummation for Jet Processes

Matthias Neubert
Mainz Institute for Theoretical Physics (MITP)
Johannes Gutenberg University Mainz
LoopFest 2016, Buffalo NY, 16 August 2016

In collaboration with T. Becher, L. Rothen \& Ding Yu Shao (PRL 116 (2016) 192001 \& arXiv:1605.02737)

Non-global logarithms (NGLs)

(Dasgupta \& Salam 2001,2002)

Observables which are insensitive to emissions into certain regions of phase space involve NGLs not captured by the usual resummation formula:
GLS : $\exp \left[-4 C_{F} \Delta \eta \int_{\alpha_{s}\left(Q_{\Omega}\right)}^{\alpha_{S}^{(Q)}} \frac{d \alpha}{\beta(\alpha)} \frac{\alpha}{2 \pi}\right]=1+4 \frac{\alpha_{s}}{2 \pi} C_{F} \Delta \eta \ln \frac{Q_{\Omega}}{Q}$

$$
+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\left(8 C_{F}^{2} \Delta \eta^{2}-\frac{22}{3} C_{F} C_{A} \Delta \eta+\frac{8}{3} C_{F} T_{F} n_{f} \Delta \eta\right) \ln ^{2} \frac{Q_{\Omega}}{Q}
$$

NGLs :

$$
\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} C_{F} C_{A}\left[-\frac{2 \pi^{2}}{3}+4 \operatorname{Li}_{2}\left(e^{-2 \Delta \eta}\right)\right] \ln ^{2} \frac{Q_{\Omega}}{Q}
$$

Leading-log resummation

Banfi, Marchesini \& Smye 2002

- The leading logarithms arise from a configuration in which the emitted gluons are strongly ordered:

$$
E_{1} \gg E_{2} \gg \cdots \gg E_{m}
$$

- In the large- N_{c} limit, multi-gluon emission amplitudes become simple:

$$
N_{c}^{m} g^{2 m} \sum_{(1 \cdots m)} \frac{p_{a} \cdot p_{b}}{\left(p_{a} \cdot p_{1}\right)\left(p_{1} \cdot p_{2}\right) \cdots\left(p_{m} \cdot p_{b}\right)}
$$

- Based on this structure, Banfi, Marchesini \& Smye derived an integro-differential equation for resuming NG logarithms at LL level in the large- N_{c} limit:

BMS equation: $\quad \partial_{L} G_{a b}(L)=\int \frac{d \Omega_{j}}{4 \pi} W_{a b}^{j}\left[\Theta_{i n}^{n \bar{n}}(j) G_{a j}(L) G_{j b}(L)-G_{a b}(L)\right]$

Some recent progress

- Resummation of LL NGLs beyond large N_{c} Hatta Ueda '13 + Hagiwara '15;
- Fixed-order results:
- two-loop hemisphere soft function Kelley, Schwartz, Schabinger \& Zhu '11; Horning, Lee, Stewart, Walsh \& Zuberi '11
- with jet-cone Kelley, Schwartz, Schabinger \& Zhu '11; von Manteuffel, Schabinger \& Zhu '13
- LL NGLs (5-loop large N_{c} \& 4-loop finite N_{c}) Schwartz, Zhu '14; Delenda, Khelifa-Kerfa '15
- Color density matrix (two-loop anomalous dimension) Caron-Huot '15
- Expansion in dressed gluons Larkoski, Moult \& Neill '15; Neill '15; Laroski, Moult '15
- Avoid NGLs Dasgupta, Fregoso, Marzani \& Powling '13; Dasgupta, Fregoso, Marzani \& Salam '13; Larkoski, Marzani, Soyez \& Thaler '14; Frye, Larkoski, Matthew \& Yan '16;

Sterman-Weinberg dijets

(Sterman \& Weinberg 1977)

$$
\frac{\sigma(\beta, \delta)}{\sigma_{0}}=1+\frac{\alpha_{s}}{3 \pi}\left[-16 \ln \delta \ln \beta-12 \ln \delta+10-\frac{4 \pi^{2}}{3}\right]
$$

IR finite, but problems for small β, δ

- Large logs can spoil perturbative expansion
- Scale choice?

$$
\mu=Q, Q \beta, Q \delta, Q \beta \delta ?
$$

NGLs in jet observables

Jet observables involve NGLs because they are insensitive to emissions inside the cone

$$
\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} C_{F} C_{A}\left(-\frac{2 \pi^{2}}{3}\right) \ln ^{2} \beta
$$

These types of logarithm do not exponentiate in the usual way

EFT for Sterman-Weinberg dijets

(Becher, MN, Rothen \& Shao, PRL 116 (2016) 192001)

$$
p \sim\left(n \cdot p, \bar{n} \cdot p, \vec{p}_{\perp}\right)
$$

One-loop region analysis

$$
\begin{aligned}
\text { Hard } & \Delta \sigma_{h}=\frac{\alpha_{s} C_{F}}{4 \pi} \sigma_{0}\left(\frac{\mu}{Q}\right)^{2 \epsilon}\left(-\frac{4}{\epsilon^{2}}-\frac{6}{\epsilon}+\frac{7 \pi^{2}}{3}-16\right) \\
\text { Collinear } & \Delta \sigma_{c+\bar{c}}=\frac{\alpha_{s} C_{F}}{4 \pi} \sigma_{0}\left(\frac{\mu}{Q \delta}\right)^{2 \epsilon}\left(\frac{4}{\epsilon^{2}}+\frac{6}{\epsilon}+c_{0}\right)
\end{aligned}
$$

"Soft" $\quad \Delta \sigma_{s}=\frac{\alpha_{s} C_{F}}{4 \pi} \sigma_{0}\left(\frac{\mu}{Q \beta}\right)^{2 \epsilon}\left(\frac{8}{\epsilon} \ln \delta-8 \ln ^{2} \delta-\frac{2 \pi^{2}}{3}\right)$
(Cheung, Luke, Zuberi 2009......)

$$
\Delta \sigma^{\mathrm{tot}}=\frac{\alpha_{s} C_{F}}{4 \pi} \sigma_{0}\left(-16 \ln \delta \ln \beta-12 \ln \delta+c_{0}+\frac{5 \pi^{2}}{3}-16\right)
$$

Constant c_{0} depends on the definition of jet axis:

$$
\begin{array}{ll}
c_{0}=-3 \pi^{2}+26 & \text { (Sterman-We } \\
c_{0}=-5 \pi^{2} / 3+14+12 \ln 2 & \text { (thrust axis) }
\end{array}
$$

One-loop region analysis

Hard $\quad \Delta \sigma_{h}=\frac{\alpha_{s} C_{F}}{4 \pi} \sigma_{0}\left(\frac{\mu}{Q}\right)^{2 \epsilon}\left(-\frac{4}{\epsilon^{2}}-\frac{6}{\epsilon}+\frac{7 \pi^{2}}{3}-16\right)$
Collinear $\quad \Delta \sigma_{c+\bar{c}}=\frac{\alpha_{s} C_{F}}{4 \pi} \sigma_{0}\left(\frac{\mu}{Q \delta}\right)^{2 \epsilon}\left(\frac{4}{\epsilon^{2}}+\frac{6}{\epsilon}+c_{0}\right)$
Soft

$$
\Delta \sigma_{s}=\frac{\alpha_{s} C_{F}}{4 \pi} \sigma_{0}\left(\frac{\mu}{Q \beta}\right)^{2 \epsilon}\left(\frac{4}{\epsilon^{2}}-\pi^{2}\right)
$$

Coft

$$
\frac{\Delta \sigma_{t+\bar{t}}=\frac{\alpha_{s} C_{F}}{4 \pi} \sigma_{0}\left(\frac{\mu}{Q \delta \beta}\right)^{2 \epsilon}\left(-\frac{4}{\epsilon^{2}}+\frac{\pi^{2}}{3}\right)}{\Delta \sigma^{\mathrm{tot}}=\frac{\alpha_{s} C_{F}}{4 \pi} \sigma_{0}\left(-16 \ln \delta \ln \beta-12 \ln \delta+c_{0}+\frac{5 \pi^{2}}{3}-16\right)}
$$

Constant c_{0} depends on the definition of jet axis:

$$
\begin{array}{ll}
c_{0}=-3 \pi^{2}+26 & \text { (Sterman-We } \\
c_{0}=-5 \pi^{2} / 3+14+12 \ln 2 & \text { (thrust axis) }
\end{array}
$$

Soft radiation

Large-angle soft radiation off a jet of collinear particles does not resolve individual energetic patrons:

$$
\sum_{i} Q_{i} \frac{p_{i} \cdot \epsilon}{p_{i} \cdot k} \approx Q_{\mathrm{tot}} \frac{n \cdot \epsilon}{n \cdot k}
$$

But this approximation breaks down for soft radiation collinear to the jet!

$$
k^{\mu}=\omega n^{\mu}
$$

Typically this small region of phase space does not give an $\mathcal{O}(1)$ contribution. However, it does for non-global observables!

Factorization formula

First all-order factorization theorem for a non-global observable, achieving full scale separation!

Factorization formula

First all-order factorization theorem for a non-global observable, achieving full scale separation!
Note that the coft scale $\Lambda=Q \delta \tau$ can easily be 1 GeV , even if the collinear and soft scales are perturbative!

NNLO check

$$
\begin{aligned}
\widetilde{\sigma}(\tau, \delta)= & \sigma_{0} H(Q, \epsilon) \widetilde{S}(Q \tau, \epsilon)\left\langle\mathcal{J}_{1}\left(\left\{n_{1}\right\}, Q \delta, \epsilon\right) \otimes \widetilde{\mathcal{U}}_{1}\left(\left\{n_{1}\right\}, Q \delta \tau, \epsilon\right)\right. \\
& \left.+\mathcal{J}_{2}\left(\left\{n_{1}, n_{2}\right\}, Q \delta, \epsilon\right) \otimes \widetilde{\mathcal{U}}_{2}\left(\left\{n_{1}, n_{2}\right\}, Q \delta \tau, \epsilon\right)+\mathcal{J}_{3}\left(\left\{n_{1}, n_{2}, n_{3}\right\}, Q \delta, \epsilon\right) \otimes \mathbf{1}+\ldots\right\rangle^{2}
\end{aligned}
$$

NNLO check

$$
\begin{aligned}
& \frac{\sigma(\beta, \delta)}{\sigma_{0}}=1+\frac{\alpha_{s}}{2 \pi} A(\beta, \delta)+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} B(\beta, \delta)+\ldots \\
& B(\beta, \delta)=C_{F}^{2}\left[\left(32 \ln ^{2} \beta+48 \ln \beta+18-\frac{16 \pi^{2}}{3}\right) \ln ^{2} \delta+\left(-2+10 \zeta_{3}-12 \ln ^{2} 2+4 \ln 2\right) \ln \beta\right. \\
& \left.+\left((8-48 \ln 2) \ln \beta+\frac{9}{2}+2 \pi^{2}-24 \zeta_{3}-36 \ln 2\right) \ln \delta+c_{2}^{F}\right] \\
& +C_{F} C_{A}\left[\left(\frac{44 \ln \beta}{3}+11\right) \ln ^{2} \delta-\frac{2 \pi^{2}}{3} \ln ^{2} \beta+\left(\frac{8}{3}-\frac{31 \pi^{2}}{18}-4 \zeta_{3}-6 \ln ^{2} 2-4 \ln 2\right) \ln \beta\right. \\
& \left.+\left(\frac{44 \ln ^{2} \beta}{3}+\left(-\frac{268}{9}+\frac{4 \pi^{2}}{3}\right) \ln \beta-\frac{57}{2}+12 \zeta_{3}-22 \ln 2\right) \ln \delta+c_{2}^{A}\right] \\
& +C_{F} T_{F} n_{f}\left[\left(-\frac{16 \ln \beta}{3}-4\right) \ln ^{2} \delta+\left(-\frac{16}{3} \ln ^{2} \beta+\frac{80 \ln \beta}{9}+10+8 \ln 2\right) \ln \delta\right. \\
& \left.+\left(-\frac{4}{3}+\frac{4 \pi^{2}}{9}\right) \ln \beta+c_{2}^{f}\right] .
\end{aligned}
$$

- Consistent with EVENT2

NNLO check

$$
\begin{aligned}
& \frac{\sigma(\beta, \delta)}{\sigma_{0}}=1+\frac{\alpha_{s}}{2 \pi} A(\beta, \delta)+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} B(\beta, \delta)+\ldots \\
& B(\beta, \delta)=C_{F}^{2}\left[\left(32 \ln ^{2} \beta+48 \ln \beta+18-\frac{16 \pi^{2}}{3}\right) \ln ^{2} \delta+\left(-2+10 \zeta_{3}-12 \ln ^{2} 2+4 \ln 2\right) \ln \beta\right. \\
& \left.+\left((8-48 \ln 2) \ln \beta+\frac{9}{2}+2 \pi^{2}-24 \zeta_{3}-36 \ln 2\right) \ln \delta+c_{2}^{F}\right] \\
& +C_{F} C_{A}\left[\left(\frac{44 \ln \beta}{3}+11\right) \ln ^{2} \delta-\frac{2 \pi^{2}}{3} \ln ^{2} \beta\right]\left(\frac{8}{3}-\frac{31 \pi^{2}}{18}-4 \zeta_{3}-6 \ln ^{2} 2-4 \ln 2\right) \ln \beta \\
& \left.+\left(\frac{44 \ln ^{2} \beta}{3}+\left(-\frac{268}{9}+\frac{4 \pi}{3}\right) \ln \beta-\frac{57}{2}+12 \zeta_{3}-22 \ln 2\right) \ln \delta+c_{2}^{A}\right] \\
& +C_{F} T_{F} n_{f}\left[\left(-\frac{16 \ln \beta}{3}-4\right) \ln ^{2} \delta+\left(-\frac{16}{3} \ln ^{2} \beta+\frac{80 \ln \beta}{9}+10+8 \ln 2\right) \ln \delta\right. \\
& \left.+\left(-\frac{4}{3}+\frac{4 \pi^{2}}{9}\right) \ln \beta+c_{2}^{f}\right] . \\
& \text { Leading NGL }
\end{aligned}
$$

- Consistent with EVENT2

EFT for interjet energy flow

 (Becher, MN, Rothen \& Shao 1605.02737)
$\Delta \eta=-2 \ln \delta$

Factorization

- Hard parton \rightarrow collinear fields $\Phi_{i} \in\left\{\chi_{i}, \bar{\chi}_{i}, \mathcal{A}_{i \perp}^{\mu}\right\}$ along $n_{i}^{\mu}=\left(1, \vec{n}_{i}\right)$
- Performing SCET decoupling transformation: $\Phi_{i}=\boldsymbol{S}_{i}\left(n_{i}\right) \Phi_{i}^{(0)}$

$$
\boldsymbol{S}_{i}\left(n_{i}\right)=\mathbf{P} \exp \left(i g_{s} \int_{0}^{\infty} d s n_{i} \cdot A_{s}^{a}\left(s n_{i}\right) \boldsymbol{T}_{i}^{a}\right)
$$

- The operator for the emission from an amplitude with m hard partons:

hard scattering amplitude with m particles (vector in color space)

$$
S_{1}\left(n_{1}\right) S_{2}\left(n_{2}\right) \ldots S_{m}\left(n_{m}\right)\left|\mathcal{M}_{m}(\{p\})\right\rangle
$$

soft Wilson lines along the directions of the energetic particles (color matrices)

Factorization

- Then the cross section can be written in factorized form as:

$$
\sigma(\beta, \delta)=\sum_{m=2}^{\infty}\left\langle\mathcal{H}_{m}(\{\underline{n}\}, Q, \delta) \otimes \mathcal{S}_{m}(\{\underline{n}\}, Q \beta, \delta)\right\rangle
$$

- We define the squared matrix element of the soft operator as:

$$
\mathcal{S}_{m}(\{\underline{n}\}, Q \beta, \delta)=\int_{X}\langle 0| S_{1}^{\dagger}\left(n_{1}\right) \ldots S_{m}^{\dagger}\left(n_{m}\right)\left|X_{s}\right\rangle\left\langle X_{s}\right| S_{1}\left(n_{1}\right) \ldots S_{m}\left(n_{m}\right)|0\rangle \theta\left(Q \beta-2 E_{\text {out }}\right)
$$

- The hard functions are obtained by integrating over the energies of the hard particles, while keeping their direction fixed:

$$
\mathcal{H}_{m}(\{\underline{n}\}, Q, \delta)=\frac{1}{2 Q^{2}} \sum_{\text {spins }} \prod_{i=1}^{m} \int \frac{d \omega_{i} \omega_{i}^{d-3}}{(2 \pi)^{d-2}}\left|\mathcal{M}_{m}\right\rangle\left\langle\mathcal{M}_{m}\right| \delta\left(Q-\sum_{i=1}^{m} \omega_{i}\right) \delta^{d-1}\left(\vec{p}_{\mathrm{tot}}\right) \Theta_{\mathrm{in}}^{n \bar{n}}(\{\underline{p}\})
$$

- \otimes indicates integration over the direction of the energetic partons:

$$
\mathcal{H}_{m}(\{\underline{n}\}, Q, \delta) \otimes \mathcal{S}_{m}(\{\underline{n}\}, Q \beta, \delta)=\prod_{i=1}^{m} \int \frac{d \Omega\left(n_{i}\right)}{4 \pi} \mathcal{H}_{m}(\{\underline{n}\}, Q, \delta) \mathcal{S}_{m}(\{\underline{n}\}, Q \beta, \delta)
$$

One-loop coefficient vs. EVENT2

$$
A(\beta, \delta)=C_{F}\left[-8 \ln \delta \ln \beta-1+6 \ln 2-6 \ln \delta-6 \delta^{2}+\left(\frac{9}{2}-6 \ln 2\right) \delta^{4}-4 \mathrm{Li}_{2}\left(-\delta^{2}\right)+4 \mathrm{Li}_{2}\left(\delta^{2}\right)\right]
$$

Two-loop coefficient

$$
\begin{aligned}
& B(\beta, \delta)=C_{F}^{2} B_{F}+C_{F} C_{A} B_{A}+C_{F} T_{F} n_{f} B_{f} \\
& B_{A}= {\left[\frac{44}{3} \ln \delta-\frac{2 \pi^{2}}{3}+4 \operatorname{Li}_{2}\left(\delta^{4}\right)\right] \ln ^{2} \beta+\left[\frac{4}{3\left(1-\delta^{4}\right)}-\frac{16 \ln \delta}{3\left(1-\delta^{4}\right)}+\frac{16 \ln \delta}{3\left(1-\delta^{4}\right)^{2}}\right.} \\
&-\frac{4}{3} \ln ^{3}\left(1-\delta^{2}\right)-\frac{20}{3} \ln ^{3}\left(1+\delta^{2}\right)+32 \ln \delta \ln ^{2}\left(1-\delta^{2}\right)-4 \ln \left(1+\delta^{2}\right) \ln ^{2}\left(1-\delta^{2}\right) \\
&-4 \ln ^{2}\left(1+\delta^{2}\right) \ln \left(1-\delta^{2}\right)+64 \ln \delta \ln ^{2}\left(1+\delta^{2}\right)-64 \ln ^{2} \delta \ln \left(1+\delta^{2}\right) \\
&+\frac{88}{3} \ln \delta \ln \left(1-\delta^{2}\right)-\frac{16}{3} \pi^{2} \ln \left(1-\delta^{2}\right)+44 \ln \delta \ln \left(1+\delta^{2}\right)+\frac{16}{3} \pi^{2} \ln \left(1+\delta^{2}\right) \\
&+\frac{44 \ln ^{2} \delta}{3}-\frac{16}{3} \pi^{2} \ln \delta-\frac{268 \ln \delta}{9}+\frac{88 \operatorname{Li}_{2}\left(\delta^{4}\right)}{3}-4 \operatorname{Li}_{3}\left(\delta^{4}\right)+8 \operatorname{Li}_{3}\left(-\frac{\delta^{4}}{1-\delta^{4}}\right) \\
&+8 \ln 2 \operatorname{Li}_{2}\left(\delta^{4}\right)-\frac{88 \operatorname{Li}_{2}\left(\delta^{2}\right)}{3}-\frac{22}{3} \operatorname{Li}_{2}\left(\frac{1}{1+\delta^{2}}\right)+\frac{22}{3} \operatorname{Li}_{2}\left(\frac{\delta^{2}}{1+\delta^{2}}\right)+32 \operatorname{Li}_{3}\left(1-\delta^{2}\right) \\
&+32 \operatorname{Li}_{3}\left(\frac{\delta^{2}}{1+\delta^{2}}\right)+32 \ln \left(1-\delta^{2}\right) \operatorname{Li}_{2}\left(\delta^{2}\right)+32 \ln \delta \operatorname{Li}_{2}\left(\delta^{2}\right)-32 \ln \left(1+\delta^{2}\right) \operatorname{Li}_{2}\left(\delta^{2}\right) \\
&+32 \ln \delta \operatorname{Li}_{2}\left(\frac{1}{1+\delta^{2}}\right)-32 \ln \left(1+\delta^{2}\right) \operatorname{Li}_{2}\left(\frac{1}{1+\delta^{2}}\right)-32 \ln \delta \operatorname{Li}_{2}\left(\frac{\delta^{2}}{1+\delta^{2}}\right) \\
&+32 \ln \left(1+\delta^{2}\right) \operatorname{Li}_{2}\left(\frac{\delta^{2}}{1+\delta^{2}}\right)-8 \ln \left(1-\delta^{2}\right) \operatorname{Li}_{2}\left(\delta^{4}\right)+8 \ln \left(1+\delta^{2}\right) \operatorname{Li}_{2}\left(\delta^{4}\right)-24 \zeta_{3} \\
&\left.-\frac{2}{3}-\frac{4}{3} \pi^{2} \ln 2-M_{A}^{[1]}(\delta)\right] \ln \beta+c_{2}^{A}(\delta)
\end{aligned}
$$

M. Neubert: Factorization and Resummation for Jet Processes

Two-loop coefficient

Leading NGL $B(\beta, \delta)=C_{F}^{2} B_{F}+C_{F} C_{A} B_{A}+C_{F} T_{F} n_{f} B_{f}$

$$
\begin{aligned}
B_{A}= & {\left[\frac{44}{3} \ln \delta \frac{2 \pi^{2}}{3}+4 \operatorname{Li}_{2}\left(\delta^{4}\right) \ln ^{2} \beta+\left[\frac{4}{3\left(1-\delta^{4}\right)}-\frac{16 \ln \delta}{3\left(1-\delta^{4}\right)}+\frac{16 \ln \delta}{3\left(1-\delta^{4}\right)^{2}}\right.\right.} \\
& -\frac{4}{3} \ln ^{3}\left(1-\delta^{2}\right)-\frac{20}{3} \ln ^{3}\left(1+\delta^{2}\right)+32 \ln \delta \ln ^{2}\left(1-\delta^{2}\right)-4 \ln \left(1+\delta^{2}\right) \ln ^{2}\left(1-\delta^{2}\right) \\
& -4 \ln ^{2}\left(1+\delta^{2}\right) \ln \left(1-\delta^{2}\right)+64 \ln \delta \ln ^{2}\left(1+\delta^{2}\right)-64 \ln ^{2} \delta \ln \left(1+\delta^{2}\right) \\
& +\frac{88}{3} \ln \delta \ln \left(1-\delta^{2}\right)-\frac{16}{3} \pi^{2} \ln \left(1-\delta^{2}\right)+44 \ln \delta \ln \left(1+\delta^{2}\right)+\frac{16}{3} \pi^{2} \ln \left(1+\delta^{2}\right) \\
& +\frac{44 \ln ^{2} \delta}{3}-\frac{16}{3} \pi^{2} \ln \delta-\frac{268 \ln \delta}{9}+\frac{88 \operatorname{Li}_{2}\left(\delta^{4}\right)}{3}-4 \operatorname{Li}_{3}\left(\delta^{4}\right)+8 \operatorname{Li}_{3}\left(-\frac{\delta^{4}}{1-\delta^{4}}\right) \\
& +8 \ln 2 \operatorname{Li}_{2}\left(\delta^{4}\right)-\frac{88 \operatorname{Li}_{2}\left(\delta^{2}\right)}{3}-\frac{22}{3} \operatorname{Li}_{2}\left(\frac{1}{1+\delta^{2}}\right)+\frac{22}{3} \operatorname{Li}_{2}\left(\frac{\delta^{2}}{1+\delta^{2}}\right)+32 \operatorname{Li}_{3}\left(1-\delta^{2}\right) \\
& +32 \operatorname{Li}_{3}\left(\frac{\delta^{2}}{1+\delta^{2}}\right)+32 \ln \left(1-\delta^{2}\right) \operatorname{Li}_{2}\left(\delta^{2}\right)+32 \ln \delta \operatorname{Li}_{2}\left(\delta^{2}\right)-32 \ln \left(1+\delta^{2}\right) \operatorname{Li}_{2}\left(\delta^{2}\right) \\
& +32 \ln \delta \operatorname{Li}_{2}\left(\frac{1}{1+\delta^{2}}\right)-32 \ln \left(1+\delta^{2}\right) \operatorname{Li}_{2}\left(\frac{1}{1+\delta^{2}}\right)-32 \ln \delta \operatorname{Li}_{2}\left(\frac{\delta^{2}}{1+\delta^{2}}\right) \\
& +32 \ln \left(1+\delta^{2}\right) \operatorname{Li}_{2}\left(\frac{\delta^{2}}{1+\delta^{2}}\right)-8 \ln \left(1-\delta^{2}\right) \operatorname{Li}_{2}\left(\delta^{4}\right)+8 \ln \left(1+\delta^{2}\right) \operatorname{Li}_{2}\left(\delta^{4}\right)-24 \zeta_{3} \\
& \left.-\frac{2}{3}-\frac{4}{3} \pi^{2} \ln 2-M_{A}^{[1]}(\delta)\right] \ln \beta+c_{2}^{A}(\delta)
\end{aligned}
$$

M. Neubert: Factorization and Resummation for Jet Processes

Two-loop coefficient vs. EVENT2

Renormalization

- We renormalize the bare hard function as usual:

$$
\mathcal{H}_{m}(\{\underline{n}\}, Q, \delta, \epsilon)=\sum_{l=2}^{(M} \mathcal{H}_{l}(\{\underline{n}\}, Q, \delta, \mu) \boldsymbol{Z}_{l m}^{H}(\{\underline{n}\}, Q, \delta, \epsilon, \mu)
$$

$$
\text { e.g. } \mathcal{H}_{2}(\epsilon)=\mathcal{H}_{2}(\mu) \boldsymbol{Z}_{22}^{H}(\epsilon, \mu)
$$

$$
\mathcal{H}_{m} \sim \mathcal{O}\left(\alpha_{s}^{m-2}\right)
$$

$$
\mathcal{H}_{3}(\epsilon)=\mathcal{H}_{2}(\mu) \boldsymbol{Z}_{23}^{H}(\epsilon, \mu)+\mathcal{H}_{3}(\mu) \boldsymbol{Z}_{33}^{H}(\epsilon, \mu)
$$

- Z-factor has the structure:
$Z^{H}(\{\underline{n}\}, Q, \delta, \epsilon, \mu)=\left(\begin{array}{ccccc}Z_{22} & Z_{23} & Z_{24} & Z_{25} & \cdots \\ Z_{32} & Z_{33} & Z_{34} & Z_{35} & \cdots \\ Z_{Z_{22}} & Z_{43} & Z_{44} & Z_{45} & \cdots \\ Z_{52} & Z_{53} & Z_{54} & Z_{55} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right) \sim\left(\begin{array}{ccccc}1 & \alpha_{s} & \alpha_{s}^{2} & \alpha_{s}^{3} & \cdots \\ 0 & 1 & \alpha_{s} & \alpha_{s}^{2} & \cdots \\ 0 & 0 & 1 & \alpha_{s} & \cdots \\ 0 & 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right)$

Renormalization

- By consistency, matrix Z^{H} must render the soft function finite:

$$
\mathcal{S}_{l}(\{\underline{n}\}, Q \beta, \delta, \mu)=\sum_{m=l}^{@} \boldsymbol{Z}_{l m}^{H}\left(\left\{\underline{n}^{\prime}\right\}, Q, \delta, \epsilon, \mu\right) \hat{\otimes} \mathcal{S}_{m}\left(\left\{\underline{n}^{\prime}\right\}, Q \beta, \delta, \epsilon\right)
$$

- Have verified that z^{H} renormalizes the two-loop soft function:

$$
\mathcal{S}_{2}(\mu)=Z_{22}^{H} \mathcal{S}_{2}(\epsilon)+Z_{23}^{H} \hat{\otimes} \mathcal{S}_{3}(\epsilon)+Z_{24}^{H} \hat{\otimes} 1+\mathcal{O}\left(\alpha_{s}^{3}\right)
$$

and the general one-loop soft function:

$$
\begin{aligned}
\frac{\alpha_{s}}{4 \pi} \boldsymbol{z}_{m, m}^{(1)}(\{\underline{n}\}, Q, \delta, \epsilon, \mu) & +\frac{\alpha_{s}}{4 \pi} \int \frac{d \Omega\left(n_{m+1}\right)}{4 \pi} \boldsymbol{z}_{m, m+1}^{(1)}\left(\left\{\underline{n}, n_{m+1}\right\}, Q, \delta, \epsilon, \mu\right) \\
& +\mathcal{S}_{m}(\{\underline{n}\}, Q \beta, \delta, \epsilon)=\text { finite }
\end{aligned}
$$

Resummation

Therefore the resumed cross section reads:

$$
\sigma(\beta, \delta)=\sum_{l=2}^{\infty}\left\langle\boldsymbol{\mathcal { H }}_{l}\left(\{\underline{n}\}, Q, \delta, \mu_{h}\right) \otimes \sum_{m \geq l} \boldsymbol{U}_{l m}^{S}\left(\left\{\underline{n}^{\prime}\right\}, \delta, \mu_{s}, \mu_{h}\right) \hat{\otimes} \boldsymbol{\mathcal { S }}_{m}\left(\left\{\underline{n}^{\prime}\right\}, Q \beta, \delta, \mu_{s}\right)\right\rangle
$$

with the (formal) evolution matrix:

$$
\boldsymbol{U}^{S}\left(\{\underline{n}\}, \delta, \mu_{s}, \mu_{h}\right)=\mathbf{P} \exp \left[\int_{\mu_{s}}^{\mu_{h}} \frac{d \mu}{\mu} \mathbf{\Gamma}^{H}(\{\underline{n}\}, \delta, \mu)\right]
$$

The hard and soft matching scales are $\mu_{h} \sim Q$ and $\mu_{s} \sim Q \beta$; at these scales the hard and soft functions are free of large logs!

Leading-log resummation

A† LL level:

$$
\boldsymbol{S}^{T}=(1,1, \cdots, 1), \quad \mathcal{H}=\left(\sigma_{0}, 0, \cdots, 0\right), \quad \boldsymbol{\Gamma}^{(1)}=\left(\begin{array}{ccccc}
\boldsymbol{V}_{2} & \boldsymbol{R}_{2} & 0 & 0 & \cdots \\
0 & \boldsymbol{V}_{3} & \boldsymbol{R}_{3} & 0 & \cdots \\
0 & 0 & \boldsymbol{V}_{4} & \boldsymbol{R}_{4} & \cdots \\
0 & 0 & 0 & \boldsymbol{V}_{5} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

V_{m} : divergences of one-loop virtual m -leg amplitudes
R_{m} : divergences from additional real radiation

$$
\sigma_{\mathrm{LL}}(\delta, \beta)=\sigma_{0}\left\langle\boldsymbol{\mathcal { S }}_{2}\left(\{n, \bar{n}\}, Q \beta, \delta, \mu_{h}\right)\right\rangle=\sigma_{0} \sum_{m=2}^{\infty}\left\langle\boldsymbol{U}_{2 m}^{S}\left(\{\underline{n}\}, \delta, \mu_{s}, \mu_{h}\right) \hat{\otimes} \mathbf{1}\right\rangle
$$

The symbol $\hat{\otimes}$ indicates that one has to integrate over the additional directions present in the higher-multiplicity anomalous dimensions R_{m} and V_{m}

Leading-log expansion

Expand RG equation order by order:

$$
W_{i j}^{k}=\frac{n_{i} \cdot n_{j}}{n_{i} \cdot n_{k} n_{j} \cdot n_{k}}
$$

$$
\begin{aligned}
\boldsymbol{S}_{2}^{(1)}= & -\left(4 N_{c}\right) \int_{\Omega} \mathbf{3}_{\mathrm{Out}} W_{12}^{3} \\
\boldsymbol{S}_{2}^{(2)}= & \frac{1}{2!}\left(4 N_{c}\right)^{2} \int_{\Omega}\left[-\mathbf{3}_{\mathrm{In}} \mathbf{4}_{\mathrm{Out}}\left(P_{12}^{34}-W_{12}^{3} W_{12}^{4}\right)+\mathbf{3}_{\mathrm{Out}} \mathbf{4}_{\mathrm{Out}} W_{12}^{3} W_{12}^{4}\right] \\
\mathcal{S}_{2}^{(3)}= & \frac{1}{3!}\left(4 N_{c}\right)^{3} \int_{\Omega}\left[\mathbf{3}_{\mathrm{In}} \mathbf{4}_{\mathrm{Out}} \mathbf{5}_{\mathrm{Out}}\left[P_{12}^{34}\left(W_{13}^{5}+W_{32}^{5}+W_{12}^{5}\right)-2 W_{12}^{3} W_{12}^{4} W_{12}^{5}\right]\right. \\
& -\mathbf{3}_{\mathrm{In}} \boldsymbol{4}_{\mathrm{In}} \mathbf{5}_{\mathrm{Out}} W_{12}^{3}\left[\left(P_{13}^{45}-W_{13}^{4} W_{13}^{5}\right)+\left(P_{32}^{45}-W_{32}^{4} W_{32}^{5}\right)-\left(P_{12}^{45}-W_{12}^{4} W_{12}^{5}\right)\right] \\
& \left.-\mathbf{3}_{\mathrm{Out}} \mathbf{4}_{\mathrm{Out}} \mathbf{5}_{\mathrm{Out}} W_{12}^{3} W_{12}^{4} W_{12}^{5}\right]
\end{aligned}
$$

Agrees with order-by-order expansion of BMS equation:

$$
\partial_{L} G_{12}(L)=\int \frac{d \Omega_{j}}{4 \pi} W_{12}^{j}\left[\Theta_{\mathrm{in}}^{n \bar{n}}(j) G_{1 j}(L) G_{j 2}(L)-G_{12}(L)\right]
$$

Leading-log expansion

Leading-log resummation

LL evolution equation: $\frac{d}{d t} \mathcal{H}_{n}(t)=\mathcal{H}_{n}(t) V_{n}+\mathcal{H}_{n-1}(t) R_{n-1}$

$$
t=\int_{\alpha\left(\mu_{h}\right)}^{\alpha\left(\mu_{s}\right)} \frac{d \alpha}{\beta(\alpha)} \frac{\alpha}{4 \pi}
$$

Solution:

$$
\mathcal{H}_{n}(t)=\mathcal{H}_{n}\left(t_{1}\right) e^{\left(t-t_{1}\right) V_{n}}+\int_{t_{1}}^{t} d t^{\prime} \mathcal{H}_{n-1}\left(t^{\prime}\right) R_{n-1} e^{\left(t-t^{\prime}\right) V_{n}}
$$

This form is exactly what is implemented in a standard parton shower MC!

MC numerical results

(Becher \& Shao, in preparation)

Conclusion

- We have derived the first factorization formulae for NG observables: Sterman-Weinberge dijet cross section and interjet energy flow

$$
\widetilde{\sigma}=\sigma_{0} H \widetilde{S}\left[\sum_{m=1}^{\infty}\left\langle\mathcal{J}_{m} \otimes \tilde{\mathcal{U}}_{m}\right\rangle\right]^{2}
$$

$$
\sigma=\sum_{m}\left\langle\mathcal{H}_{m} \otimes \mathcal{S}_{m}\right\rangle
$$

- In both cases we have checked the factorization up to NNLO and reproduced the full QCD results
- All scales are separated \rightarrow RG evolution can be used to resum all large logarithms, including the NGLs
- We have applied MC methods to solve the associated RG equations at LL level (next step: NLL)
- Numerous possible applications: jet cross sections, jet substructure, jet veto, ...

Thank you!

Backup slides

Comparison to BMS

Consider real and virtual together, all collinear divergences drop out. Leading soft divergence obtained by the soft approximation for the emitted (real or virtual) gluon:

$$
\begin{aligned}
& \boldsymbol{V}_{m}=\boldsymbol{\Gamma}_{m, m}^{(1)}=-4 \sum_{(i j)} \frac{1}{2}\left(\boldsymbol{T}_{i, L} \cdot \boldsymbol{T}_{j, L}+\boldsymbol{T}_{i, R} \cdot \boldsymbol{T}_{j, R}\right) \int \frac{d \Omega\left(n_{k}\right)}{4 \pi} W_{i j}^{k}\left[\Theta_{\mathrm{in}}^{n \bar{n}}(k)+\Theta_{\text {out }}^{n \bar{n}}(k)\right] \\
& \boldsymbol{R}_{m}=\boldsymbol{\Gamma}_{m, m+1}^{(1)}=4 \sum_{(i j)} \boldsymbol{T}_{i, L} \cdot \boldsymbol{T}_{j, R} W_{i j}^{k} \Theta_{\mathrm{in}}^{n \bar{n}}(k)
\end{aligned}
$$

Virtual has the same form as the real-emission contribution, because the principal-value part of the propagator of the emission does not contribute.

Leading-log resummation

In the large- N_{c} limit, the color structure becomes trivial:

One-loop renormalization for the narrow-angle jet process

$$
\frac{1}{2} \mathcal{H}^{(1)} \cdot \mathbf{1}+\frac{1}{2} \widetilde{\mathcal{S}}^{(1)} \cdot \mathbf{1}+\boldsymbol{z}_{m, m}^{(1)}+\boldsymbol{z}_{m, m+1}^{(1)}+\widetilde{\boldsymbol{U}}_{m}^{(1)}=\mathrm{fin} .
$$

$$
\begin{aligned}
\tilde{\mathcal{U}}_{m}^{(1)}(\{\underline{n}\}, \epsilon)= & -\frac{1}{\epsilon} \sum_{(i j)} \boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}\left[\ln \left(1-\hat{\theta}_{i}^{2}\right)+\ln \left(1-\hat{\theta}_{j}^{2}\right)-\ln \left(1-2 \cos \phi_{j} \hat{\theta}_{i} \hat{\theta}_{j}+\hat{\theta}_{i}^{2} \hat{\theta}_{j}^{2}\right)\right] \\
& -\frac{2}{\epsilon} \sum_{i=1}^{l} \boldsymbol{T}_{0} \cdot \boldsymbol{T}_{i} \ln \left(1-\hat{\theta}_{i}^{2}\right)+\boldsymbol{T}_{0} \cdot \boldsymbol{T}_{0}\left(-\frac{2}{\epsilon^{2}}+\frac{4 L_{Q \tau \delta}}{\epsilon}\right)
\end{aligned}
$$

NNLO check

Jet function: \mathcal{J}_{2}

$\mathcal{J}_{2}^{(1)}\left(\hat{\theta}_{1}, \hat{\theta}_{2}, \phi_{2}, Q \delta, \epsilon\right)=C_{F} \delta\left(\phi_{2}-\pi\right) e^{-2 \epsilon L_{c}}$

$$
\begin{aligned}
\times\{ & \left(\frac{2}{\epsilon^{2}}+\frac{3}{\epsilon}+7-\frac{5 \pi^{2}}{6}+6 \ln 2\right) \delta\left(\hat{\theta}_{1}\right) \delta\left(\hat{\theta}_{2}\right)-\frac{4}{\epsilon} \delta\left(\hat{\theta}_{1}\right)\left[\frac{1}{\hat{\theta}_{2}}\right]_{+}+8 \delta\left(\hat{\theta}_{1}\right)\left[\frac{\ln \hat{\theta}_{2}}{\hat{\theta}_{2}}\right]_{+} \\
& +4 \frac{d y}{d \hat{\theta}_{2}}\left[\frac{1}{\hat{\theta}_{1}}\right]_{+} \frac{1+2 y+2 y^{2}}{(1+y)^{3}} \theta\left(\hat{\theta}_{1}-\hat{\theta}_{2}\right) \\
& \left.+4 \frac{d y}{d \hat{\theta}_{1}}\left[\frac{1}{\hat{\theta}_{2}}\right]_{+}\left(2\left[\frac{1}{y}\right]_{+}-\frac{4+5 y+2 y^{2}}{(1+y)^{3}}\right) \theta\left(\hat{\theta}_{2}-\hat{\theta}_{1}\right)+\mathcal{O}(\epsilon)\right\} 1
\end{aligned}
$$

$\tilde{\mathcal{U}}_{2}\left(\hat{\theta}_{1}, \hat{\theta}_{2}, \phi_{2}, Q \tau \delta, \epsilon\right)=1+\frac{\alpha_{0}}{4 \pi} e^{-2 \epsilon L_{t}}\left[C_{F} u_{F}\left(\hat{\theta}_{1}\right)+C_{A} u_{A}\left(\hat{\theta}_{1}, \hat{\theta}_{2}, \phi_{2}\right)\right] \mathbf{1}$

NNLO check

$$
\begin{aligned}
& \left\langle\mathcal{J}_{2}^{(1)} \otimes \widetilde{\mathcal{U}}_{2}^{(1)}\right\rangle=e^{-2 \epsilon\left(L_{c}+L_{t}\right)}\left(C_{F}^{2} M_{F}+C_{F} C_{A} M_{A}\right) \\
M_{F}= & -\frac{4}{\epsilon^{4}}-\frac{6}{\epsilon^{3}}+\frac{1}{\epsilon^{2}}\left(-14+\frac{2 \pi^{2}}{3}-12 \ln 2\right)+\frac{1}{\epsilon}\left(-26-\pi^{2}+10 \zeta_{3}-32 \ln 2\right) \\
& -52-\frac{10 \pi^{2}}{3}-27 \zeta_{3}+\frac{11 \pi^{4}}{30}-\frac{4}{3} \ln ^{4} 2-8 \ln ^{3} 2-4 \ln ^{2} 2+\frac{4 \pi^{2}}{3} \ln ^{2} 2 \\
& -52 \ln 2+4 \pi^{2} \ln 2-28 \zeta_{3} \ln 2-32 \operatorname{Li}_{4}\left(\frac{1}{2}\right), \\
M_{A}= & \frac{2 \pi^{2}}{3 \epsilon^{2}}+\frac{1}{\epsilon}\left(-2+\frac{\pi^{2}}{2}+12 \zeta_{3}+6 \ln ^{2} 2+4 \ln 2\right)-4+\frac{7 \pi^{2}}{6}-24 \zeta_{3}-\frac{\pi^{4}}{6}+\frac{8}{3} \ln ^{4} 2 \\
& -4 \ln ^{3} 2+6 \ln ^{2} 2-\frac{8 \pi^{2}}{3} \ln ^{2} 2-4 \ln 2+9 \pi^{2} \ln 2+56 \zeta_{3} \ln 2+64 \operatorname{Li}_{4}\left(\frac{1}{2}\right)
\end{aligned}
$$

