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Non-global logarithms (NGLs)
(Dasgupta & Salam 2001,2002)

Observables which are insensitive to emissions into certain regions of phase 
space involve NGLs not captured by the usual resummation formula:
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The subscript P on ΣΩ,P serves as a reminder that we have only taken into account primary
emissions and t is defined to be the following integral of αs,

t(QΩ, Q) =
1
2π

∫ Q/2

QΩ

dkt

kt
αs(kt) =

1
4πβ0

ln
αs(Q/2)
αs(QΩ)

, (2.6)

where the second equality holds at the one-loop level and β0 = (11CA − 2nf )/(12π).

3. Leading order calculation of non-global effects

As well as dealing with primary emissions, it is necessary to account also for contributions
from (secondary) emissions coherently radiated into Ω from large-angle soft-gluon ensem-
bles outside of Ω. We will denote the contribution from such non-global terms by the
function S(t), such that to SL accuracy

ΣΩ(t(QΩ, Q)) ≡ S(t)ΣΩ,P(t) . (3.1)

To start with, we calculate the leading order contribution to S, i.e. S2, where we define the
following series expansion for S:
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∆η

Figure 2: The kind of diagram to be con-
sidered for the calculation of S2 in the
case of a rapidity slice of width ∆η.

S(t) =
∑

n=2

Sntn . (3.2)

Since this kind of contribution only starts with sec-
ondary emissions, there is no S1 term. In the cal-
culation of S2, we shall be entitled to equate t with
αs
2π ln Q

2QΩ
.

The exact value of S2 depends on the geometry
of the patch Ω. Here we calculate it analytically
for the case where Ω is a slice in rapidity of width
∆η. The kind of diagram to be considered is shown in figure 2, where a and b are quarks
(they may be outgoing or incoming depending on whether for example we are dealing with
e+e− or DIS in the Breit frame) and 1 and 2 are gluons. We introduce the following
four-momenta

ka =
Q

2
(1, 0, 0, 1) , (3.3a)

kb =
Q

2
(1, 0, 0,−1) , (3.3b)

k1 = x1
Q

2
(1, 0, sin θ1, cos θ1) , (3.3c)

k2 = x2
Q

2
(1, sin θ2 sin φ, sin θ2 cos φ, cos θ2) , (3.3d)

where we have defined energy fractions x1,2 ≪ 1 for the two gluons. To our accuracy, we
can neglect the recoil of the hard particles against the soft gluons.
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Leading-log resummation
Banfi, Marchesini & Smye 2002

• The leading logarithms arise from a configuration in which the 
emitted gluons are strongly ordered:

• In the large-Nc limit, multi-gluon emission amplitudes become simple:

• Based on this structure, Banfi, Marchesini & Smye derived an 
integro-differential equation for resuming NG logarithms at LL level 
in the large-Nc limit:

E1 � E2 � · · · � Em

Nm
c g2m

X

(1···m)

pa · pb
(pa · p1)(p1 · p2) · · · (pm · pb)

@LGab(L) =

Z
d⌦j

4⇡
W j

ab

⇥
⇥nn̄

in (j)Gaj(L)Gjb(L)�Gab(L)
⇤

BMS equation:
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Some recent progress
• Resummation of LL NGLs beyond large Nc  Hatta Ueda ’13 + Hagiwara ’15;  

• Fixed-order results:
• two-loop hemisphere soft function  Kelley, Schwartz, Schabinger & Zhu ’11; 

Horning, Lee, Stewart, Walsh & Zuberi ’11 

• with jet-cone  Kelley, Schwartz, Schabinger & Zhu ’11;                           
von Manteuffel, Schabinger & Zhu ’13 

• LL NGLs (5-loop large Nc & 4-loop finite Nc)  Schwartz, Zhu ’14;       
Delenda, Khelifa-Kerfa ’15   

• Color density matrix (two-loop anomalous dimension)  Caron-Huot ’15  

• Expansion in dressed gluons  Larkoski, Moult & Neill ’15; Neill ’15;               
Laroski, Moult ’15

• Avoid NGLs  Dasgupta, Fregoso, Marzani & Powling ’13; Dasgupta, Fregoso, 
Marzani & Salam ’13; Larkoski, Marzani, Soyez & Thaler ’14; Frye, Larkoski, 
Matthew & Yan ’16; …
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Sterman-Weinberg dijets
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NGLs in jet observables

Jet observables involve NGLs 
because they are insensitive to 
emissions inside the cone

These types of logarithm do not 
exponentiate in the usual way

2E
out

< �Q
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EFT for Sterman-Weinberg dijets

� ⇠ ↵

2
⌧ 1

2E
out

< �Q ⌧ Q
QQ� n̄ · p

n · p

Q�

Q

Q��

Q��

pc ⇠ Q(�2, 1, �)

ps ⇠ Q�(1, 1, 1)

pt ⇠ Q�(�2, 1, �)

Q

Q

Q�

Q�

Q��2

Q��2

n̄ · p

n · p

Figure 2. Momentum regions relevant for narrow-angle jet production. The plot shows the scaling
of the light-cone components n · p and n̄ · p, and we assume that � < � (we use � ⇠ �2 in the
narrow jet case to ensure this condition). The meshed gray area shows the veto in the out-of-jet
region which forbids contributions from energetic modes. In the wide angle limit � ! 1, soft and
coft modes coincide and the collinear and hard scaling are the same.

2.2 Narrow-angle jets and coft radiation

In the narrow angle limit � ⌧ 1, in addition to hard and soft momentum modes, two more

momentum regions need to be included in our e↵ective theory. On the one hand, we need

the usual collinear modes to describe the energetic collimated radiation inside the jets

collinear: pc ⇠ Q (1, �2, �) ,

anti-collinear: pc̄ ⇠ Q (�2, 1, �) , (2.12)

but in addition, we need modes which describe small-angle soft radiation

coft: pt ⇠ Q� (1, �2, �) ,

anti-coft: pt̄ ⇠ Q� (�2, 1, �) . (2.13)

In Fig. 2 we show the corresponding momentum regions. One way to construct the e↵ective

theory containing these modes is to first match QCD onto standard SCET with collinear

and soft fields. In this step, one will match the QCD quark vector current onto the vector

current in the e↵ective theory. The relevant matching coe�cient CV (�Q2) contains all the

hard physics and one can decouple the soft field from the collinear ones, which yields the

standard two-Wilson-line soft function. In a next step, one splits the collinear field into

two submodes

Aµ
c ! Aµ

c +Aµ
t , Aµ

c̄ ! Aµ
c̄ +Aµ

t̄
, (2.14)
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Figure 3. Momentum modes and associated scales for wide-angle (left) and narrow-angle (right)
jet production.

right hemisphere can then be expanded around a common reference vector n and combined

using (2.6), and similarly for the soft Wilson lines in the left hemisphere. This yields the

same Wilson-line structure as in (2.19). Squaring the soft amplitudes yields

S(Q�)1 =

Z

Xs

X
h0|S†(n̄)S(n) |XsihXs|S†(n)S(n̄) |0i✓(Q� � 2EXs) . (2.32)

Because the soft radiation has parametrically large angle, it is always outside the jet and the

energy constraint is imposed on the total energy EXs . The coft function Um({nR}, Q��)

with m Wilson lines is given by

Um({nR}, Q��)

=

Z

Xt

X
h0|U †

0 (n̄)U
†
1 (n1) . . .U

†
m(nm) |XtihXt|U0(n̄) . . .Um(nm) |0i ✓(Q� � n̄ · p out) . (2.33)

The right-moving coft particles are always outside the left jet in the sense that the out-of-

jet constraint is always fulfilled after the multipole expansion, independent of the angle of

the coft particle. The momentum p out is therefore the total momentum outside the right

jet. The anti-coft function eUk has the Wilson line U0 along the n instead of the n̄ direction

and the constraint is placed on n · p out.

Putting these ingredients together, the cross section in Laplace space takes the form [38]

e�(⌧, �) = �0H(Q) eS(Q⌧)

" 1X

m=1

⌦Jm(Q�)⌦ eUm(Q�⌧)
↵
#2

, (2.34)

where we have used the fact that both jets give an identical contribution. In Figure 3

we show a pictorial representation of the structure of the factorization formula and the

di↵erent types of radiation relevant in both the wide-angle and narrow-jet cases.

2.3 Renormalization and resummation

The factorization theorems we have obtained involve operators with an arbitrary number of

Wilson lines, both in the wide-angle and narrow-jet case. We now discuss the renormaliza-

tion of these operators. The associated RG equations form the basis for the resummation

– 14 –

p ⇠ (n · p, n̄ · p, ~p?)
(Becher, MN, Rothen & Shao, PRL 116 (2016) 192001)

~n
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 One-loop region analysis

��h =
↵sCF

4⇡
�0

✓
µ

Q

◆2✏ ✓
� 4

✏2
� 6

✏
+

7⇡2

3
� 16

◆

��c+c̄ =
↵sCF

4⇡
�0

✓
µ

Q�

◆2✏ ✓ 4

✏2
+

6

✏
+ c0

◆

��s =
↵sCF

4⇡
�
0

✓
µ

Q�

◆
2✏ ✓ 4

✏2
� ⇡2

◆

��t+¯t =
↵sCF

4⇡
�
0

✓
µ

Q��

◆
2✏ ✓

� 4

✏2
+

⇡2

3

◆

��tot =
↵sCF

4⇡
�
0

✓
�16 ln � ln� + 12 ln � + c

0

+
5⇡2

3
� 16

◆

Hard

Collinear

Soft

Coft

Constant    depends on the definition of jet axis:

c0 = �3⇡2 + 26

c0 = �5⇡2/3 + 14 + 12 ln 2

c0

(Sterman-Weinberg)  

(thrust axis)

“Soft” ��s =
↵sCF

4⇡
�0

✓
µ

Q�

◆2✏ ✓8

✏
ln � � 8 ln2 � � 2⇡2

3

◆

(Cheung, Luke, Zuberi 2009……)

Sterman-Weinberg dijets

�(�, �)

�0
= 1 +

↵s

3⇡


�16 ln � ln� � 12 ln � + 10� 4⇡2

3

�

IR finite, but problems for small  ,

• Large log can spoil perturbative 
expansion!

• Scale choice?
µ = Q, Q�, Q�, Q�� ?

� �

(Sterman & Weinberg 1977)

↵

~n

2E
out

< �Q

� = tan
↵

2

M. Neubert: Factorization and Resummation for Jet Processes                 © Artwork by Ding Yu Shao 
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Soft radiation

Large-angle soft radiation off a jet of collinear particles does not resolve 
individual energetic patrons:

X

i

Qi
pi · ✏
pi · k

⇡ Q
tot

n · ✏
n · k

But this approximation breaks down for soft radiation collinear to the jet!

Typically this small region of phase space does not give an       contribution.
However, it does for non-global observables!

O(1)
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hard function

soft function

jet function with    partons at 
fixed direction

coft function with
  Wilson lines

integration over anglescolor trace

m

m

Factorization formula

e�(⌧, �) = �0 H(Q) eS(Q⌧)

" 1X

m=1

D
Jm(Q�)⌦ eUm(Q�⌧)

E#2

First all-order factorization theorem for a non-global observable, 
achieving full scale separation!

e�(⌧, �) =
Z 1

0
d� e��/(⌧e�E ) d�(�)

d�

Jm ⇠ O(↵m�1
s )
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Note that the coft scale Λ=Qδτ can easily be 1 GeV, even if 
the collinear and soft scales are perturbative!



NNLO check

e�(⌧, �) = �0 H(Q, ✏) eS(Q⌧, ✏)
⌦
J1({n1}, Q�, ✏)⌦ eU1({n1}, Q�⌧, ✏)

+J2({n1, n2}, Q�, ✏)⌦ eU2({n1, n2}, Q�⌧, ✏) +J3({n1, n2, n3}, Q�, ✏)⌦ 1+ . . .
↵2

n1

n2

n1

n2

n̄
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EFT for interjet energy flow
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• Hard parton -> collinear fields                      along 

• Performing SCET decoupling transformation:

• The operator for the emission from an amplitude with m hard partons: 

Factorization
�i 2 {�i, �̄i,Aµ

i?} nµ
i = (1,~ni)

�i = Si(ni)�
(0)
i

Si(ni) = P exp

✓
igs

Z 1

0
ds ni ·Aa

s(sni)T
a
i

◆

S1(n1)S2(n2) . . . Sm(nm)|Mm({p})iMm

soft Wilson lines along the directions of the 
energetic particles (color matrices)

hard scattering amplitude with m particles 
(vector in color space)
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Factorization
• Then the cross section can be written in factorized form as:

•  We define the squared matrix element of the soft operator as:

• The hard functions are obtained by integrating over the energies of 
the hard particles, while keeping their direction fixed:

•     indicates integration over the direction of the energetic partons: 
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One-loop coefficient vs. EVENT2
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Figure 10. Numerical comparison to results obtained using Event2. The upper panel shows the
coe�cient A and the lower panel shows the di↵erence �A between the two results.

Since we now count � ⇠ 1, this result holds for arbitrary values of �, up to terms suppressed

by powers of �. In Figure 10, we compare our analytical result for A(�, �) (red line) to the

numerical results obtained using Event2 (blue dotted). As it must be, the di↵erence �A

between the logarithmic terms and the full result go to zero at small values of ln� within

the numerical uncertainty of the Monte-Carlo integration. After combining all two-loop

ingredients one obtains the coe�cient B(�, �) at leading power in � as
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�
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(4.24)
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Two-loop coefficient

BA =


44

3
ln � � 2⇡2

3
+ 4Li2(�

4)

�
ln2 � +

"
4

3 (1� �4)
� 16 ln �

3 (1� �4)
+

16 ln �

3 (1� �4)2

�4

3
ln3

�
1� �2

�
� 20

3
ln3

�
1 + �2

�
+ 32 ln � ln2

�
1� �2

�
� 4 ln

�
1 + �2

�
ln2

�
1� �2

�

�4 ln2
�
1 + �2

�
ln

�
1� �2

�
+ 64 ln � ln2

�
1 + �2

�
� 64 ln2 � ln

�
1 + �2

�

+
88

3
ln � ln

�
1� �2

�
� 16

3
⇡2 ln

�
1� �2

�
+ 44 ln � ln

�
1 + �2

�
+

16

3
⇡2 ln

�
1 + �2

�

+
44 ln2 �

3
� 16

3
⇡2 ln � � 268 ln �

9
+

88Li2
�
�4
�

3
� 4Li3

�
�4
�
+ 8Li3

✓
� �4

1� �4

◆

+8 ln 2Li2
�
�4
�
�

88Li2
�
�2
�

3
� 22

3
Li2

✓
1

1 + �2

◆
+

22

3
Li2

✓
�2

1 + �2

◆
+ 32Li3

�
1� �2

�

+32Li3

✓
�2

1 + �2

◆
+ 32 ln

�
1� �2

�
Li2

�
�2
�
+ 32 ln � Li2

�
�2
�
� 32 ln

�
1 + �2

�
Li2

�
�2
�

+32 ln � Li2

✓
1

1 + �2

◆
� 32 ln

�
1 + �2

�
Li2

✓
1

1 + �2

◆
� 32 ln � Li2

✓
�2

1 + �2

◆

+32 ln
�
1 + �2

�
Li2

✓
�2

1 + �2

◆
� 8 ln

�
1� �2

�
Li2

�
�4
�
+ 8 ln

�
1 + �2

�
Li2

�
�4
�
� 24 ⇣3

�2

3
� 4

3
⇡2 ln 2�M [1]

A (�)
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ln� + cA2 (�),

B(�, �) = C2
FBF + CFCABA + CFTFnfBf
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Two-loop coefficient

BA =


44

3
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FBF + CFCABA + CFTFnfBfLeading NGL
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Two-loop coefficient vs. EVENT2

Figure 11. Numerical comparison to results obtained using Event2 generator. The upper panel
shows the coe�cient dB(�, �)/d ln�, as compared by Event2, and the lower panel shows the
di↵erence. Here we choose the cone size as ↵ = ⇡/4.
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�
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Bf =� 16 ln �

3
ln2 � +


� 8

3 (1� �4)
+

32 ln �

3 (1� �4)
� 32 ln �

3 (1� �4)2
� 32

3
ln

�
1� �2

�
ln �

� 32

3
ln
�
�2 + 1

�
ln � � 16

3
ln2 � +

80 ln �

9
� 16Li2

�
��2

�
�

32Li2
�
�2
�

3
+

4⇡2

9
+

4

3

#
ln�

+ cf2(�). (5.27)

Here we choose µ = Q for convenience. The quantities cF2 , c
A
2 and cf2 represent the unknown

constant terms, which are the function of �. In Figure 11 we compare dB/d ln� with

numerical predictions, which are consistent with each other in the small � region. This

shows that we have obtained the correct two-loop logarithmic structure for wide angle jet

process.

5.4 The small � limit

As a final check on the result, we will evaluate all two-loop bare ingredients in the small �

limit, and check that they fulfil factorisation formulae (2.19) and (2.22).

The hard function H2 is independent on the angle constraints, so it is the same as the

former expression for the arbitrary value of �. Therefore the factorisation formula (2.19)

– 28 –
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Renormalization
• We renormalize the bare hard function as usual:

 
   e.g.

• Z-factor has the structure:

Hm({n}, Q, �, ✏) =
mX

l=2

Hl({n}, Q, �, µ)ZH
lm({n}, Q, �, ✏, µ)

H2(✏) = H2(µ)Z
H
22(✏, µ)

H3(✏) = H2(µ)Z
H
23(✏, µ) +H3(µ)Z

H
33(✏, µ)

ZH({n}, Q, �, ✏, µ) =

0

BBBBB@

Z22 Z23 Z24 Z25 . . .
Z32 Z33 Z34 Z35 . . .
Z42 Z43 Z44 Z45 . . .
Z52 Z53 Z54 Z55 . . .
...

...
...

...
. . .

1

CCCCCA
⇠

0

BBBBB@

1 ↵s ↵2
s ↵3

s . . .
0 1 ↵s ↵2

s . . .
0 0 1 ↵s . . .
0 0 0 1 . . .
...

...
...

...
. . .

1

CCCCCA

Hm ⇠ O(↵m�2
s )
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Renormalization

S2(µ) = ZH
22 S2(✏) + ZH

23 ⌦̂S3(✏) + ZH
24 ⌦̂ 1 +O(↵3

s)

and the general one-loop soft function:

↵s

4⇡
z(1)
m,m({n}, Q, �, ✏, µ) +

↵s

4⇡

Z
d⌦(nm+1)

4⇡
z(1)
m,m+1({n, nm+1}, Q, �, ✏, µ)

+ Sm({n}, Q�, �, ✏) = finite

• By consistency, matrix ZH must render the soft function finite:

Sl({n}, Q�, �, µ) =
1X

m=l

ZH
lm({n0}, Q, �, ✏, µ) ⌦̂Sm({n0}, Q�, �, ✏)
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• Have verified that ZH renormalizes the two-loop soft function:



US
({n}, �, µs, µh) = P exp

 Z µh

µs

dµ

µ
�H

({n}, �, µ)
�

with the (formal) evolution matrix:

Therefore the resumed cross section reads:

�(�, �) =
1X

l=2

⌦Hl({n}, Q, �, µh)⌦
X

m�l

US
lm({n0}, �, µs, µh) ⌦̂Sm({n0}, Q�, �, µs)

↵
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Resummation

The hard and soft matching scales are          and           ; at 
these scales the hard and soft functions are free of large logs!

µh ⇠ Q µs ⇠ Q�



Leading-log resummation

Vm: divergences of one-loop virtual m-leg amplitudes

Rm: divergences from additional real radiation

At LL level:

�(1) =

0

BBBBB@

V2 R2 0 0 . . .
0 V3 R3 0 . . .
0 0 V4 R4 . . .
0 0 0 V5 . . .
...

...
...

...
. . .

1

CCCCCA
ST = (1, 1, · · · , 1) H = (�0, 0, · · · , 0)

�LL(�,�) = �0

⌦
S2({n, n̄}, Q�, �, µh)

↵
= �0

1X

m=2

⌦
US

2m({n}, �, µs, µh) ⌦̂1
↵

The symbol    indicates that one has to integrate over the 
additional directions present in the higher-multiplicity anomalous 
dimensions Rm and Vm

⌦̂

M. Neubert: Factorization and Resummation for Jet Processes                 © Artwork by Ding Yu Shao 

, ,



Leading-log expansion

Expand RG equation order by order:

Agrees with order-by-order expansion of BMS equation:

@LG12(L) =

Z
d⌦j

4⇡
W j

12

⇥
⇥nn̄

in (j)G1j(L)Gj2(L)�G12(L)
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 Schwartz, Zhu ’14
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Leading-log expansion
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Leading-log resummation
LL evolution equation:

Solution:

Hn(t) = Hn(t1)e
(t�t1)Vn +

Z t

t1

d t0Hn�1(t
0)Rn�1e

(t�t0)Vn

This form is exactly what is implemented in a standard parton shower MC!

d

dt
Hn(t) = Hn(t)Vn +Hn�1(t)Rn�1

t =

Z ↵(µs)

↵(µh)

d↵

�(↵)

↵

4⇡
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MC numerical results
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(Becher & Shao, in preparation)



Conclusion
• We have derived the first factorization formulae for NG observables: 

Sterman-Weinberge dijet cross section and interjet energy flow


• In both cases we have checked the factorization up to NNLO and 
reproduced the full QCD results


• All scales are separated -> RG evolution can be used to resum all 
large logarithms, including the NGLs


• We have applied MC methods to solve the associated RG equations at 
LL level (next step: NLL)


• Numerous possible applications: jet cross sections, jet substructure, 
jet veto, …

� =
X

m

hHm ⌦ Smie� = �0 H eS
" 1X

m=1

D
Jm ⌦ eUm

E#2
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Thank you!



Backup slides



Comparison to BMS

Consider real and virtual together, all collinear divergences drop out. 
Leading soft divergence obtained by the soft approximation for the 
emitted (real or virtual) gluon:

Vm = �(1)

m,m = �4
X

(ij)

1

2
(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W k

ij

⇥
⇥nn̄

in

(k) +⇥nn̄
out

(k)
⇤
,

Rm = �(1)

m,m+1

= 4
X

(ij)

Ti,L · Tj,R W k
ij ⇥

nn̄
in

(k)

Virtual has the same form as the real-emission contribution, because the 
principal-value part of the propagator of the emission does not contribute.
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Leading-log resummation
In the large-NC limit, the color structure becomes trivial:

Rm

" #
= + + · · · +

1

2

i3
i4

im

m+ 1
1

2

i3
i4

im

...
...

...
...

Figure 13. The action of the operator Rm on an amplitude in the large-Nc limit, where
(i3, i4, · · · , im) is a permutation of {3, 4, · · · ,m}. The double and single lines represent gluons
and quarks, respectively. The sum on the right-hand side represents all the contributions from the
planar diagrams.

S(3)
2 =R2 [R3(R4 + V4) + V3(R3 + V3)] + V2 [R2(R3 + V3) + V2(R2 + V2)] ,

for the first three coe�cients of the expansion in t. As explained after (5.14), we have

to integrate over the directions of the additional emissions but for brevity, suppress the

integrations in the above expressions. Including the integration, the one-loop term reads

S(1)
2 = V2 +R2 ⌦̂1 = V2 +

Z
d⌦(n3)

4⇡
R2 . (5.18)

The structure of the result (5.17) is very simple. To obtain the result at the next order,

one takes the existing result and adds an additional real emission plus a virtual correction

to each term. This type of iterative structure is reminiscent of a parton shower, and it

should therefore be possible to solve the evolution equation numerically, using Monte Carlo

methods. Indeed such Monte Carlo methods have been used to perform resummations of

NGLs, see e.g. [24, 59].

One nontrivial complication is that the anomalous dimensions are matrices in color

space and that the color algebra becomes nontrivial for high multiplicities. This di�culty

can be avoided by taking the large-Nc limit, which is also useful to compare (5.17) to the

result obtained using the BMS equation. To take the large-Nc limit, it is simplest to adopt

the trace basis (see for example [60]), i.e. to write the color structure of the m-particle

amplitudes in the form

|Mm({p})i =
X

�2P (m�2)

(ti�(1)ti�(2) · · · ti�(m�2))baA�({p}) + . . . , (5.19)

with color-ordered amplitudes A�({p}). The indices a and b are the color indices of the

q̄q pair. We only include single trace terms, since contributions with multiple traces are

suppressed at large Nc. At large Nc, emissions arise only between nearest-neighbour legs,

since all other attachments would lead to non-planar contributions which are suppressed.

Based on the above simplification, the e↵ect of Rm in the large-Nc limit is shown diagram-

matically in Figure 13. The action of Vm simplifies analogously, as shown in Figure 14.

The large-Nc color factor from squaring the amplitudes is simply a factor of Nc for each

color loop, and the number of additional color loops is equal to the number of powers of

↵s, so that the color factor is obtained by switching to the ’t Hooft coupling � = Nc ↵s.
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2Vm

" #
= + + · · · + +
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i4
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im

...
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...

Figure 14. The action of the operator Vm on an amplitude in the large-Nc limit.

We now plug the explicit results (5.11) for the anomalous-dimension coe�cients Vm

and Rm into the expressions (5.17). For the coe�cients of the expansion in t, we then

obtain

S(1)
2 = � (4Nc)

Z

⌦
3OutW

3
12 ,

S(2)
2 =

1

2!
(4Nc)

2
Z

⌦

h
� 3In 4Out

�
P 34
12 �W 3

12W
4
12

�
+ 3Out 4OutW

3
12W

4
12

i
,

S(3)
2 =

1

3!
(4Nc)

3
Z
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h
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⇥
P 34
12

�
W 5

13 +W 5
32 +W 5

12

�� 2W 3
12W

4
12W

5
12

⇤

� 3In 4In 5OutW
3
12

⇥�
P 45
13 �W 4

13W
5
13

�
+

�
P 45
32 �W 4

32W
5
32

�� �
P 45
12 �W 4

12W
5
12

�⇤

� 3Out 4Out 5OutW
3
12W

4
12W

5
12

i
, (5.20)

where
R
⌦ 3Out =

R d⌦(n
3

)
4⇡ ⇥nn̄

out(n3), and we have used the abbreviation

P kl
ij = W k

ij

⇣
W l

ik +W l
kj

⌘
. (5.21)

The above expressions include all leading logarithms, i.e. the global and non-global loga-

rithmic terms appear together.

Let us now relate the above expressions to the leading logarithmic resummation of

NGLs at large Nc, which can be obtained by solving the BMS equation [26]

@L̂Gkl(L̂) =

Z
d⌦(nj)

4⇡
W j

kl

h
⇥nn̄

in (j)Gkj(L̂)Gjl(L̂)�Gkl(L̂)
i
, (5.22)

with boundary condition Gkl(0) = 1. The function Gkl(L̂) depends on two light-like refer-

ence vectors nk and nl. After solving the equation, the resummed soft function is obtained

as S({n}, Q�, µ) = G12(L̂) with L̂ = 4Nc t. While the non-linear integral equation (5.22)

can in general only be solved numerically, it is easy to solve it iteratively, order by or-

der in L̂. This was done in [25], where the resulting non-global terms were listed up to

three-loop order. Our expressions (5.20) agree with these results. This demonstrates the

equivalence of the RG equation (2.39) driven by the one-loop anomalous dimensions (5.10)

and the BMS equation in the large-Nc limit. However, an important advantage of our RG

framework is that it is valid for arbitrary Nc and logarithmic accuracy.

We have verified that the two-loop expression S(2)
2 indeed reproduces the leading log-

arithmic term in the NNLO result (4.20). The literature often distinguishes global and
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One-loop renormalization for the       
narrow-angle jet process

1

2
H(1) · 1+

1

2
eS(1) · 1+ z(1)

m,m + z(1)
m,m+1 + eU (1)

m = fin.

n̄

n1

ni

nm

nj

n̄

Figure 14. Sample Feynman diagrams for general one-loop coft function Um.
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C One-loop renormalization for the narrow-angle jet process

For the narrow-angle jet process, the one-loop finiteness condition has the form
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The divergence of the one-loop coft function, described by a sum of exchanges between

two legs, can be split into two parts. One part only involves a single divergence, which
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Figure 6. Sample Feynman diagrams contributing to the jet functions J2 and J3.

The di↵erentials dy/d✓̂i in the last two lines change one of the integration variables from

d✓̂i to dy; for example, when applied to a function F (✓̂1, ✓̂2) the term in the third line gives
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The contributions of order ✏ and ✏2 can be obtained in an analogous way but are too lengthy

to be presented here.

Convolutions

We finally consider the convolution J2 ⌦ eU2 in (3.1), which we need to evaluate to O(↵2
s).

Performing the convolution with the tree-level coft function U (0)
2 = 1, and adding up the

contributions from the two regions, we find
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Next we need to evaluate the convolution with the one-loop coft function. Doing so, we

obtain the NNLO collinear-coft mixing contribution
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n2

n1

n̄

Figure 4. Feynman diagrams contributing to the one-loop coft function U2. For each of the three
diagrams, there is also an equal, mirrored contribution. We use a double-line notation to represent
the Wilson lines.

Coft functions

In (3.1) we need the coft functions eU1 to two-loop order and eU2 with one-loop accuracy.

For the momentum scaling of coft particles in (2.18), the phase-space constraint allows for

emission both inside and outside the jet cones. The energy is only constrained for emissions

outside of the jet, because the coft momentum inside the jet is negligible compared to the

momentum of the collinear particles. It is therefore dropped in the multipole expansion of

the energy-conservation �-function. Because of this fact, coft functions with all particles

inside the jet are scaleless (their energy can be arbitrarily large). Also, a coft particle in

the right-moving jet does not see the left-moving jet, since the out-of-left-jet condition is

always fulfilled once the multipole expansion is performed.

According to the definition (2.33) the coft function eU1 contains two Wilson lines,

one along the direction n1 of the particle inside the right jet and a second one along the

n̄ direction, which describes emissions from the left jet. Similarly, the coft function eU2

contains three Wilson lines, two along the direction of the particles inside the right jet and

a third one along the n̄ direction. We first discuss the calculation of a general coft function
eUm at one-loop order. The relevant Feynman diagrams contributing for the special case

m = 2 are shown in Figure 4. Analogous diagrams can be drawn for eU1 and for all

higher coft functions eUm. The general one-loop expression involves a sum over all pairs of

emissions and absorptions from directions i and j, such that

Um = 1� g2s µ̃
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where (ij) with i 6= j denotes an unordered pair of numbers in the range 0 . . .m, and the

scale µ̃ is defined after (3.4). Since the contribution from radiation inside the jet cone

is scaleless, we have restricted the emission to lie outside the cone. For the special cases

m = 1, 2 the sum over pairs yields

�
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Figure 6. Sample Feynman diagrams contributing to the jet functions J2 and J3.

The di↵erentials dy/d✓̂i in the last two lines change one of the integration variables from
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The contributions of order ✏ and ✏2 can be obtained in an analogous way but are too lengthy

to be presented here.

Convolutions

We finally consider the convolution J2 ⌦ eU2 in (3.1), which we need to evaluate to O(↵2
s).
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Next we need to evaluate the convolution with the one-loop coft function. Doing so, we

obtain the NNLO collinear-coft mixing contribution
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Figure 4. Feynman diagrams contributing to the one-loop coft function U2. For each of the three
diagrams, there is also an equal, mirrored contribution. We use a double-line notation to represent
the Wilson lines.

Coft functions

In (3.1) we need the coft functions eU1 to two-loop order and eU2 with one-loop accuracy.

For the momentum scaling of coft particles in (2.18), the phase-space constraint allows for

emission both inside and outside the jet cones. The energy is only constrained for emissions

outside of the jet, because the coft momentum inside the jet is negligible compared to the

momentum of the collinear particles. It is therefore dropped in the multipole expansion of

the energy-conservation �-function. Because of this fact, coft functions with all particles

inside the jet are scaleless (their energy can be arbitrarily large). Also, a coft particle in

the right-moving jet does not see the left-moving jet, since the out-of-left-jet condition is

always fulfilled once the multipole expansion is performed.

According to the definition (2.33) the coft function eU1 contains two Wilson lines,

one along the direction n1 of the particle inside the right jet and a second one along the

n̄ direction, which describes emissions from the left jet. Similarly, the coft function eU2

contains three Wilson lines, two along the direction of the particles inside the right jet and

a third one along the n̄ direction. We first discuss the calculation of a general coft function
eUm at one-loop order. The relevant Feynman diagrams contributing for the special case

m = 2 are shown in Figure 4. Analogous diagrams can be drawn for eU1 and for all

higher coft functions eUm. The general one-loop expression involves a sum over all pairs of
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where (ij) with i 6= j denotes an unordered pair of numbers in the range 0 . . .m, and the

scale µ̃ is defined after (3.4). Since the contribution from radiation inside the jet cone

is scaleless, we have restricted the emission to lie outside the cone. For the special cases

m = 1, 2 the sum over pairs yields
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