NNLO phenomenology using jettiness subtraction

Xiaohui Liu

LoopFest XV @ Buffalo, 2016
Why NNLO

- many reasons
 -
 - discrepancy between NLO and data
 -

CERN-PH-EP-2013-023
Theory Setups

- Real corrections

explosion of calculations in past 18 months

Salam, LHCP '16
Theory Setups

- **Real corrections**

Local Subtraction

$$\int dz \frac{f(z) - f(0)}{z} + \int dz z^{-1 - \alpha \varepsilon} f(0)$$

- **sector decomposition, sector improved residue**
 - Binoth, Heinrich; Anastasiou, Melnikov, Petriello
 - Czakon; Boughezal, Melnikov, Petriello
 - Gehrmann-De Ridder, Gehrmann, Glover

- **antenna subtraction**
 - Kosower
 - Gehmann-De Ridder, Gehrmann, Glover

- **projection to Born**
 - Cacciari, Dreyer, Karlberg, Salam, Zanderighi

- **Colorful NNLO**
 - Del Duca, Somogyi and Trócsányi
 - Del Duca, Duhr, Kardos, Somogyi and Trócsányi

Non-local Subtraction

$$\int \frac{f(z)}{z} \theta(z > z_0) - f(0) \frac{z_0^{-\alpha \varepsilon}}{\alpha \varepsilon} + \ldots$$

- **qT subtraction, N-jettiness subtraction**
 - Catani, Grazzini
 - Gao, Li and Zhu
 - Boughezal, Focke, XL, Petriello; Gaunt, Stahlhofen, Tackmann, Walsh

[4]
Theory Setups

• N-Jettiness subtraction
 Boughezal, Focke, XL, Petriello, ’15 Gaunt, Stahlhofen, Tackmann, Walsh, ’15

• N-jettiness observable
 Stewart, Tackmann, Waalewijn, ’10

\[T_N = \sum_k \min \{ \omega_a n_a \cdot q_k, \omega_b n_b \cdot q_k, \omega_i n_i \cdot q_k, \ldots, \omega_N n_N \cdot q_k \} \]

- \(N \) the minimum number of jets required
- \(n_i \) light-like vectors along beam or jet axes
- \(q_k \) final state partons’ 4-momenta
- \(\omega_k \) arbitrary positive weight
Theory Setups

• N-Jettiness subtraction

\[T_N = \sum_k \min \left\{ w_a n_a \cdot q_k, w_b n_b \cdot q_k, w_i n_i \cdot q_k, \ldots, w_N n_N \cdot q_k \right\} \]

N jets \quad \text{small} \quad T_N \quad \text{large} \quad \text{more than N jets}

• Contribution only from 2-loop, soft+collinear radiations

\[\text{small } T_N^{\text{cut}} \quad \text{smaller than any experimental cuts} \]
\[\text{small to suppress power corrections} \]
\[\text{final result independent of } T_N^{\text{cut}} \]

• At least N+1 hard radiations

\[\text{small } T_N^{\text{cut}} \]

\[\text{smaller than any experimental cuts} \]
\[\text{small to suppress power corrections} \]
\[\text{final result independent of } T_N^{\text{cut}} \]

\[\text{NLO N+1 jet calculation} \]
\[\text{Simply recycle known NLO results/tools} \]

Tr[H \cdot S_N] \otimes B_a \otimes B_b \otimes J_i + \ldots

jet: Becher and Neubert, '06, Becher and Bell, '10

beam: Gaunt, Stahlhofen, Tackmann, '14

soft: Boughezal, XL and Petriello, '15
Theory Setups

• N-Jettiness subtraction
 Boughezal, Focke, XL, Petriello, ’15 Gaunt, Stahlhofen, Tackmann, Walsh, ’15

• New results for processes with a jet
 Boughezal, Focke, XL, Petriello,’15, Boughezal, Focke, Giele, XL, Petriello, ’15
 Boughezal, Campbell, Ellis, Focke, Giele, XL, Petriello,’15, Ablof, Boughezal, XL, Petriello,’16,

• H/W/Z/DIS+1j

• Confirm existing results

• H/W/Z production
 Gaunt, Stahlhofen, Tackmann, Walsh, ‘15

• VH/Di-photon production
 Campbell, Ellis, Williams, ‘16 Campbell, Ellis, Li, Williams, ’16
Validation and Improvements

• N-Jettiness subtraction

Validations

• taucut-independence check in all calculations

Boughezal, Focke, XL, Petriello, '15 Gaunt, Stahlhofen, Tackmann, Walsh, '15
Validation and Improvements

• N-Jettiness subtraction

Validations

• more comparisons

Boughezal, Focke, XL, Petriello, '15 Gaunt, Stahlhofen, Tackmann, Walsh, '15
Validation and Improvements

• N-Jettiness subtraction

 Validations

 • DIS form factor

 Boughezal, Focke, XL, Petriello, ’15 Gaunt, Stahlhofen, Tackmann, Walsh, ’15

• NNLO Single jet production
 • new channels with large correction
 • integrate over the phase space to reproduce the NNLO form factor
 • interesting for EIC phenomenology

Abelof, Boughezal, XL, Petriello, ’16
Validation and Improvements

- N-Jettiness subtraction

power corrections

- logarithmic nature of dominant power corrections $\alpha_s^n C_n T_N^{\text{cut}} L^{2n-1}$
- can be calculated in an easy way and higher order power corrections can be predicted from lower order calculations
- including power corrections can improve the convergence

\[W^+: \text{w/o Power Correction v.s. fit v.s. w Power Correction} \]
Validation and Improvements

- N-Jettiness subtraction

- logarithmic nature of dominant power corrections $\alpha_s^n C_n T_N^{\text{cut}} L^{2n-1}$
- can be calculated in an easy way and higher order power corrections can be predicted from lower order calculations
- including power corrections can improve the convergence

$W^+:$ with LEP and MET cuts, w/o Power Correction v.s. fit v.s. w Power Correction

|y(lep)| < 2.5 + MET > 30GeV

Boughezal, Focke, XL, Petriello, '15
Gaunt, Stahlhofen, Tackmann, Walsh, '15

Boughezal, XL, Petriello, in preparation
Phenomenology

- **Comparison with 7TeV data** Boughezal, XL, Petriello, ‘16

- **W+1j**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>lepton p_T</td>
<td>$p_T > 25$ GeV</td>
<td>$p_T > 25$ GeV</td>
</tr>
<tr>
<td>lepton η</td>
<td>$</td>
<td>\eta</td>
</tr>
<tr>
<td>missing E_T</td>
<td>$E_T^{miss} > 25$</td>
<td>–</td>
</tr>
<tr>
<td>transverse mass</td>
<td>$m_T > 40$ GeV</td>
<td>$m_T > 50$ GeV</td>
</tr>
<tr>
<td>jet p_T</td>
<td>$p_T > 30$ GeV</td>
<td>$p_T > 30$ GeV</td>
</tr>
<tr>
<td>jet η</td>
<td>$</td>
<td>\eta</td>
</tr>
<tr>
<td>anti-k_T radius</td>
<td>$R = 0.4$</td>
<td>$R = 0.5$</td>
</tr>
</tbody>
</table>

$$\mu_0 = \sqrt{M_W^2 + \sum_i (p_T^i)^2}$$

- CT14NNLO PDFs for NNLO results, CT14NLO for NLO results
- Vary μ_F and μ_R independently
- Non-perturbative corrections included for ATLAS p_TJ and yJ
- QED FSR factors included for ATLAS p_TJ and yJ

CERN-PH-EP-2014-134
Phenomenology

- Comparison with 7TeV data

 Merged tree-level amplitudes combined with a parton shower describe the measurements: higher than but within experimental errors.

 NLO QCD, LoopSim and MEPS@NLO predictions are all lower than the data.

 NNLO QCD corrections increase the NLO prediction, leading to a better agreement with ATLAS data. Scale uncertainty is reduced.

 Boughezal, XL, Petriello, '16
Phenomenology

• **Comparison with 7TeV data**

 All predictions compared are systematically higher than the CMS data

 NNLO QCD corrections reduce the NLO scale uncertainty to make it clear

 pTJ1: $W+1j$
Phenomenology

- Comparison with 7TeV data

\[H_T(S_T) : \]

- ALPGEN agrees with data while SHERPA overshoots the measurements
- The NLO predictions far undershoot the data while MEPS@NLO does a good job
- The NNLO corrections bring theory into good agreement with experiment, with a slight undershoot at very high ST
Phenomenology

- Comparison with 7TeV data
 Boughezal, XL, Petrello, ‘16

Merged tree-level amplitudes combined with a parton shower are higher than the measurements.

- NLO QCD corrections lower than the data.
- NNLO can predict this distribution well.
Phenomenology

- Comparison with 7TeV data

Z+1j

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>lepton p_T</td>
<td>$p_T > 20$ GeV</td>
<td>$p_T > 20$ GeV</td>
</tr>
<tr>
<td>lepton η</td>
<td>$</td>
<td>\eta</td>
</tr>
<tr>
<td>lepton separation</td>
<td>$\Delta R_{ll} > 0.2$</td>
<td>$\Delta R_{ll} > 0.2$</td>
</tr>
<tr>
<td>lepton invariant mass</td>
<td>60 GeV $< m_{ll} < 116$ GeV</td>
<td>71 GeV $< m_{ll} < 111$ GeV</td>
</tr>
<tr>
<td>jet p_T</td>
<td>$p_T^{j} > 30$ GeV</td>
<td>$p_T^{j} > 30$ GeV</td>
</tr>
<tr>
<td>jet η</td>
<td>$</td>
<td>\eta^{j}</td>
</tr>
<tr>
<td>anti-k_T radius</td>
<td>$R = 0.4$</td>
<td>$R = 0.5$</td>
</tr>
</tbody>
</table>

$\mu_0 = \sqrt{M_0^2 + \sum_i (p_T^{j_i})^2}$

- CT14NNLO PDFs for NNLO results,
- CT14NLO for NLO results
- Vary μ_F and μ_R independently
- non-perturbative corrections included for ATLAS p_TJ and yJ
- QED FSR factors included for ATLAS p_TJ and $yJ
Phenomenology

- Comparison with 7TeV data

- The NLO prediction agrees with the data within errors.
- The NNLO QCD prediction is in better agreement with the CMS data over the entire pTJ1 range.
- The NNLO QCD prediction increases NLO but still undershoots the ATLAS data.

\(p_{TJ1} : \)

\[Z+1j \]
Phenomenology

• Comparison with 7TeV data Boughezal, XL, Petriello, ‘16

\[H_T(S_T) : \]

- The NLO prediction below the data.
- The NNLO QCD prediction is in good agreement with both experiments over the entire range.
Phenomenology

• Comparison with 13TeV data
 Boughezal, XL, Petriello, ‘16

Non-perturbative (hadronisation and underlying event) and FSR corrections included

• SHERPA AND MG5_aMC+PY8 FxFx describes well the data

• ALPGEN+PY6 AND MG5_aMC+PY8 CKKW overshot at large H_T

• BlackHat+SHERPA under-estimates the cross section for large values of $H_T > 300$ GeV

• The agreement is recovered by adding NNLO corrections in perturbative QCD

ATLAS-CONF-2016-046
Phenomenology

- Comparison with 13TeV data
 Boughezal, XL, Petriello, ‘16

Non-perturbative (hadronisation and underlying event) and FSR corrections included

- all predictions show a good agreement with the measured data within the uncertainties

ATLAS-CONF-2016-046
Phenomenology

- Comparison with 13 TeV data

 Boughezel, XL, Petriello, ‘16

Non-perturbative (hadronisation and MPI) and FSR corrections included

 - the merged NLO generator for all inclusive jet multiplicities describes the data well
 - LO MG+PY8 is slightly lower than the data in the small HT region
 - the NNLO calculation for one inclusive jet multiplicity describes the data well

CMS PAS SMP-16-005
Phenomenology

- **Comparison with 13TeV data**
 Boughezal, XL, Petriello, '16

 Non-perturbative (hadronisation and MPI) and FSR corrections included

 - the merged NLO generator for all inclusive jet multiplicities describes the data well
 - LO MG+PY8 is slightly lower than the data
 - the NNLO calculation for one inclusive jet multiplicity describes the data well

CMS PAS SMP-16-005
Conclusions

• N-jettiness subtraction

 • a subtraction scheme for jet production

 • confirm the known V/H inclusive, VH and di-photon productions

 • used for H/V/DIS+1J
Thanks