A mole for measuring pulsed superconducting magnets

Pierre Schnizer

Gesellschaft für Schwerionenforschung Plankstraße 1 64291 Darmstadt

IMMW 15@FNAL 21 - 24 August 2007

Thanks to

GSI

Helge. R. Kiesewetter Thomas Mack Thomas Knapp Franz Klos Stefan Rauch Reinhold Werkmann

TU - Darmstadt

Maximilian Manderla Martin Schnecker

CERN

Olaf Dunkel Guy Deferene Louis Walckiers

Data for comparison

Animesh Jain and his team

Outline

Measuring pulsed fields

- Methods applied today
- Superconducting magnets: is there a difference?

2 Mole

- Overview
- Angular postioning
- 3 First measurements
 - Test setup
 - Power supply Cycles

Outline

FAIR @ GSI

- many rings, 2 superconducting syncotrons
- SIS 100: 2 T , 4 T / s, 3.5 m long dipoles, 5 m long quadrupole plus correctors
- SIS 300: 2 T , 4 T / s,
 - describe / compare the quality of the magnet(s)
 - managable data for users: e.g. beam dynanics
- \bullet this talk \rightarrow focuses on AC field measurement using the mole

Methods commonly applied for pulsed magnets

- synchotrons \rightarrow since 50th
 - theoretical understanding (strong focusing, Courant Snyder)
 - also measured since then ?
- typically normal conducting
 - search coils (dipole), rotating coil (quadrupole)
 - bent to the radius for small magnets
 - $\bullet \ \ \mathsf{pole} \to \mathsf{mechanical} \ \mathsf{reference}$
 - sliding on the pole plane (@ GSI)
 - a stack of coils (@ CERN)
- but nowadays superconducting synchotrons
 - Nuclotron @ Dubna
 - SIS 100, SIS 300 @ GSI
 - injector change @ CERN

Methods applied today Superconducting magnets: is there a difference?

Difference measuring sc \leftrightarrow nc synchotron magnets

normal conducting

- dipole
 - field integral $\int B_y dI$
 - field homogeneity $\frac{B_y}{dx} \rightarrow$ "normal multipoles"
 - $\bullet \ \text{angle} \to \text{pole shape}$
- quadrupole
 - field integral $\int G_y dI$
 - axis (w.r.t. pole shoes)
 - field homogeneity (multipoles)

super conducting

• dipole

- ∫ *B*d/
- angle (no mech. ref.)
- field homogeneity (multipoles)
- "axis" (shape of the magnet at cold)
- quadrupole
 - ∫ Gd/
 - axis
 - angle
 - field homogeneity (multipoles)

Difference measuring sc \leftrightarrow nc synchotron magnets

- chosen system must
 - provide angle
 - axis
 - supress vibration (round anti cryostat in rectangular aperture)
- coil probe:
- $DC \rightarrow rotating$
- AC \rightarrow
 - regularly (in ϕ) placed sensors
 - measure the magnet at different angles from ramp to ramp can that be done ?

Methods applied today Superconducting magnets: is there a difference?

∃ >

Circular Multipoles

Magnetic field representation in circular multipoles

$$\mathbf{B}(\mathbf{z}) = \sum_{n=1}^{N} \mathbf{C_n} \left(rac{\mathbf{z}}{R_{Ref}}
ight)^{(n-1)}$$

Flux through a coil probe

$$\Phi(t) = Re\left[\sum_{n=0}^{N} \mathbf{K}_{n} \mathbf{C}_{n} e^{in\theta(t)}\right]$$

Methods applied today Superconducting magnets: is there a difference?

イロト イポト イヨト イヨト

Sensitivity for a radial coil probe array

$$\mathbf{K_n} = \frac{NL}{n} \left[\left(\frac{R_2}{R_{Ref}} \right)^n - \left(\frac{R_1}{R_{Ref}} \right)^n \right]$$

Induced voltage

$$V(t) = -n\dot{\theta}(t) Re \underbrace{\left[\sum_{n=0}^{N} \mathbf{K}_{n} \left\{ \mathbf{C}_{n} + \frac{\mathrm{d}\mathbf{C}_{n}}{\mathrm{d}t} \right\} e^{\mathrm{i}n\theta(t)} \right]}_{\mathrm{d}\Phi(t)/\mathrm{d}t}$$

Spurious harmonics due to mechanical artifacts

Torsional vibrations in a dipole of $T = tcos(p\Theta)$

$$\mathbf{C}_{\mathsf{p}+1}^{\mathsf{sd}} \approx \frac{\mathsf{K}_1}{\mathsf{K}_{\mathsf{p}+1}} \frac{t}{2} \mathtt{i} \mathsf{C}_1 \qquad \mathsf{C}_{\mathsf{p}-1}^{\mathsf{sd}} \approx \frac{\mathsf{K}_1}{\mathsf{K}_{\mathsf{p}-1}} \frac{t}{2} \mathtt{i} \overline{\mathsf{C}_1}$$

Torsional vibrations in a quadrupole of $T = tcos(p\Theta)$

$$\mathsf{C}_{\mathsf{p}+1}^{\mathsf{sq}} \approx \frac{\mathsf{K}_2}{\mathsf{K}_{\mathsf{p}+1}} \ t \ \texttt{i} \mathsf{C}_2 \qquad \mathsf{C}_{\mathsf{p}+1}^{\mathsf{sq}} \approx \frac{\mathsf{K}_2}{\mathsf{K}_{\mathsf{p}+1}} \ t \ \texttt{i} \overline{\mathsf{C}_2} \,,$$

Transveral vibrations in a quadrupole of $\mathbf{D} = \mathbf{d}cos(p\Theta)$

$$\mathbf{C}_{p+1}^{sq} = \frac{\mathbf{K}_1}{\mathbf{K}_{p+1}} \frac{\mathbf{d}}{2R_{Ref}} - \mathbf{i}\mathbf{C}_2 \quad \mathbf{C}_{p-1}^{sq} = \frac{\mathbf{K}_1}{\mathbf{K}_{p-1}} \frac{\mathbf{d}}{2R_{Ref}} \mathbf{i}\overline{\mathbf{C}_2}.$$

Methods applied today Superconducting magnets: is there a difference?

Mechanical Requirements

- based on a radial compensation coil
 - first coil probe CERN LHC head $\#41 \rightarrow$ allows to "buck" the dipole and quadrupole by a factor of 1000 and 100 respectively
 - insert in relevant formulae

Methods applied today Superconducting magnets: is there a difference?

< 一型

Coil probe parameters

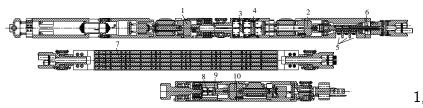
Mechanical parameters of the coil probes of the array

					5	
	А	В	С	D	E	
$R_2[mm]$	20.378	12.242	4.000	12.157	20.482	
$R_1[mm]$	12.458	4.322	-3.920	4.237	12.562	
Ν	64	64	64	64	64	
L[mm]	699.5	699.5	699.5	699.5	699.5	

Methods applied today Superconducting magnets: is there a difference?

Required Mechanical Precision

		abs	cmp		unit	
Dipole						
	р		2	10		
	t	0.5	80	7.5	mrad	
Quadrupole						
	р		3	12		
	t	0.5	45	5	mrad	
	d	0.2		5	mm	
 compensation dipole) 	atior	n mea	surem	ent uses	s bucking	(A -C for
compensation	atior	n mea	surem	ent uses	s bucking	(A - B - C + D)
for quadr	upo	le)				(월) (종) (종)


Methods applied today Superconducting magnets: is there a difference?

Choise of Method

- "bucking" relaxed mechanical parameters
- small team @ GSI, different apertures
- ullet \to step by step method
- previously applied by:
 - Nikolay Smirnov, Piotr Shcherbakov; UNK @ IHEP
 - Alexander Kovalenko; Nuclotron @ Dubna
 - A. Dael; superconducting models for CERN SPS @ Saclay
 - Hallbach and Bill Hasenzahl?

Overview Angular postioning

Sketch of the Mole

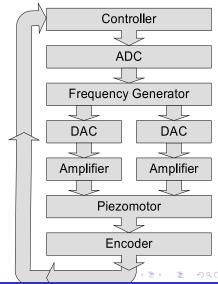
levelling piezo motor 1 2 coil rotation piezo motor 3, 4 inclinometers 5 slip rings 6 angular encoder with 512 ticks, 7 coil probes 8 angular encoder with 7500 counts 9 its inclinometer and 10 levelling motor

Overview Angular postioning

Angular positioning I/II

- piezo motor \rightarrow allows precise positioning
- chosen type (SHINSEI USR 30) \rightarrow default driver only allows 8 mrad.
- piezo motors \rightarrow far better \rightarrow study at TU Darmstadt \rightarrow 0.1 mrad reachable (see IMMW 14)

Measuring pulsed fields Mole

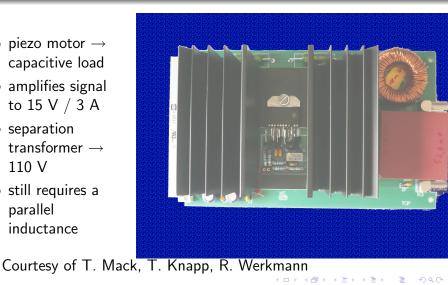

First measurements

Overview Angular postioning

Signal Generation / Control Loop

- function generator realised in FPGA
- must produce variable
 50.5 51kHz within 10
 Hz steps
- must shift phase between channel A and B

Courtesy of S. Rauch, T. Mack



Measuring pulsed fields Mole

Angular postioning

Power Amplifier

- piezo motor \rightarrow capacitive load
- amplifies signal to 15 V / 3 A
- separation transformer \rightarrow 110 V
- still requires a parallel inductance

Pierre Schnizer Mole for pulsed SC Magnets

Overview Angular postioning

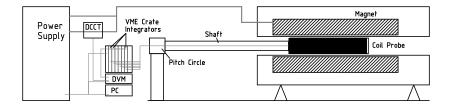
Angular positioning II/II

• Angles below .5 mrad reacheable (only limited by the encoder)

< 1 →

A B M A B M

Test setup Power supply Cycles


First test

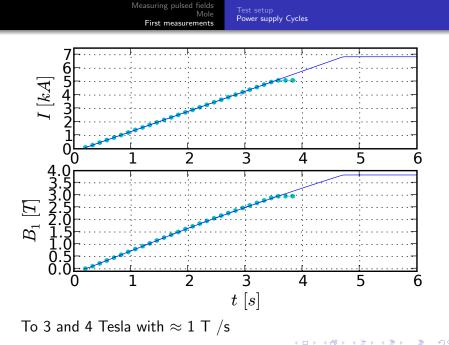
- GSI 001 (modified RHIC magnet) on the test bench
- mole not available ... but LHC quadrupole coil probe
- test of power supply reproducibility

Test setup Power supply Cycles

Bricolage set up

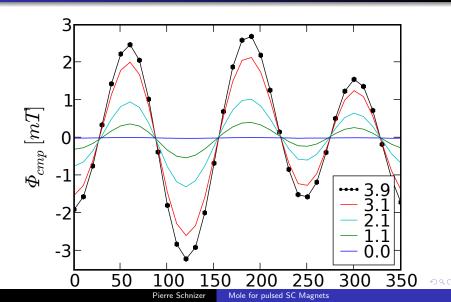
Pierre Schnizer Mole for pulsed SC Magnets

イロト イポト イヨト イヨト


æ

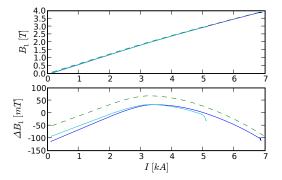
Test setup Power supply Cycles

Bricolage set up

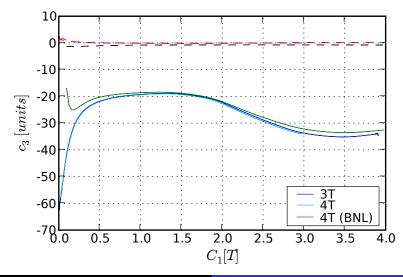

||/||

- coil was hold by teflon rings
- coil fixed with teflon and capton to carbon tube
- carbon tube fixed to pitch circle
- step by step turned by hand
- data compared to BNL Measurements (at 2 T / s)
- power supply reproducibility found to 2.5 units

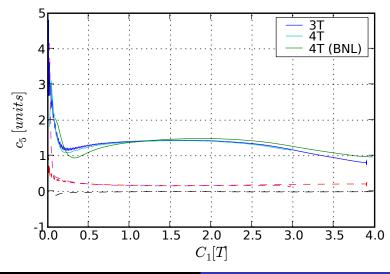
Test setup Power supply Cycles


Flux measured by compensation array

Test setup Power supply Cycles


Main dipole strength

Start offset due to missing rotating coil measurement. Integrator trigger to 3 T 40 Hz, to 4 T 500Hz, different coil length different positions dashed lines \rightarrow Measurement by A. Jain @ 2 T/ s.


Test setup Power supply Cycles

Harmonics C_3

Test setup Power supply Cycles

Harmonics C_5

Pierre Schnizer Mole for pulsed SC Magnets

green

Test setup Power supply Cycles

Conclusion

- Mechanical requirements (bucking) \rightarrow allow step by step
- \bullet power supply reproducibility \rightarrow good
- piezo motor can do angular steps
- bricolage test shows good results for harmonic quality
- main field measurement requries improvement