A mole for measuring pulsed superconducting magnets

Pierre Schnizer

Gesellschaft für Schwerionenforschung
Plankstraße 1
64291 Darmstadt

IMMW 15@FNAL 21 - 24 August 2007
Thanks to

GSI
Helge. R. Kiesewetter
Thomas Mack
Thomas Knapp
Franz Klos
Stefan Rauch
Reinhold Werkmann

CERN
Olaf Dunkel
Guy Deferene
Louis Walckiers

TU - Darmstadt
Maximilian Manderla
Martin Schnecker

Data for comparison
Animesh Jain and his team
Outline

1. Measuring pulsed fields
 - Methods applied today
 - Superconducting magnets: is there a difference?

2. Mole
 - Overview
 - Angular positioning

3. First measurements
 - Test setup
 - Power supply Cycles
FAIR @ GSI

- many rings, 2 superconducting synchotrons
- SIS 100: 2 T, 4 T/s, 3.5 m long dipoles, 5 m long quadrupole plus correctors
- SIS 300: 2 T, 4 T/s,
 - describe / compare the quality of the magnet(s)
 - manageable data for users: e.g. beam dynamics
- this talk focuses on AC field measurement using the mole
Methods commonly applied for pulsed magnets

- synchotrons → since 50th
 - theoretical understanding (strong focusing, Courant - Snyder)
 - also measured since then?
- typically normal conducting
 - search coils (dipole), rotating coil (quadrupole)
 - bent to the radius for small magnets
 - pole → mechanical reference
 - sliding on the pole plane (@ GSI)
 - a stack of coils (@ CERN)
- but nowadays superconducting synchotrons
 - Nuclotron @ Dubna
 - SIS 100, SIS 300 @ GSI
 - injector change @ CERN
Measuring pulsed fields
Mole
First measurements

Methods applied today
Superconducting magnets: is there a difference?

Difference measuring sc ↔ nc synchotron magnets

normal conducting

- dipole
 - field integral $\int B_y dl$
 - field homogeneity $\frac{B_y}{dx} \rightarrow \text{“normal multipoles”}$
 - angle → pole shape
- quadrupole
 - field integral $\int G_y dl$
 - axis (w.r.t. pole shoes)
 - field homogeneity (multipoles)

super conducting

- dipole
 - $\int B dl$
 - angle (no mech. ref.)
 - field homogeneity (multipoles)
 - “axis” (shape of the magnet at cold)
- quadrupole
 - $\int G dl$
 - axis
 - angle
 - field homogeneity (multipoles)
Difference measuring sc ↔ nc synchotron magnets

- chosen system must
 - provide angle
 - axis
 - suppress vibration (round anti cryostat in rectangular aperture)
- coil probe:
 - DC → rotating
 - AC →
 - regularly (in ϕ) placed sensors
 - measure the magnet at different angles from ramp to ramp can that be done?
Circular Multipoles

Magnetic field representation in circular multipoles

$$B(z) = \sum_{n=1}^{N} C_n \left(\frac{z}{R_{Ref}}\right)^{(n-1)}$$

Flux through a coil probe

$$\Phi(t) = Re \left[\sum_{n=0}^{N} K_n C_n e^{in\theta(t)} \right]$$
Sensitivity for a radial coil probe array

\[K_n = \frac{NL}{n} \left[\left(\frac{R_2}{R_{Ref}} \right)^n - \left(\frac{R_1}{R_{Ref}} \right)^n \right] \]

Induced voltage

\[V(t) = -n \dot{\theta}(t) \text{Re} \left\{ \sum_{n=0}^{N} K_n \left\{ C_n + \frac{dC_n}{dt} \right\} e^{in\theta(t)} \right\} \frac{d\Phi(t)}{dt} \]
Spurious harmonics due to mechanical artifacts

Torsional vibrations in a dipole of $T = t \cos(p\Theta)$

$$C_{p+1}^{sd} \approx \frac{K_1}{K_{p+1}} \frac{t}{2} iC_1 \quad C_{p-1}^{sd} \approx \frac{K_1}{K_{p-1}} \frac{t}{2} iC_1$$

Torsional vibrations in a quadrupole of $T = t \cos(p\Theta)$

$$C_{p+1}^{sq} \approx \frac{K_2}{K_{p+1}} t iC_2 \quad C_{p+1}^{sq} \approx \frac{K_2}{K_{p+1}} t iC_2 ,$$

Transversal vibrations in a quadrupole of $D = d \cos(p\Theta)$

$$C_{p+1}^{sq} = \frac{K_1}{K_{p+1}} \frac{d}{2R_{Ref}} - iC_2 \quad C_{p-1}^{sq} = \frac{K_1}{K_{p-1}} \frac{d}{2R_{Ref}} iC_2.$$
Mechanical Requirements

- based on a radial compensation coil
 - first coil probe CERN LHC head #41 → allows to “buck” the dipole and quadrupole by a factor of 1000 and 100 respectively
 - insert in relevant formulae
Coil probe parameters

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_2 [mm]$</td>
<td>20.378</td>
<td>12.242</td>
<td>4.000</td>
<td>12.157</td>
<td>20.482</td>
</tr>
<tr>
<td>N</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>$L [mm]$</td>
<td>699.5</td>
<td>699.5</td>
<td>699.5</td>
<td>699.5</td>
<td>699.5</td>
</tr>
</tbody>
</table>
Required Mechanical Precision

<table>
<thead>
<tr>
<th></th>
<th>abs</th>
<th>cmp</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>0.5</td>
<td>80</td>
<td>7.5 mrad</td>
</tr>
<tr>
<td>Quadrupole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>0.5</td>
<td>45</td>
<td>5 mrad</td>
</tr>
<tr>
<td>d</td>
<td>0.2</td>
<td>5</td>
<td>mm</td>
</tr>
</tbody>
</table>

- compensation measurement uses bucking ($A - C$ for dipole)
- compensation measurement uses bucking ($A - B - C + D$ for quadrupole)
Choise of Method

- “bucking” relaxed mechanical parameters
- small team @ GSI, different apertures
- → step by step method
- previously applied by:
 - Nikolay Smirnov, Piotr Shcherbakov; UNK @ IHEP
 - Alexander Kovalenko; Nuclotron @ Dubna
 - A. Dael; superconducting models for CERN SPS @ Saclay
 - Hallbach and Bill Hasenzahl?
Sketch of the Mole

levelling piezo motor 1, 2
coil rotation piezo motor 3, 4
inclinometers 5
slip rings 6
angular encoder with 512 ticks, 7
coil probes 8
angular encoder with 7500 counts 9
its inclinometer and 10 levelling motor
Angular positioning I/II

- piezo motor → allows precise positioning
- chosen type (SHINSEI USR 30) → default driver only allows 8 mrad.
- piezo motors → far better → study at TU Darmstadt → 0.1 mrad reachable (see IMMW 14)
Signal Generation / Control Loop

- function generator realised in FPGA
- must produce variable 50.5 – 51 kHz within 10 Hz steps
- must shift phase between channel A and B

Courtesy of S. Rauch, T. Mack
Power Amplifier

- piezo motor → capacitive load
- amplifies signal to 15 V / 3 A
- separation transformer → 110 V
- still requires a parallel inductance

Courtesy of T. Mack, T. Knapp, R. Werkmann
Angular positioning II/II

- Angles below 0.5 mrad reachable (only limited by the encoder)
First test

- GSI 001 (modified RHIC magnet) on the test bench
- mole not available ... but LHC quadrupole coil probe
- test of power supply reproducibility
Bricolage set up

Power Supply

DCCT

VME Crate Integrators

DVM

PC

Shaft

Pitch Circle

Magnet

Coil Probe

Measuring pulsed fields
Mole
First measurements

Test setup
Power supply Cycles

Pierre Schnizer
Mole for pulsed SC Magnets
Bricolage set up

- coil was hold by teflon rings
- coil fixed with teflon and capton to carbon tube
- carbon tube fixed to pitch circle
- step by step turned by hand
- data compared to BNL Measurements (at 2 T / s)
- power supply reproducibility found to 2.5 units
To 3 and 4 Tesla with $\approx 1 \text{T/s}$
Measuring pulsed fields
Mole
First measurements

Flux measured by compensation array

\[\Phi_{\text{cmp}} \ \text{[mT]} \]

Data Points:
- 3.9
- 3.1
- 2.1
- 1.1
- 0.0

Pierre Schnizer
Mole for pulsed SC Magnets
Main dipole strength

Start offset due to missing rotating coil measurement. Integrator trigger to 3 T 40 Hz, to 4 T 500 Hz, different coil length different positions dashed lines → Measurement by A. Jain @ 2 T/s.
Harmonics C_3

![Graph showing the relationship between c_3 and C_1]
Harmonics C_5
Conclusion

- Mechanical requirements (bucking) → allow step by step power supply reproducibility → good
- Piezo motor can do angular steps
- Bricolage test shows good results for harmonic quality
- Main field measurement requires improvement