Biomagnetism:
Detection and Imaging Weak Magnetic Fields from the Human Body
Senior Scientific, LLC:

A private business with NIH SBIR funding.

Primary Mission: Disease detection using magnetic nanotechnology.

PI: Edward R. Flynn, PhD Physicist
Outline of Talk

Detection and Imaging of Weak Biomagnetic Fields

1) SQUID Sensors
2) Experimental Apparatus
3) Imaging the Brain
4) Imaging the Mind
5) Detection and Imaging Disease
Magnetic Field Strengths of various sources and Sensor Sensitivities

- MRI Magnet
- Earth Magnetic Field
- Environmental Noise
- Human Heart (QRS)
- Epileptic Spike
- Brain Evoked Response
- 1 ng NP at 5 cm
- HTC SQUID
- LTC SQUID
MEG
Magnetoencephalography

Measurement of the natural magnetic fields
From the brain arising from neuronal currents

A: Instrumentation
What is a SQUID?

Superconducting Quantum Interference Device (SQUID)

Quantum Mechanical (Josephson) Tunneling in a Superconductor

Sensor must have no resistive noise so superconducting material is used.

LTC SQUIDs are sensitive down to ~ 3 fT
Basics of SQUID Operation

Josephson Equations: \(\Theta \) is phase across junction, \(I \)=current, \(V \)=junction voltage, \(\Phi_a = h/2e=2.07 \) fWb (flux quanta)

\[
I = I_c \sin \theta , \quad \frac{\partial \theta}{\partial t} = 2\pi V \frac{2e}{h} = \frac{2\pi V}{\Phi_0}
\]

(a) Schematic diagram of DC SQUID, \(L_s \) is superconducting flux transformer

(b) Voltage across SQUID depends on bias \(I \), and is periodic function of the incident flux \(\Phi_a \).
Principles of MEG

Field amplitude vs time for a sensor array - Evoked Response

Reviews of Modern Physics, Vol. 65, No. 2, April 1993
The SISG MEG System

Superconducting “helmet” made of a thin lead sheet.

A large array sensor for MEG based on the superconducting imaging surface gradiometer concept.

155 ch SQUID array installed inside superconducting imaging surface “helmet”

Integrated SQUID sensors and pickup coils
The MEG instrument at the Minneapolis Domenici Center (Magnes 3600WH, 4-D Neuroimaging, San Diego, CA)

- 248 axial gradiometers (low noise)
- 1 kHz sampling rate
MEG
Magnetoencephalography

Imaging the Brain

SpatioTemporal Analysis of Sensor Magnetic Fields to Image Brain Sources using EM Inverse Solutions
SQUIDs Measure Both Space and Time

Magnetic field contour lines, plotted here as a function of time, are used to determine neural sources.

Response of the brain to a visual stimulus.
Finding the Sources with a Spatial-Temporal algorithm

Graphics by Ranken LANL

The University of New Mexico
MEG
Magnetoencephalography

Imaging the Mind
Examine correlations between magnetic field magnitude and time in sensor space
(No inverse problem)
Analyses are performed to estimate quantitatively the synchronous (i.e. zero-lag) interactions between signals from pairs of sensors to assess dynamic brain function.

- **Step 1**: Calculate all pairwise zero-lag cross-correlations
- **Step 2**: Calculate the partial zero-lag cross-correlations within the 248-sensor network

Data Analysis - 2

- The MEG time series are “prewhitened” by fitting an ARIMA (AutoRegressive Integrative Moving Average) Box-Jenkins model and taking the residuals.

- This procedure yields practically stationary series from which CCF is estimated.
Zero-lag (1-ms synchronous) Partial Correlations Of Prewhitened (stationary) MEG Time Series

Langheim et al., PNAS, 2006
Predictions from raw MEG signals: Music Perception

- Subjects listened to a musical piece while MEG was recorded
- Single trials analyzed using multivariate regression of MEG data on MIDI notes of the piece
- Predicting MIDI notes listened to
Music Prediction A

PPanther_Stimulus

PPanther_Prediction
Assessment of Dynamic Brain Function: Synchronous Neural Networks

- Examine correlations between magnetic field magnitude and time in sensor space
- All possible zero-lag **partial** cross-correlations between 248 sensors (= 30,628)
- Positive or negative
- 1-ms temporal resolution = true synchronicity
- Simple fixation – look at a dot for 45 - 60 sec
Discriminant classification analysis

- Linear discriminant analysis
- Robust, cross-validated leave-one-out method
- 100% correct classification of 52 subjects to one of 6 groups (healthy control, Alzheimer’s Disease, schizophrenia, chronic alcoholic, multiple sclerosis, Sjögren’s syndrome) using as few as 10 zero-lag cross-correlations as predictors!
- Such sets are found in numbers far in excess of those expected by chance
Superparamagnetic Particles and the Detection and Imaging of Disease using Magnetic Sensors

Superparamagnetism
Magnetic Nanoparticle with antibody attached

Typical magnetic core diameter is 20–30 nm.

Typical bio-coatings are: Carboxyl, starch, streptavidin, PEG

Antibodies are specific markers for various types of cells; e.g., T-cells, various types of cancer cells, etc.
Superparamagnetism

Iron-oxide nanoparticles <100 nm diameter

Particles consist of a single magnetic domain.

All internal atomic magnetic moments are aligned (homogeneous magnetization)

Free particles randomize quickly by Brownian Motion

Bound particles decay by Néel Mechanism

Particles exhibit large magnetic moments when magnetized

Particles behave as paramagnetic when not magnetized (they do not agglomerate)
Scanning Electron Microscope View of Nanoparticles

Monodisperse magnetite 20 nm diameter, made at Center for Integrative Nanotechnology at Sandia National Laboratory (Dale Huber)
Nanoparticles form a Magnetic Dipole when a magnetizing pulse is applied

- An induced collective dipole moment $\mu(t)$ is the result of alignment of a collection of N particles each with a moment μ_p by an external pulsed field B for a duration t_0.

- $\mu(t)$ decays as the individual particle orientations relax, this is called the remanence time.
The interaction of a nanoparticle of magnetic moment μ with a magnetic field B

\[U = -\vec{\mu} \cdot \vec{B} \]

The average value of the cosine of the angle between is

\[\cos \theta = \frac{\int e^{-U/kT} \cos \theta d\Omega}{\int e^{-U/kT} d\Omega} \]

The Langevin function, $L(x)$ gives the average value of $\cos \theta$ where $x = \mu B/kT$

\[L(x) = \coth(x) - 1/x \]
Dipole formed by the magnetic pulse and its decay

Each nanoparticle of radius \(r \) is aligned by the field of pulsed Helmholtz coils to form an initial moment determined by the Langevin function and the Néel relaxation time:

\[
\mu_0(r, t_0, B) = \mu_p L(x)[1 - \exp(t_0 / \tau(r, B))]
\]

The decaying dipole seen by a SQUID is the sum of all the aligned nanoparticle moments as they randomize when the field is quenched.

\[
\mu(t, t_0, B) = \int_0^\infty dr P(r) \mu_0(r, t_0, B) \exp\left(-t / \tau(r, 0)\right)
\]
Brownian vs Néel Relaxation Times

Free Particles

![Graph showing Brownian Relaxation Time vs hydrodynamic radius]

Bound Particles

![Graph showing Néel Relaxation Time vs radius of Ferrimagnetic Core]

Brownian

\[
\tau_{\text{Brownian}} = \frac{4\pi \eta R^3}{kT}
\]

Néel

\[
\tau_{\text{Néel}} = \tau_0 \exp\left(\frac{KV}{kT}\right)
\]

For polydisperse nanoparticles

\[
B(t) = a_0 + a_1 \times \ln \left(1 + \frac{b}{t}\right)
\]
Superparamagnetic Particles and the Detection and Imaging of Disease

Measuring the Remanence Fields
7-Channel SQUID Measuring Chamber

- SQUIDs
- Cell Source
- Non-Magnetic Stage
- Helmholtz Coils

Multi-channel system permits vector moment measurements
Second-order gradiometer Sensor Array

Measures 2nd derivative of magnetic field to minimize background pickup of external fields. Permits operation without the need for a magnetically shielded room.
Methodology

Procedure for Measuring Remanence Fields

1) Antibody-nanoparticles injected into subject (< 1mg Fe).
2) Subject placed under sensor system
3) Magnetizing pulse applied (38 Gauss applied for 0.30 sec)
4) Remanence fields measured for two Seconds
5) Magnetic moment and location of source(s) obtained
6) Number of detected cells determined

Example of 7-channel SQUID remanence fields
Disease detection procedure

Calibrate Cell Sensitivity:

- Measure magnetic moment per particle by fitting magnetization curve to Langevin function
- Measure magnetic moment of cell sample with known number of cells
- Calculate number of nanoparticles/cell for each cell type
Superparamagnetic Particles and the Detection and Imaging of Disease

Detecting and Locating Cancer
Clinical Arrangement in unshielded environment
Growth of human tumor

Reference: The Cell p. 1316
Breast Cancer

Breast Phantom with two vials of live breast Cancer cells (MCF-7) Coupled to Magnetic nanoparticles with HER-2 antibodies

Sensitivity for breast cancer cells $= 10^5$ cells for depths up to 8 cm into breast. Imaging accuracy is +/- 3 mm.
Breast Cancer Markers and Cell Lines currently under study

Antibodies:

HER-2 antibodies

CA27.29 Breast Tumor Marker present on epithelial cells and elevated in breast cancer (33% in early and 67% in late stage cancer)

CA15-3 also elevated but not as specific

Angiogenesis:

VIP01 (vascular imaging peptide 01) binds to the integrin $\alpha_v\beta_3$ shown to be overexpressed at sites of neovascularization and metastasis.

Cell Lines Available:

Mouse Model of Human breast cancer

SCID Mouse with human breast cancer Xenograft on flank.

MCF7 Cancer Cells

Mouse injected with Nanoparticles coupled to HER-2 antibodies
Results of Mouse Tumor Study

Magnetic moment ($\times 1\text{E}+07 \ \text{A-m}^2$) as a function of time from mouse tumor after injection of nanoparticles.

$\mu = 1.0 = 2.6\times10^{10}$ nanoparticles $\approx 3 \times 10^6$ cancer cells ($\approx 1 \times 10^4 \text{ np/cell}$)
Labeling of Breast Cancer Cells with magnetic NP

BT474 breast tumor cells, labeled with Simag 1411 Carboxyl magnetic NP, coupled to anti-her2 Ab. Left is bright-field image of BT474 cells showing NP bound to surface, Right image is dark-field image.
Ovarian Cancer

Anatomical Model under sensor system.

Nanoparticle in-vivo imaging permits several consecutive injections of different markers to improve sensitivity and specificity; e.g., CA125 & HMFG1/G2 give 95% sensitivity 93% specificity

Ovary with Carcinomas

Carcinoma of the left ovary
Falllopian tube
Ovary

Senior Scientific
7-channel SQUID remanence fields from 500,000 live ovarian cells coupled to nanoparticles with CA-125 markers.
Live Ovarian Cell lines

Marker: CA125

Cell Line | NP/cell |
t|---|---|
tov-112D | 2.04 x 10^4 |
ov-90 | 3.35 x 10^3 |
ovcar-3 | 6.73 x 10^3 |

Minimum Cells Detectable Vs Depth for Three Ovarian Cell Lines (CA-125 Antibody)

Tumor visibility on X-ray requires 10^8 cells

Minimum Number of Cells

Depth from Sensors (cm)

Typical Ovarian Depths
Superparamagnetic Particles and the Detection and Imaging of Disease

Detecting Rejection of Transplanted Organ
In-Vivo Detection of the Rejection of a Transplanted Organ

1) Rejection of a transplanted organ occurs by T-cells that attach to foreign Human-Leukocyte-Associated antigens on the donor cells and kill them.

2) T-cells accumulate in small nodules within the organ.

3) T-cells can be targeted with specific antibodies, conjugated to magnetic nanoparticles, and detected in-vivo by SQUID sensors.

4) Method minimizes the need for painful biopsies.

5) Monitoring for T-cell presence will be used to determine the amount of anti-immune system drugs being administered.
Each T-cell will have 5×10^4 CD3 Antibodies conjugated to nanoparticles

1) Current SQUID system detects 10^5 cells at 4 cm and 10^6 at 8 cm.

2) This corresponds to the amount in ~100 micron diameter nodules.

3) Completely rejected organ may contain 10^{10} – 10^{11} T-cells.

4) Transplanted organs include kidney, heart, liver and lung.
Specific Binding of Nanoparticles to Cells

- Jurkat T-Cells CD2 Antibody (non-specific)
- Jurkat T-Cells +CD3 Antibody (specific)

Jurkat cells are leukemia T-cells
Kidney Phantom containing two sources of Live Jurkat T-cells under SQUID sensor
Magnetic Field Contours of Data and Theory for two Live Cell Sources in Kidney Phantom

<table>
<thead>
<tr>
<th>Source 1</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>m(A-m²)</th>
<th>Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>measured</td>
<td>1.4±.3</td>
<td>-1.1±.3</td>
<td>5.5±.3</td>
<td>1.52E-07</td>
<td>4.3E+06</td>
</tr>
<tr>
<td>imaged</td>
<td>1.3±.4</td>
<td>-1.9±.4</td>
<td>5.0±.3</td>
<td>1.45E-07</td>
<td>4.1E+06</td>
</tr>
<tr>
<td>Source 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>measured</td>
<td>-2.7±.3</td>
<td>-1.5±.3</td>
<td>5.5±.3</td>
<td>1.60E-07</td>
<td>4.6E+06</td>
</tr>
<tr>
<td>imaged</td>
<td>-2.7±.4</td>
<td>-2.2±.3</td>
<td>5.0±.3</td>
<td>1.60E-07</td>
<td>4.6E+06</td>
</tr>
</tbody>
</table>
Superparamagnetic Particles and the Detection and Imaging of Disease

Diseases of the Brain
Diseases of the Brain

Nanoparticles and SQUID detection can be used to detect, and potentially treat, diseases of the brain; e.g., Alzheimer’s and Multiple Sclerosis.

Specific coatings such as PEG help to get past the BBB with magnetic nanoparticles carrying Antibodies and Drugs.
Methodology of Detection and Treatment of AD

1) Use nanoparticles coated with PEG to get by BBB
2) Use antibodies for Amyloid Plaque and Tau
3) Inject into patient and detect and localize plaque and Tau deposits
4) Determine presence and state of AD
5) Inject nanoparticles with antibodies and anti-plaque drug
6) Magnetically concentrate particles over localized plaque sites
Measuring Sources in the Brain

Model of brain placed in skull with multiple diffuse nanoparticle sources to measure multiple extended sources.
Localization of Nanoparticle Sources in the Brain

Experimental Fields

Theoretical Fields

Dipole 1: X Y Z M N
 -3.12 0.70 4.53 3.26 7.2E+10

Dipole 2: X Y Z M
 2.19 1.85 4.31 4.07 8.9E+10
Alzheimer Disease Status

1) Primary Imaging analysis completed
2) Antibodies for Amyloid Plaque and Tau
3) Antibodies coupled to Nanoparticles
4) Flash-frozen brain slices of AD Patients
5) AD Mouse model under development (UMN have developed AD mouse)
Summary

(1) SQUID sensor sensitivity can detect and image brain magnetic fields and targeted nanoparticles in disease.
(2) Measurement of natural biomagnetic fields can be used to understand brain function.
(3) Measurement of natural biomagnetic fields can be used to understand the working mind.
(4) Magnetic nanoparticles and weak field sensors can be used for early disease detection.
(5) Nanoparticle applications include cancer, leukemia, transplant rejection, and brain diseases.
(6) Treatment options include multi-function nanoparticles for localization and magnetic concentration or hyperthermia.

This research was funded in part by:
The National Cancer Institute
The National Institute for Allergies and Infectious Disease
The US Department of Defense
Primary Participants

E. R. Flynn1,
H. C. Bryant1,3,
D. A. Sergatskov1,4,
R. S. Larson3, D. Lovato3, L. Sillerud3, J. Jaetao3
N. Adolphi2
C. Bergemann5
D. Huber6
A. Georgopoulos7, A. Leuthold7

1Senior Scientific, LLC, 2New Mexico Resonance
3University of New Mexico, 4FermiLab,
5Chemical GmbH, Germany, 6CINT-Sandia National Lab,
7VA Hospital and UMN, Minneapolis, MN