Energy depositions in materials

Requirements?

- From Donna's requirement table:
- Protons
- Pions+-
- Electrons
- Kaons+-

from 0.7 GeV/c from 0.2 GeV/c from 0.2 GeV/c from 1 GeV/c *

- Absolute momentum scale : <= 1% How to quantify?
- What on angular resolution? Assume 10 or 20 mrad? Needed at all energies, or enough to measure at high E?

*why the same? They have VERY different interactions. In any case..they decay in the beam line!

Materials in the beam line (unavoidable)

- Preliminary guess:
- Position/tof monitors: a total of 10 mm plastic
- Cerenkov : 1-2 m of CO_2 at 0.5-0.8 atm
- Beam windows + cerrenkov mirror: 1mm mylar
- SS membrane and its strengthening

• I kept those in all simulations

Cases

- (similar, not equal to Thomas requests..)
- 1. Beam line and SS membrane, plug up to active LAr
- 2. Same, plug up to field cage, 5 cm inactive Lar
- 3. Same, no plug, 45 cm inactive Lar
- 4. As 1, keep also secondary membrane and 40 cm foam in between the two membranes
- Energy loss
- Straggling of energy loss (as simulated)
- Angular deflection

(for hadrons: only uncollided particles included)

For electrons : "still mip" fraction

No plug

- Electrons loose on average > 35% of their energy at 2 GeV, 65% at 200 MeV
- No electron survives as mip
- Electron energy loss spread : from 10 to 20%
- > The "no plug" condition does not allow to measure electrons
- Protons survive only if p>1 GeV/c
- Pions, kaons Energy loss >15% for p<1 GeV/c
- Deflections > 30 mrad rms for p<1 GeV/c
- → The "no plug" condition does not allow to measure hadrons below 1 GeV/c or more, unless one relies on tagging /simulations

Partial plug (no field cage penetration)

At lower wished momentum	Eloss/e	Deloss/E	Theta rms mrad	mip
proton	14%	0.5%	25	
pion	18%	1.3%	65	
kaon	2.5%	0.5%	10	
electron	8 %	3%		70%

Minimum measurable p ?	Eloss/E < 15%	Deloss/E <2%	Theta rms< 20mrad	Mip >50%
proton	.7	0.7	1	
pion	.4	0.2	0.7	
kaon	.5	0.4	0.7	
electron	.2	0.4		.2

Questionable at low energies: high energy loss and deflection. Also, would need more insight on the residual ability to reconstruct "mip"electrons Also: first part of the tracks in non-uniform Efield. Backscatter to be assessed

Total plug : no inactive LAr

At lower wished momentum	Eloss/e	Deloss/E	Theta rms mrad	mip
proton	4.5%	0.25%	6	
pion	5.8%	0.7%	28	
kaon	.8%	0.14%	5	
electron	1.3 %	0.4%		90%

Minimum measurable p ?	Eloss/E < 15%	Deloss/E <2%	Theta rms< 20mrad	Mip >50%
proton	.5	0.4	0.7	
pion	.2	0.2	0.4	
kaon	.4	0.4	0.4	
electron	.2	0.2		.2

Only concern: deflection of low energy pions

all plug, with secondary membrane and 40 cm foam

1.75 2

p(GeV/c)

Total plug, +secondary membrane and foam

At lower wished momentum	Eloss/E	Deloss/E	Theta rms mrad	mip
proton	10%	0.4%	15	
pion	13%	1.0%	36	
kaon	1.9%	0.2%	6	
electron	4.8 %	1.1%		87%

Minimum measurable p ?	Eloss/E < 15%	Deloss/E <2%	Theta rms< 20mrad	Mip >50%
proton	.7	0.5	0.7	
pion	.2	0.2	0.4	
kaon	.5	0.4	0.5	
electron	.2	0.2		.2

Some concern at low energies

Summary

- The full 45 cm LAr (no plug) would kill the measurement for all electrons. Same for all hadrons <1 GeV , unless one relies heavily on MC and/or reconstruction
- Plug ending before field cage (5 cm inactive Lar): Questionable at low energies: high energy loss and deflection. Also, would need more insight on the residual ability to reconstruct "mip"electrons. Also: first part of the tracks in non-uniform Efield. Backscatter to be assessed
- Full plug, no inactive Lar, always keeping the SS membrane: GOOD. The only concern might be the deflection of very low energy pions
- Full plug, no inactive Lar, always keeping both primary and secondary membrane, 40 cm of foam: some concern at low energies, better than 5~cm LAr