

Status of the Crab Cavity Effort May 18, 2016

On behalf of WP4

Joint USLARP CM26/Hi-Lumi Meeting, SLAC

Outline

- Update on the Cavity + CM production
- SPS Test preparation

Cost & Schedule Review (New Baseline) CM Review, Nov 2015 (Basic design choices approved) SPS Test Day I

Revised Planning

- First Re-Baselining after C&S Review I
 - US cavities delayed (+ unresolved "conformity standards")
 - CERN cavity production (DQW) for SPS is adopted as baseline
- Impact on SPS is significant

SPS Revised Planning

		2016			2017					
	Qtr1	Qtr2	Qtr3	Qtr4	Qtr1	Qtr2	Qtr3		Qtr4	Jan
RF Power	2 IOTs SM18 2 IOTs in BA6 (FPC Conditioning)									
LLRF/Controls	SM	SM18-Vertical Tests Setup Deploy for BA6-SM18 Setup High Power & VTA deployment								
Dressed Cavities		Cavity 1 Fabrication (Treatment + Cleanroom tooling) Cav 2 Fabrication + Cav 1 & 2 Treatment/Testing + Clean room assembly								
FPCs		2xFPCs in S	M18 Cleanroc	m	FPC Conditionin (TB)	g				
Cryomodule	I	Cryostat & To Design/Procure	oling ement	Cryomoo Prep	dule/Tooling paration		CM Assem	bly	Cold Tests	SPS
Cryogenics		Cry	ogenic Distribu	ition & Valve B	ox SM18/SPS				CM + VB	
Movable Table			Design	& Manufacturi	ng		Tests at Cl	ERN		

CM-Review Recommendations (A. Yamamoto et.al)

- Clarify "the minimum functional requirement/goal" for the SPS test
 - Draft acceptance criteria prepared, being revised/approved
- A decision/action on the ordering/implantation of the refrigerator
 - Done
- The system integration workflow, including tooling, fixtures, and intermediate tests must be studied in greater detail
 - Now coordinated under a new WG
- The critical components such as FPCs and tuners shall be individually reviewed (in 2016)
- Cryogenic-safety and failure-mode analyses should be performed
 - 1st safety analysis approved by HSE, will review again in Fall 2016
- Reinforce the supporting system & limiting forces on the FPCs.
- Blade type supporting system was optimized

DQW Production, Circular Trials (Lunette, Cuvette, Extrusion)

See Talk: M. Garlasche

Cu tests performed to explore shaping techniques & tooling (very systematic analysis) Circular samples show very good shape and thickness accuracies

Example Shaping Simulations

See Talk: M. Garlasche

Weld Map

16 complex welds to qualify & perform (with tight tolerances)

Welding Test Qualification Flow Chart

Difficult Weld

A Sample Weld

Nb-Nb: W03A/B Final ellipsoidal welds :

Welding in 3mm of thickness performed on 1 side. Two configurations tested: Key (Clé) and BW (Bords droits)

BOTH CONFIGURATIONS WITH SATISFACTORY RESULTS

W03A

Status of US Cavities from Niowave

Three welded assemblies of an 2-RFDs at Jlab RF, CMM, Radiography etc.. started Expect 1-RFD qualified and sent to CERN Mar 2017

DQWs parts being re-stamped and in a similar configuration to be sent to Jlab

Helium Vessel

Bolted/welded concept was chosen for structural integrity & minimal stress to cavity

A dummy prototype was launched for experimental verification of assembly procedure, stress, vacuum integrity and other aspects.

They are now verified

Prototype Helium Vessel

- WELDING STEPS
- 1- Vertical welds
- 2- Welds around the top/bottom plate
- **3- Longitudinal Covers**
- 4- Circular Covers & Beam pipe

Pressure tests (2.6 bar)

Tests vs. Simulations

Cavity Stress, cool down

• $\Delta T_{max} = 40 \text{ K top/bottom}$ of tank (input constraint)

- Stress on cavity is low (≤ 10% of allowable)
- Slower cool-down rate can further reduce if necessary

Cavity Chemistry, DQW & RFD

DQW: Very light chemistry on Parts & Bulk Chemistry on assembled cavity

RFD: Bulk Chemistry on Parts & Light Chemistry on assembled cavity

CERN Setup, Cavity Chemistry (PoP)

General procedure uses acid circulation between $10 - 15^0$ C (~ 40 min, indicative)

Small tilting for trapped gas removal

Fluid Dynamics for Chemistry

See Talk: T. Jones

Data taken for 21 points throughout the cavity for each orientation

KEK Electro-polishing Status

EP apparatus ready waiting for the cavity

The cavity can be tilted to extract trapped air in the crab cavity during electrolyte filling

Frequency Tracking

See Talk: S. De Silva, S. Verdu

FREQUENCY SHIFTS

Target: 400.79 MHz (-60 kHz)

	Effect	Magnitude		Uncertainty		Unit	Premises under which value was calculate		
	Last weld-A shrinkage (assumed <mark>~1</mark> mm)	$\Delta f_{ShrinkWeldA}$	980	-490	+980	kHz	Freq shift calculated as expected shrinkage times trim sensitivity.	Cumulative freq shift from both shrinkage and sagging of last weld-A will be known after welding the "next-to-last" weld.	
Ę	Last weld-A sagging (assumed 0.5mm- deep, 5mm-thick bead)	$\Delta f_{SaggWeldA}$	-70	-50	+70	kHz	From simulations.		
atic	High-T baking	∆f _{High-T}	0			kHz			
rici	Low-T baking	Δf_{Low-T}	0			kHz			
Fab	BCP (210 μm)	Δf_{BCP}	-170	-50	+50	kHz	Models prepared for CST simulations.	Take about ~30% for error due to thickness removal uncertainty and unhomogenenity. Error may be reduced if BCP performed in several iterations and in rotating facility.	
Assembly	Couplers and ports (bare cavity> baseline aseembly of cavity with couplers)	Δf_{C}	-89	??	??	kHz		Estimate uncertainty coming from assembly error that will turn into penetration error.	
	Test couplers out> in	Δf_{TestC}	0			kHz			
	Helium vessel mounting and magnetic shield assembly	Δf_{Mount}	0			kHz			
	Welding of helium vessel	$\Delta f_{TankWeld}$	-150	-116	+416	kHz	Magnitude: form measurement of displacements in dummy tank after welding used as input for ACE3P simulations. Uncertainty: worst-case scenario for tolerance error of ±0.1 mm.		
•	Frequency change from air to vacuum	Δfε	133.3			kHz	Formula		
ğu	Frequency sensitivity to pressure	$\Delta f_P / P$	-0.103			Hz/mbar	ANSYS-APDL		
š	Frequency change from 300 K to 2 K	Δf_T	573			kHz	ANSYS-APDL		
=	Lorentz detuning coefficient	$\Delta f_{\rm II}/(Vt)^2$	-40			Hz/(MV) ²	CST simulation for		
peratio	LF detuning: RF power off> on	Δf_{LD}	-0.4			kHz	model including tuning system and vessel.		
0	Beam loading	Δf_{BL}	0			kHz	Formula		

2K Internal Magnetic Shields

Double QW

• Internal magnetic shields already integrated by STFC-UK !!

- 1 mm Cryophy, annealed after shaping, supported by Ti brakets
- Controls done: dimensions, shielding reduction factor
- At CERN waiting for cavities...

Comparison of Data and Simulations

HOM Couplers

DQW Status

- Niobium pieces & other ancillaries produced
- Final metrology & welding tests ongoing before assembly

RFD material at CERN, fabrication in 2016

See Talk: M. Garlasche

HOM Lines

 Optimized for static/dynamic heat loads to 2K

Load side (300 K)

- Coax line for 1 kW, 316LN, Cu sputtered (5μm)
- Flexibility using spherical joints & themalization with alumina disk
- Destructive tests for validation 2016

Cavity side (2K)

Test box

Tuner Tests (on PoP)

See Talk: A. Castilla

Tuner preparation for Cold Tests planned during Jun 2016

- Assembly into SM18_V3 & protection for cooldown actions ongoing
- PLC based control system successfully tested in a feedback loop

Repeatability preceision ~0.5 µm ~ 100 Hz

Tuning Fixtures

- Warm frequency tuning limited by tuning fixture
- Limiting factor is the strength of NbTi fixture and weld
 - CERN (NbTi), USLARP (Nb with reinforced shape)

Power Coupler

Most FPC parts (+spares) completed

RF Amplifier

2016: Important decision to adopt IOT as baseline for SPS

Modification of the existing IOT station to 400 MHz New output cavities & new coupling elements (designed at CERN) Validation will establish IOTs as baseline for LHC (streamline integration)

Reached 60 kW last Friday, limited by the exiting power supplies !

Cavity Supports & Alignment

Position monitoring system (BCAM + FSI)

- BCAM + FSI (1:1) full system mock-up under construction
- Irradiation campaign of reflective targets and collimators finished
- FSI head prototypes designed and under manufacturing
- BCAM → System performance initially validated on the mock-up. Tests and calibration of camera vacuum viewports pending
- Cryogenic tests of reflective targets planned in the next 2 months

uminosity

- Fiducialisation of the helium tank mock-up on CMM and laboratory verification of full system performance
- FSI head test in operation conditions (vacuum, reflector at 4K)
- Irradiation campaign of FSI heads assemblies
- SM18, SPS DAQ and data processing software development
- Measurements in SM18 validation of the final system

Warm Magnetic Shield

- Field measured in SPS and applied to Warm Magnetic Shield
- Gaps between plates induces field leaks, fine tuning

Results with optimal proposed design

Top plate

50 mm

CM Thermal Shields

- After several studies, Cu chosen as baseline
- Connection between cooling pipe and plates under study
- Design & integration finishing

Result		Pipe Terr	perature	Pipe Convection			
Summary		T _{min} (K)	T _{max} (K)	Т _{min} (К)	T _{max} (K)		
	Panels	64	81	70	87		
AI/55	Pipe	50	105	50	139		
C	Panels	53	75	55	84		
Cu	Pipe	50	70	50	75		

Vacuum Vessel

- Trapezoidal design for assembly (adopted from Triumph)
- Stainless steel with Al lateral windows (max access)
- Deformation on top must be limited to mitigate misalignments
- Deformation to be limited for vacuum integrity

SM18 Clean Room & CM Assembly

SPS-LSS6 Implantation

11.5m overall space, CM installed in a by-pass & motorized transfer table

Multiple Vacuum sectorization to accommodate bypass & module replacement

RF & Cryo on movable table with liquid Helium

Cryogenics

- Decision for refrigerator and ancillaries to go underground
- Procurement for cryo-distri, refrigerator & proximity cryogenics launched

BA6/SM18 (Surface) Integration

Integration in BA6 area has started

Integration in SM18 bunker and RF power area ongoing

SPS Test Program Summary

- In-situ cryomodule RF commissioning/testing in park position
- **RF commissioning** with low-intensity beam, 1-12 bunches
- High intensity single bunch up to 4x72 trains
- Long-term behavior of coasting beams in the SPS with 1-bunch

¹⁄₂ -day Meeting in Jan 2016 to discuss potential MDs (ABP, BI, OP, RF & others)

Compatibility with SPS Operation

Fixed Target Beam

LHC beam extraction

- Compatible with slow extraction to Fixed target beam
- Aperture not enough LHC extraction

Measurements considered here

- ★ Beam crabbing (Head Tail Monitor)
- ★ Crab dispersion (BPMs around the ring)
- Longitudinal collimation (bunch length)
- Emittance growth (wire scanners)
- ★ Crab Cavity phase noise (Turn-by-Turn BPM)
- \star Crab Cavity b_3 RF multipole (TbT or tune)
- Dynamic aperture (on-going simulations)

Motivation is twofold: Test CCs in view of HL-LHC but also develop techniques for beam-based CC qualification in HL-LHC.

Crabbed beam (vertical, 26 GeV)

Longitudinal collimation: reduce bunch to 7.5cm?

Test Program, LLRF

See Talk: T. Mastoridis

Long-term behavior of coasting beams

• Validate the calcs/simulations, and mitigation by damper

$$\frac{d\varepsilon}{dt} = \beta_{CC} \left(\frac{eV_o f_{rev}}{2E_b}\right)^2 \sum_{n=-\infty}^{\infty} S_{\Delta\phi}(\pm f_b - nf_{rev}) + \beta_{CC} \left(\frac{eV_o \sigma_{\phi} f_{rev}}{2E_b}\right)^2 \sum_{n=-\infty}^{\infty} S_{\Delta A}(\pm f_b \pm f_s - nf_{rev})$$

• The SPS CC emittance growth will be much larger than the final LHC system (noisy LLRF, lower energy, smaller f_{rev} - but smaller β_{cc}) -> probably **no need to boost the noise to see an effect** ...

- Calculated and simulated transverse emittance growth vs. CC RF phase noise (left)
- Goal is to derive the exact specification for the LHC

Summary

- Intense & exciting 2015-16
 - Highly motivated team, but no shortage of crisis meetings
 - Keeps us on our toes
- In approx. 1-yr we should be in final assembly phase & in 2-yrs in the SPS

© Scott Adams, Inc./Dist. by UFS, Inc.

CERN Plans for SPS-CM

Revised Plan, LHC Series

Revised Plan, LHC Series

Welding tests, HOMs

Luminosity

- W050: Niobium thickness 2mm. Welding from external side

Internal Side

Sample for testing

- W010: Niobium thickness 3.6 & 4.2mm. Welding from external side

- Welding parameters for both welds: OK
- Visual inspection according to ISO 13919-2 level B
- Qualification according to EN-15613: Metallographic and Hardness Test