

RFD – RF Dipole Report on Cavity Progress at JLAB

Anne McEwen Jefferson Lab, Newport News VA , USA May 18-20, 2016

USLARP Status 18May2016 R12

LARP/HiLumi CM – SLAC, May 18th – 20th, 2016

Overview – JLAB Status

- Many collaborators on this project
 - Design ODU, Niowave, CERN, US LARP & many others
 - Niowave: Fabrication of sub assemblies under an SBIR , completed manufacturing drawings
 - JLAB : Fab & Test, as well as special tasks
 - Example of special tasks analysis of Tuner Attachment
- Current Status at JLAB
 - Steps completed
 - Next steps at JLAB
- For future HOMs and Helium Vessel

RFD-RF Dipole Cavity Design

Plan-LHC Crab R&D RFD & DQW

Plan overview recommended by Niowave April 4, 2016 (revised April 8th in conf call with ODU/JLAB)

Below is a proposal for completing the two RFD cavities and HOM couplers. Vertical testing of the RFD cavities without HOM couplers

- Ship two RFD cavities to JLab (3 subassemblies with stiffener and tuner assembly not welded)
- Inspect RF surfaces
- Dimensional checks / QA
- Radiography
- Grind/polish surfaces as needed
- Bulk etch 3 subassemblies
- Machine weld prep for 3 mm full penetration welds (if approved by LARP/CERN)
- Trim tune
- Test fit and fixture the stiffeners and tuner
- Weld subassemblies, stiffeners and tuners
- Light BCP and HPR
- Test cavity without HOM couplers

Final details of timing and steps in discussion

LARP/HiLumi CM - SLAC, May 18th - 20th, 2016

Courtesy of Niowave

RFD Sub Assy Fabricated by Niowave

- Two cavity sub assemblies arrive at JLAB
- QC- Frequency re- checked

RFD Tuner Attachment Analysis

Background : The original design called for a NbTi to RRR weld, where Titanium was found to migrate on the RRR, ending up on the RF surface. As a result, the decision was made to investigate a simpler solution using welding a RRR tuner connection with helicoil inserts

Proposed New Design :

Tuner attachment is fitted into a recess on the 4mm cavity wall and then EB welded around the edges. Tuner attached by M10 titanium Helicoil thread insert. Several alternatives were analyzed, finally converging on a more conical design

Recommendation RFD Tuner Attachment

Analysis of various design options – presented 22 Apr2016 by F. Fors to CERN & Partners

- Alternative 1 (JLAB) to reduce the stresses in the lower fillet of the original design
- Alternative 2 (Niowave) redesigned Alt. 1, to minimize the machining of cavity wall. Tuner attachment is fitted in 2 mm deep circular groove rather than a full recessed surface.

Alternative 1: Lower fillet retained but increased in size Stepped design replaced by conical

Alternative 2: (Niowave) Similar to Alt. 1 but with redesigned fitting to cavity

Result of stress analysis : Design from Niowave (Alt. 2) had lowest stress Next steps :

- Need approved drawings from CERN
- From final drawing make weld samples to further validate design

Courtesy F. Fors (JLAB) & H. Park (ODU/JLAB)

LARP/HiLumi CM – SLAC, May 18th – 20th, 2016

Status Weld Certification at JLAB

Analysed welds

A: 3mm for 1 side A1: 3mm for both sides

- DQW Cavity
- B: 4mm for 1 side B1: 4mm for both sides

RFD Cavity

- Documentation received according to ASME: VERY GOOD
- PQR EBW Nb 001-A_WPS EBW Nb 001-A
- PQR EBW Nb 002-A1_WPS EBW Nb 002-A1
- PQR EBW Nb 003-B_WPS EBW Nb 003-B
- PQR EBW Nb 006-B1_WPS EBW Nb 006-B1
- WPQ EBW Nb 001-A & EBW Nb 002-A1
- WPQ EBW Nb 003-B & EBW Nb 006-B1

Acceptance criteria:

- Stringent (level B) of ISO 13919-2
- Additional Restrictions (range 0.1-0.2mm) of Table 7 from Engineering Specification

His:

Status : JLAB Weld Qualification to CERN requirements complete Dec.2015 Final documentation found in CERN EDMS 1612289 V.1

Weld Inspection Plan Radiography

V. VALIDITY
1 DRAFT

3.8.7 Electron-beam welding

Prior to the electron beam welding sequence, all parts shall undergo an ultrasonic degreasing and chemical polishing as specified in Section 3.8.5.

Before welding, the chamber shall be cleaned. A mass spectrum shall be taken to demonstrate that there are no residues of hydrocarbon.

All Niobium-Niobium welds shall be performed with 100% penetration, and all welds shall retain a smooth inner surface. Whenever it is possible welding from inside is recommended.

Pressure of the electron-beam welding chamber shall be maintained below $5x10^{-5}$ mbar, and Niobium vapour from welding shall be evacuated. The welding chamber shall be vented with nitrogen only after the temperature of the niobium part has dropped to 100° C at the hottest spot.

The welds shall be smooth and uniform. No repair of defective welds is allowed without prior approval from CERN.

CERN requests 100% visual inspection, radiographic inspection of 25% of the total circumferential seams and 100% of the total longitudinal seams. For corner joints and areas of high bending stress treat the circumferential seam as a longitudinal seam.

The electron-beam welding, and operator, qualifications shall be in agreement with the standards specified in Table 6.

Status at JLAB : Estimate in process from ATS our Radiography supplier .3 sub assemblies will be checked once dimensional work is complete

Jefferson Lab

Refer to proposal by S. DeSilva (ODU) presented 22April 2016

Dimensional check started May 9, 2016

- Based on Requirements & Inputs
 - Plan from ODU (DeSilva)
 - Niowave sub assembly drawings
 - Weld Prep Tool design feedback from JLAB designers
- Using 3D CAD Model from CERN compared to data from CMM at JLAB
- Results to be recorded in JLAB Inspection Traveler

Plans for Weld & Pre-Weld Machining

From the Niowave Plan (slide 4): Propose Machine weld prep for 3 mm full penetration welds (if approved by LARP/CERN)

- JLAB Machine shop is proposing a way to do the weld prep machining based upon a similar ODU cavity done recently
 - May use similar fixture concept for weld prep chemistry
- With the parts from Niowave we are starting to finalize the plan.
- Meet again with JLAB Machine Shop & JLAB designers once dimensional measurement data/report available (~ wk of May 23)

Overview of Chemistry

Chemistry Process presented 22Apr2016 to CERN

To summarize :

- Both BCP& Light BCP to use custom tooling in JLAB Closed Chemistry Cabinet with parts mounted in standard cage
 - Chemical Process Tools use Quill ("snorkel") proposed by JLAB
 - Fixtures concept for sub assembly as proposed by S. DeSilva (ODU)
- HPR to use the same Cage & Brackets as BCP
- Weld Prep Chemistry with custom tooling under Fume Hood

Details in the slides that follow

JLAB Closed Chemistry (BCP) Cabinet

Closed Chemistry Cabinet Cavity loaded from the Clean Room side of Tool

Chilled Acid in

Example of a cavity inside the cabinet showing manifold customized for flow distribution for specific cavity*

BCP Cabinet Capabilities Basic Process Steps (in order):

- Water Leak Check
- Nitrogen Leak Check
 - <5psi N2
- Acid Filtering
 - 0.2um filters
- Acid Polishing/Processing
 - 11-30 LPM, 8-10 deg. C
- Ambient Rinse
 - ~22 deg. C, ~40 LPM
- Hot Rinse
 - up to 80 deg C, ~40 LPM

Courtesy of Phil Denny & Jim Folkie (JLAB)

* Example shown is a Half Wave Co-Ax Cavity

LARP JLAB HPR High Pressure Rinse Cabinet

New JLAB HPR was installed & commissioned in 2015 Similar Machines at AES (2009), ORNL (2012), CERN (2013), & JLab (2015)

• Size

- Rotational Diameter = 41" (104cm)
- Chamber Opening = 48" W x 75" H (122 x 190cm)
- Rinse Stroke Height = 72" (183cm)
- Max Weight = 1000 LBS (450 kgs)
- Wand O.D. = 1" (25.4mm)
- Rotation Speed
 - Rotation .5 5 RPM (CW or CCW)
 - Wand Speed 0.1 300 IPM (762 cm/min)
- Rinse Capacity
 - Ambient UPW = 70F (21 C)
 - Hot UPW = ~176F (80 C)
 - Pressure to Nozzles* = 200-1500 PSI (14- 103 Bar)
 - Flow^{*} ≤ 10 GPM (38 LPM) @ max pressure
 - *Note: Flow is nozzle dependent.
 - *Note: HPR controlled by pressure, not flow!

Courtesy of Phil Denny (JLAB)

Final BCP Closed Chemistry Cabinet

Chemical Injection Quill "Snorkel" directs the flow of Acid & Water

Status :

Acid In

Acid In

- Tooling Design in process
- Tooling Fabrication, Procedure & Traveler to follow

Cavity Chemistry & Test Fixtures

- 16"x16" Titanium Cage
 - Chemistry & VTA
 - Standard Design at JLAB
- Custom "V" Blocks for specific cavity

Status of Tool Design & Fab for full assembly JLAB May2016 : Tool Design in process

Sub-Assemblies of RFD Cavity

Sub-Assembly	Parameter	Value	Unit	
	Center Body CTR (ODU SA-1 or NWV Center Section)			
	Height (H)	16.6	in	
	Length (L)	12.3	in	
H H	Width (W)	11.9	in	
	Volume	7.24 + 0.35	gallons	
L L	Weight	43.3	lb	
	Weight with acid	139.7	lb	
	End Cap Horizontal HOM EHHC	OM (ODU SA-2 or NWV E	nd cap 2)	
	Height (H)	11.0	in	
	Length (L)	13.5	in	
	Width (W)	13.46	in	
	Volume	1.73 + 0.17	gallons	
W	Weight	35.4	lb	
	Weight with acid	59.6	Lb	
	End cap Vertical HOM EVHOM - (ODU SA-3 or NWV End Cap 1)			
	Height (H)	8.5	in	
	Length (L)	13.5	cm ³	
H	Width (W)	18.077	m²	
	Volume	1.15 + 0.17	gallons	
	Weight	24.0	lb	
W	Weight with acid	40.8	lb	

Courtesy of Suba DeSilva (ODU)

Additional volume and weight with acid is included in the estimate, considering the pre-trimmed parts.

BCP/HPR of 3 sub assemblies- RFD

The same principles apply to the 3 sub assemblies before final weld

- JLab Closed Chemistry Cabinet
- fitted with custom tooling
- Use Chemical Injection Quills or "Snorkel" to direct the flow

Detailed slides to follow

Proposed BCP Processing Sequence LARP

- Total removal 140 microns
 - 1:1:2 BCP
 - one part Nitric, one part HF, 2 parts Phosphoric Acid
 - Achieve as much uniformity as possible
 - Specifically at High Magnetic Field Surface Areas
- Bulk BCP of sub assemblies (SA-1, SA-2 & SA-3)
 - Will be performed in JLAB closed chemistry cabinet
 - ODU propose 4 iterations of 35 microns and flipped after each iteration
 - Thickness measurement during BCP at two locations
 - SA-1 : at the two locations of High Magnetic Field and High • **Flectric Field**
 - SA -2 : at the two wave guide stubs
 - SA-3: location TBD

Jefferson Lab

Courtesy of Suba DeSilva (ODU)

Same 16"x 16" Standard Cage used for Chemistry

The Full assembled cavity would be mounted in the same Cage with V Blocks

Center Body CTR (SA-1) BCP Fixture

Refer to drawings for details

- Plates made from PVDF
- End Seals from Gortex Sheet

- End Seals from Gortex Sheet
- O-rings for Conflat Flanges :
 - Teflon Encapsulated Viton

End Cap HHOM (SA-3) BCP Fixture

Refer to drawings for detail

- Plates made from PVDF
- End Seals from Gortex Sheet
- O-rings for Conflat Flanges :
 - Teflon Encapsulated Viton

HL-LHC PRO

Weld Prep Chemistry - RFD

Weld Prep for RFD:

immersed in Acid for ~

Lower 0.5 inch of

90-120 seconds

cavity will be

US LARP weld prep will be done in the Fume hood in photo above

Status :

- Fixture Concept agreed in principle
- Final Fixture Design & Fab to follow

Documentation at JLAB

Data, Document & **Process Management**

Pansophy

AIN MENU + TRAVELERS MENU -> SRF + 12 GeV + W.F.O.

PANSOPHY : A Process & Data Management Tool

- **Data Management & Storage**
 - subcomponent test data
 - processing & testing procedures
 - Inventory
 - R&D and Production

LATEST TEST RESULTS VHAT IS PANSOPHY? Baseline After 120 C. 24 h bake Nov-2013 DocuShare Menu Updated link to page 1. SRF daily used files (i.e. Work Cente Put YOUR latest and greatest test Results here! and highly used are Project Folder his will take you to the top leve of the project folder for the proje

Welcome to Pansophy

- **Knowledge Management**
 - to Maximize learning from expensive prototyping and lowvolume production
 - Adopted by other DOE Lab
 - SNS (Spallation Neutron) Source)

Data, Document & Process Management

DocuShare Tool

- Web-accessible centralized file storage database (Lab-wide & SRF).
- Controlled-Sharing access to site content.
- Collection-Based filing structure.
- Files for SRF organizational info, Quality Management System, Project Management, procedures, travelers, etc.
- Plus other account and content features.

Pansophy Traveler – Example

A System of Universal Knowledge	yo eto si	w have been authenticated () Ni Citchere to koput				
MAIN MENU + TRAVELERS MENU ->	SRF * 12 GeV * W.F.O. *	CLOSED PRJ -				
		TRAVELERS				
Traveler Area: Edit / View	Search For: C100-	(i.e. CAV-INSP)				
	C100-CAV-ASSY-R3 C100 Cavity Assembly			*		
C100	C100-CAV-ASSY2-R3 C100 Cavity Assembly	r, Evacuation, and Leak Test				
0100	C100-CAV-BAKE-R2 C100 Cavity Bake-out			*		
Select Traveler	Page 0	NEXT		NEW		
SerialNum: 0	Traveler ID: C100-CA	AV-ASSY2 Rev: R3 Page:0	Traveler Se	eq Number: 0		
Traveler Title	C100 Cavity Assembly, Evacuation, and	Leak Test				
Traveler Abstract	The following traveler documents the ste	eps for the second of two clean room cavity as	ssemblies for VTA qualification of C100 cavities	for the 12GeV project.		
Traveler ID C100-CAV-ASSY2						
Traveler Revision R3						
Traveler Author Steve Castagnola						
Iraveler Date 13-May-2011						
NCR Emails	castagno,macha					
Approval Names	Steve Castagnola	Kurt Macha	John Hogan			
Approval Signatures						
Approval Date	13- May-2011	13-May-2011	13-May-2011			
Approval Title	Author	Reviewer	Project Manager			
References	List and Hyperlink all documents related	to this traveler. This includes, but is not limite	ed to: safety (THAs, SOPs, etc), drawings, proc	edures, and facility related docur		
RGA Leak Test Procedure	C100 cavity evacuation procedure	Cavity tooling VTA assembly drawing	C100 final cavity assembly procedure for VTA	Cavity installation into test stand procedu		
		CRM1207015-0100	qualification			
Revision Note						
R1	Initial release of this Traveler.					
R2	Updated C100 Final Cavity Assembly Pro	cedure for VTA Qualification				
R3	Updated C100 Final Cavity Assembly Pro	cedure for VTA Qualification				

Traveler Cover Page:

- Descriptions & approvals.
- Links to associated procedures.
- Revision history.

a meno	TRAVELERS HERU -> SK	F * 12 GeV	W.F.O.	CLOSED PRJ *				
					TRAVELERS			
Travel	er Area: Edit / View	Search For: C100-		(i.e. CAV-INSP)			100	
	C100	C100-CAV-ASST-H3 - C C100-CAV-BAKE-R2 - C	100 Cavity Assemb C100 Cavity Assem 100 Cavity Bake-o	oly hbly, Evacuation, and Leak Te ut	st		-	
Invelor.	•	1	Page 1 🔻	FRIST				
INum: 0			Traveler	ID: C100-CAV-ASSY2	Rev: R3 Pa	ige:1	Trav	eler Seg
Step No.			Instruc	ctions				Data In
	Record Cavity Serial No Operators login Record date If for any reason asser This will trigger a red s unselect the toggle for Use the D3 button at the assembly.	mber hbly on this cavity is st tatus on the traveler d the dashboard status ie top of the page to re	opped due to ashboard sho to go back to cord a discrep	a question or problem wing a work stoppage. yellow. aancy or deviation tha	select the help request tog When the problem is resol t occurred before, during, o	CAVSN -0 AssemblyTech1 -0- ved AssemblyTech2 -0- AssemblyTech3 -0- RecordDate (ex format 18-Jun-20 HelpRequest © Yes	• • • • • • • • • • • • • • •	NOW
	Perform final cavity assembly as per the <u>CUB transformation number to CUB automotion</u> . Use the common low at the right in record notes, etc., regarding this assembly. Record tophot/input probe set sorial number.				Assembly_Tech1 -0- Assembly_Tech2 -0- Assembly_Tech3 -0- FinalAssyComments	Assembly_Tech1 0. Assembly_Tech2 0. Assembly_Tech3 0. FinalAssyComments		
	Install the cavity into t Record the test stand s	he test stand as per th ierial #.	e <u>Cavity installation</u>	into test allend procedure-		VTATHSN -0- FirstAssemblyTech - SecondAssemblyTech - ThirdAssemblyTech - VTATSSN -0- CavInstallToTestStan	b v b v dComments	
	Evacuate the cavity as Record date and time t Record date and time t Record total system pr Allow the cavity to pur	per the <u>CIO carbo execution</u> of cavity evacuation. urbo pump was establ essure in mbar after to ap overnight.	m troatdate- shed to syste irbo pump is o	m. perating at full speed.		AssemblyTech_1 -0- SlowEvacStart (ex format 18-Jun-20 TurboStart (ex format 18-Jun-20	• 105 16:30) 105 16:30)	NOW
	After cavity has pump Leak test the cavity as scan with multiplier on the cavity is not leak ti The leak tested cavity	ed overnight, record to per the <u>RGA Lest Test Pace</u> (.rga file), leak test su ght, initiate a D3 and c can now be transporte	tal system pro date. If cavity immary with g ontact your so d to the VTA n	essure in mbar. is leak tight, save and graph (.docx file or .jpg upervisor or lead tech nezzanine for 120°F ba	upload the following files: , j), RGA leak test scan (.rga nician. ake.	TotalPressure1 TotalPressure2 TotalPressure2 First_AssemblyTech IsCavityLeakTight Must submit traveler Must submit traveler Must submit traveler Must submit traveler	mbar mbar • • • Yes © No before attaching before attaching before attaching	files. files.

DATA INPUT -

- 1. Process instructions & steps to guide work flow.
- 2. Data Input **data entry and comments** made by user at prescribed process points.
- 3. 'Hooks' to inventory system automatic serial number push and I.D.s for individual components and assemblies.

Example : JLAB existing STP Travelers

	TRAV_ID	TRAV_TITLE	TRAV_ABSTRACT
Inventory	NEW	Incoming Receiving	Normally project specific , may want a separate traveler for US LARP
Inspection & QC	STP-INSR	Inspection Summary Report	This is a standard report that is used to document inspections on parts and supplies received into SRF. For US LARP will include incoming Radiography reports
Inspection & QC	USLARP-EBW-CERT1	Weld Qualification Record	report)
Fabrication & Tuning	STP-CAV-PROC-RFIN	STP Cavity RF Incoming Inspection Traveler	This traveler collects data from incoming RF inspection measurement.
Fabrication & Tuning	STP-CAV-PROC-TUNE	STP Cavity Tuning Traveler	This traveler collects data from several different tuning steps during cavity production.
Fabrication & Tuning	NEW	Leak Check	Normally leak checks recorded in other travelers , may want a separate traveler for US LARP
Fabrication & Tuning	STP-EBW-WELD	EBW Traveler	Traveler captures Electron-Beam Welding processes
Chemistry & heat treat	STP-CAV-CHEM-BCP	STP BCP	This document captures the data generated from a Buffered Chemical Polish executed in the Closed Chemistry Cabinet.
Chemistry & heat treat	STP-CAV-CHEM-DEGR	STP Cavity Degrease	STP cavities.
Chemistry & heat treat	STP-CAV-CHEM-THKN	Cavity wall US thickness measurements	Cavity wall measurements using ultrasonic method
Heat Treat & Furance	STP-CAV-PROC-BAKE	STP Cavity Bake-out	120 deg. C bake of STP cavities before VTA qualification test.
Heat Treat & Furance	STP-CAV-PROC-HEAT	STP Cavity Heat Treatment	This Traveler collects data from cavity heat treatment furnace runs.
VTA Test	STP-CAV-VTA-TSTP	VTA RF Cavity Test Plan	Test Plan / Request for testing of cavities in the Vertical Test Area (VTA)
VTA Test	STP-CAV-VTRF	VTA RF Cavity Test	Standard Data Acquisition for testing of cavities in the Vertical Test Area (VTA)

Next steps : US-LARP specific set up Procedures have yet to be developed

Plans for DQW Cavity

- DQW process will be very similar to RFD
- Exception: chemistry done on the fully assembled cavity only.

- Since CERN is also building DQWs, the current focus is on the RFD
- DQWs will be following whenever possible the same steps as the RFD once these have gone past each step.
- At JLAB final details of the plan will depend on <u>when</u> the cavity is needed
 - Resources will be assessed at that time

Summary JLAB Status to date

- 2015 to April2016
 - Certification of JLAB EBW to CERN (Dec2015)
 - Special Tasks, Tuner attachment analysis (Feb2016)
 - CERN Final design (Drawing) & confirmation needed
 - Niowave Process Flow agreed ODU/JLAB (08Apr2016)
 - April/May 2016 tool /Process design in process
 - BCP Tool design ready for sign off (April) , quote in process
 - Light EP tool design incl "snorkel" in process
 - Thickness Measurement (2 channel) & wireless- Tests start soon
 - STP Travelers list available review needed
 - US LARP Project Requirements & Procedures (ODU/LARP/CERN)
- Niowave Sub assemblies at JLAB (28Apr2016)
 - Inspection & Dimensional check in process
 - Quote for Design and Fab of Machining & trimming tools to follow

For Future Consideration -Next Steps

- Confirm (or modify) Process Flow per plan of April 8th
- Finalize Procedures & Tooling Designs , confirm Traveler(s)
- Update Timeline to include :
 - Fabrication & EBW
 - inspections and radiography on sub assemblies
 - RF Tuning , Machining & Welding including required Tooling
 - Chemistry & Processing
 - Process Flow Chart
 - Tooling and process design
 - plans for chemistry, from tooling to processing
 - Testing in the JLAB VTA
- For future HOMs and Helium Vessel

Thank you for your Attention

LARP/HiLumi CM – SLAC, May 18th – 20th, 2016

Appendix

JLAB-SRF Dewar Sizes

Dewar	Inside Diameter*	Inside Height	Height to Baffle	Volume/cm	Useful Volum	e (liters) max fill	Heat Losses**
	(((()))) (((())))		((((((((((((((((((((((((((((((((((((((((Liters)	design m	max mi	(watts)
1	40.6 / 16	183 / 72	102 / 40	1.3	136	140	0.6
2	40.6 / 16	183 / 72	102 / 40	1.3	136	140	0.7
3	71.1 / 28	275 / 108	163 / 64	3.98	648	800	1.2
4	71.1 / 28	275 / 108	163 / 64	3.98	648	800	1.2
5	88.3 / 34	336 / 132	204 / 80.3	5.87	1197	1400	1.2
6	40.6 / 16	275 / 108	163 / 64	1.3	212	250	0.7
7	71.1 / 28	336 / 132	204 / 80.3	3.98	812	960	1.3
8	71.1 / 28	336 / 132	204 / 80.3	3.98	812	960	1.3

* The Instrument and wire protecting channel, and the purge line take up some of this space.

** The measured heat losses are without top plate inserts, and with baffled in the neck region with 1/8 " radial clearance

VTA RF Amplifier Capabilities

"805 System" 500MHz - 1000MHz, 500 Watts (hard routed to dewars 7 & 8)
"1497 System" 1425MHz - 1510MHz, up to 500 Watts (dewars 3 - 8)
Portable 1.3GHz amplifiers, 250 Watt and 500 Watts
Portable 1.5GHz amplifiers, up to 200 Watts
Portable 2 - 4 GHz amplifier, 200 Watts

Note: PSS Amplifier Switch Boxes can handle amplifiers rated up to 500 Watts with frequency ranges of 100MHz to 4GHz.

Please consult with JLab –SRF Specialists to confirm details of application suitability

JLAB Cavity Furnace & Heat Treatment

LARP/HiLumi CM – SLAC, May 18th – 20th, 2016

Other Cavity Process Equipment

- EP Electro Polish Machine for Cavities
- Furnace & Heat Treatment
- Barrel Polishing
- Optical Inspection & Metrology

Niowave/JLab Serialization

Proposed Serialization for Niowave RFD Cavities

Title of Component	JLAB Serial Number	Niowave identifying numbers	ODU Ref.
Final RED Cavity Assembly for LIS LARP	NWV-RFD-CAV-001		
	NWV-RFD-CAV-002		
Cavity End Sub Assembly (mates to vertical HOM)	NWV-RFD-EVHOM-001	1	SA 3
	NWV-RFD-EVHOM-002	2	SA 3
Cavity End Sub assembly (mates to Horizontal HOM)	NWV-RFD-EHHOM-001	3	SA2
	NWV-RFD-EHHOM-002	4	SA 2
			CA 4
Cavity Center Sub Assembly	NWV-RFD-CTR-001	A-B-C-D	SA 1
	NWV-RFD-CTR-002	E-F-G-H	SA 1
Stiffeners	NWV-RFD-STF-001A	A (use on sector A Cavity 1)	
	NWV-RFD-STF-002B	В	
	NWV-RFD-STF-003C	С	
	NWV-RFD-STF-004D	D	
	NWV-RFD-STF-005E	E (Use Sector E Cavity 2)	
	NWV-RFD-STF-006F	F	
	NWV-RFD-STF-007G	G	
	NWV-RFD-STF-008H	Н	
Tuner Attachment	NWV-RFD-TNR-001		
	NWV-RFD-TNR-002		
	NWV-RFD-TNR-003		
	NWV-RFD-TNR-004	<u></u>	

Agreed with Niowave/Larp/ODU/JLAB – 28Apr2016

