RF-Dipole Cavity Frequency Analysis and Tuning Plans

Subashini De Silva

CAVITY PROCESSING PLAN

Mechanical grinding un-even weld / surface pits

Total removal of 140 microns

- Trimming of center body for frequency
- 3 mm weld trimming

Welding of end plates to center body

600 °C for 10 hours in furnace

Total removal of 20 microns

- Rinsing in 2 iterations
- Proper rotation to drain cavity completely

Cavity assembly of cavity in clean room

120 °C bake for 24 hours

Test with and without HOM couplers

- High power rf tests at 4.2 K and 2.0 K
- Surface resistance measurements

BULK BCP OF SUB-ASSEMBLIES

- **Dimensions**: Technical drawings from Niowave Inc.
- Weights: Courtesy Carlo Zanoni, Raphael Leuxe - CERN
- BCP acid mixture:

HF (49 %) : HNO₃ (69.5 %) : H₃PO₄ (85 %) 1 : 1 : 2

- Acid density:
 - HF (49 %) 1.30 g/ml
 - HNO₃ (69.5 %) 1.42 g/ml
 - H₃PO₄ (85 %) 1.685 g/ml
 - BCP mixture (1:1:2) 1.5225 g/ml → 12.7 lb/gal
- Additional volume included since parts are longer than given in drawings

Sub-Assembly	Parameter	Value	Unit
	SA-1 – Center Body		
	Height (H)	16.6	in
	Length (L)	12.3	in
	Width (W)	11.9	in
	Volume	7.24 + 0.35	gallons
	Weight	43.3	lb
W	Weight with acid	139.7	lb
H	SA-2 – End Plate with HHOM		
	Height (H)	11.0	in
	Length (L)	13.5	in
	Width (W)	13.46	in
	Volume	1.73 + 0.17	gallons
W	Weight	35.4	lb
	Weight with acid	59.6	lb
	SA-3 – End Plate with VHOM		
	Height (H)	8.5	in
	Length (L)	13.5	in
	Width (W)	18.077	in
	Volume	1.15 + 0.17	gallons
W	Weight	24.0	lb
~~	Weight with acid	40.8	lb

BULK BCP OF SUB-ASSEMBLIES

Detailed procedure:

Talk from A. McEwen

(Jefferson Lab)

- Bulk BCP performed in sub-assemblies before trimming for target frequency
- Why: to eliminate frequency shift due to
 - Manufacturing and welding deviations
 - Non-uniform chemical etching
- Goals:
 - Total removal of 140 microns
 - Have uniform removal by flipping the sub-assemblies at each 35 microns
- Thickness measurements

SA-2 & SA-3 At wave guide stub

<u>SA-1</u> At high electric field and flat magnetic field surface

Bulk BCP removal of 400 MHz

P-o-P RFD cavity

0,

68 µm

0)

81 µm

63 *u*m

108 µm

0

03

O4

O₅

 O_6

O.

Ο₁₀ 99 μm

O₁₁

O₁₃ ^{71 μm}

4Ο₁₅ 95 μm

O₁₆

O12

O₁₄

CAVITY TRIMMING AND WELD PLAN

• Trim center body to achieve target frequency at pre welding

- d*f*/dz = -119.85 kHz/mm
- 3 mm weld plan: to minimize the cavity deformation during welding

Trimming Curve

LIGHT BCP / HIGH PRESSURE RINSING

- Light BCP: Total removal of ~20 microns
- Minimum removal of 10 microns at each surface
- HPR: 2 iterations in order to rinse full cavity
- Important to reduce field emission
- Drain completely by rotating the cavity followed by low temperature bake after

ASSEMBLY: COUPLING – RF TEST PROBES

• FPC and Pick Up ports are used for VTA rf test

- Probe calibration:
 - Q_{ext} (FPC): ~6.0 × 10⁹
 - Q_{ext} (Pick Up): ~5.0 × 10¹⁰
- Use same probe for all the VTA tests
 - Bare cavity test
 - Bare cavity test with HOM couplers
 - Cavity with He-vessel test

Coupling Factors for VTA Test

Parameter	Value
Geometrical Factor (G)	107 Ω
Residual Resistance (R _{res})	10 nΩ
<i>R</i> _s at 2.0 K	11.3 nΩ
Q ₀ at 2.0 K	9.5×10 ⁹
R _s at 4.2 K	81.3 nΩ
Q ₀ at 4.2 K	1.32×10 ⁹

 Step (1): Mounting couplers – FPC probe, demountable HHOM coupler and VHOM probe

Fully Assembled Cavity

- Frequency shift due to mounted couplers $\delta f = 4.906$ kHz
- Mounting of couplers increases the cavity frequency
- Measured at room temperature (20 °C) in air

- **Step (2)**: Evacuated cavity has two effects
 - Pressure effect
 - Dielectric effect
- Pressure effect:
 - d*f*/d*p* = -80 Hz/torr [Ref. H. Park]
 - At 1 atm (760 torr)

$$\delta f = \frac{df}{dp} \delta p = -80 \times 760 = -60.8 \text{ kHz}$$

• Dielectric effect:

$$f_{Air} = \frac{1}{\sqrt{1.00059}} f_{Vacuum}$$

- Evacuated cavity increases the cavity frequency
- Evacuated cavity measurements are done at room temperature (20 °C)

- **Step (3)**: Cooled down cavity has two effects
 - Pressure effect
 - Thermal shrink
- Pressure effect:
 - d*f*/d*p* = -80 Hz/torr [Ref. H. Park]
 - Δp [4.2 K] = 1 atm (760 torr) → Δp [4.2 K] = -60.8 kHz
 - Δp [2.0 K] = 23 torr → Δp [2.0 K] = -1.84 kHz
- Thermal shrink from 20 °C to 4.2 K/2.0 K:

$$f_{Cryo\ Temp} = \frac{1}{(1 - 0.00143)} f_{Room\ Temp}$$

• Similar frequency shift at both 4.2 K and 2.0 K

<u>Thermal expansion of niobium</u> (BNL Cryogenic Data Notebook)

THERMAL EXPANSION OF NIOBIUM

Sources of Data:	Erfling 1942.
Other References:	Hidnert and Krider 1933.
Discussion:	Also termed columbium.

Table of Selected Values <u>l</u> <u>dL</u> L dT per ^OK Temp K dL Temp L₂₉₃ - L₁ <u>1</u> <u>dL</u> L dT ^L293 L₂₉₃ L293 per^oK 143×10^{-5} .56 x 10 99.4 x 10 ο. 140 0 87.7 .59 160 10 .03 x 10⁻⁵ 143 180 75.5 .62 20 .64 63.0 143 .09 200 3066 141 .17 . 220 50.0 40 139 50 .24 .67 . .31 240 36.7 60 137 23.1 .68 70 133 .36 260 . 14.1 .69 129 .40 273 80 . 69 125 .44 ... 280 9.2 90 .70 100 121 .47 293 0.0 -5.0 .70 .52 300 120 111

Taken from NBS 29

- Step (4): Tuner activation
- Full tuner range 200 kHz
- During operation top and bottom cavity surfaces are only pushed and pushed equally
- RFD cavity tuner effect:
 - Pushed tuner \rightarrow Increases frequency
 - Pulled tuner \rightarrow Reduces frequency
- Tuner in activation: Pushed at a half-way position which is the neutral position
 - Cavity is always under compression
 - Frequency range [-100, +100] shifted to [0, 200] kHz
 - δ*f* = 100 kHz

RFD cavity with tuner – K. Artoos (SRF 2015)

- Step (5): Lorentz detuning
- Lorentz coefficient for RFD cavity: is $k_L = -51.1 \text{ Hz}/(\text{MV/m})^2$ [Ref. H. Park]

$$\delta f = k_L E_T^2 = -121.92 \times \left(\frac{3.4}{0.375}\right)^2$$

- When RF is on and cavity operating at 3.4 MV frequency shift due to Lorentz detuning: δf = 10.022 kHz
- Lorentz detuning reduces the cavity frequency
- Final target frequency of fully assembled cavity for SPS/LHC (f₅) = 400.79 MHz

FREQUENCY TUNING RECIPE

FREQUENCY TUNING SEQUENCE FOR ASSEMBLY

Frequency Tracking in Real Time	Frequency Shift [kHz]	Frequency [MHz]
Welded Bare Cavity (f ₀)		400.006,071
Shift due to mounted couplers	+ 4.906	
Fully Assembled Cavity with HOM Couplers (f_1)		400.010,977
Pressure effect (760 Torr differential)	- 60.800	
Dielectric effect air to vacuum	+ 117.968	
Evacuated Cavity (f_2)		400.068,145
Thermal shrinkage	+ 572.917	
Cooled Down Cavity at 4.2 K ($f_{3, 4.2 \text{ K}}$)		400.641,062
Pressure from 760 Torr to 23 Torr in He tank	+ 58.96	
Cooled Down Cavity at 2.0 K ($f_{3, 2.0 \text{ K}}$)		400.700,022
Shift due to tuner activation to its mid range	+ 100.000	
Cavity with Tuner Activated (f_4)		400.800,022
Lorentz Detuning	- 10.022	
Operational Cavity with RF On (f_5)		400.790,000

FREQUENCY TUNING PLAN – FABRICATION

- Step (1): Bulk BCP \rightarrow Uniform removal of 140 microns
- Cavity trimming after bulk BCP: Will account for any frequency deviations due to weld beads, forming and machining errors
- Step (2): Weld shrinking
 - Shrinkage of 0.008" per side
 - Total weld shrinkage = 4×0.008" = 0.8128 mm
 - Any non-uniformity in weld shrinkage may increase/decrease gradient
 - Does not effect the mechanical center of the cavity
- Step (3): Light BCP \rightarrow Uniform removal of 20 microns

FREQUENCY TUNING SEQUENCE FOR FABRICATION

Frequency Tracking in Real Time	Frequency Shift [kHz]	Frequency [MHz]
Welded Bare Cavity (f _o)		400.006,071
Shift due to light BCP (20 microns)	+ 5.762	
Bare Cavity before Light BCP		400.011,833
Weld shrinkage	- 92.528	
Bare Cavity before Final Weld (Trimmed Cavity)		399.919,675
Shift due to bulk BCP	+ 39.441	
Bare Cavity before Bulk BCP (Formed Sub- Assemblies)		399.959,116

- The target frequency after bulk BCP and trimming of sub-assemblies: $f_{\text{target}} = 399.919,675 \text{ MHz}$
- Since df/dz = 120 kHz/mm, the frequency of sub-assemblies before trimming needs to be lower than f_{target}

CURRENT STATUS OF RFD CAVITIES

- Cavity parts for two RFD cavities parts received from Niowave Inc.
- Frequency of stacked cavities:
 - Cavity 1 400. 928008 MHz
 - Cavity 2 398.925087 MHz
- Target frequency should be lower than 400 MHz
- Status:
 - <u>Cavity 1</u>
 - Center body is longer (room for trimming) and matches the end plates
 - However has a higher frequency than the target frequency
 - Current plan: to push poles inward (~0.5 mm per side)
 - Full plan under development for additional tuning
 - <u>Cavity 2</u>
 - Frequency is lower than target frequency
 - Proceed with rf processing and welding
 - More details Talk from A. McEwen

FREQUENCY ANALYSIS OF WELD IMPERFECTIONS

• Major welds analyzed with a weld bead of 0.5 mm depth and 5 mm thickness

FREQUENCY ANALYSIS OF WELD IMPERFECTIONS

Weld	Frequency [MHz]	∆f [kHz]	<i>B_p</i> * [mT]
Ideal Cavity	400.664013	-	56.37
Weld 1 (a)	400.673775	9.8	55.55
Weld 1 (b)	400.666337	7.4	55.55
Weld 2	400.680087	16.1	55.55
Weld 3	400.726685	62.7	55.59
Weld 4	400.702314	38.3	56.49
Weld 5	400.665127	1.2	56.33
* At 3.4 MV			

Surface Magnetic Field

- Study does not include thermal shrinkage or BCP removal
- Frequency and field enhancement comparison with SLAC – ACE3P suite is on going

FREQUENCY ANALYSIS: WELD MISALIGNMENTS

• Misalignment in final subassembly weld

Weld	Frequency [MHz]	Δf [kHz]
Ideal Cavity	400.664013	-
Shift 2:x+ 3:x+	400.665363	1.35
Shift 2:x+ 3:x–	400.663756	-0.26
Shift 2:y+ 3:y–	400.663053	-0.96
Rotation: 2:z+ 3:z+	400.663740	-0.27
Rotation: 2:z– 3:z–	400.665136	1.12
Rotation: 2:z+ 3:z-	400.663707	-0.31

- No field enhancement
- Frequency shift is negligible

HOM COUPLER FABRICATION

- Courtesy: Adam Rogacki Niowave Inc.
- Niowave Inc. Development of HOM Couplers for the LHC Superconducting Crab Cavities
- Fabricated Cu prototypes of
 - Demountable HHOM coupler
 - VHOM coupler probes

HHOM

<u>Completed</u> <u>HOM</u> <u>Couplers</u>

VHOM

MEASUREMENTS WITH HOM COUPLER

- Measurement of S₂₁ of bare HOM coupler and with stacked cavity
- Complete rejection of fundamental mode

S21 Measurements of Soldered Assembly

MEASUREMENTS WITH HOM COUPLER

- **Courtesy: Adam Rogacki Niowave Inc.**
- HOM measurements obtained up to 1 GHz from the stacked RFD cavity
- Both frequency and Q_{ext} were lower •
 - Measurements obtained without 30 deg rotation of HHOM coupler
 - Offsets possibly due to longer center body

RFD HOM Damping Qext Measured vs. Theory

HOM COUPLER FABRICATION PLAN

Fabrication of two Nb HHOM Couplers

- HOM test box design on going
- Measurements with HOM couplers
 - Test with Nb cavity at room temp and cryo temp
 - Test box test for measurements at room temp and cryo temp
- Possible measurements of HOM couplers at room temp using a Cu cavity

SUMMARY

- Parts of the two RFD cavities are received at Jefferson Lab from Niowave Inc. April 28th, 2016
- One cavity (Cavity 002) has already initiated the process: Proceed to finish
 - Welding of the bare cavity
 - Cavity processing
 - RF testing
- Second cavity (Cavity 001): In discussion with Niowave Inc. to recover the target frequency
 - Current plan: Pushing poles inward (~0.5 mm per side) to reduce to target frequency
- Working with Niowave in the development of prototype HOM couplers
 - Room temp and cryo temp of measurements with HOM couplers
 - Measurements with Nb cavities and using a HOM test box
- Proof-of-Principle cavity testing at SM18, CERN to review (Alick Macpherson, Alex Castilla):
 - Surface preparation protocols
 - Handling and tooling
 - LLRF systems in SM18_V4*

RFD Full Cavity Features

Parameter	Value	Unit	
Cavity weight	102.52	lb	
	46.5	kg	
Cavity volume	32,612	cm ³	
	8.62	gallons	
Cavity surface area	0.9796	m²	
Dimensions			
Cavity length	36.2	in	
	918.7	mm	
Cavity width	16.2	in	
	409.5	mm	
Covity boight	14.2	in	
Cavity neight	358.96	mm	

