

MQXF quench protection update

E. Ravaioli

with inputs from

GL. Sabbi (LBNL), G. Ambrosio, G. Chlachidze, S. Stoynev (FNAL),

V. Marinozzi (INFN), T. Salmi (TUT),

B. Auchmann, J-P. Burnet, S. Izquierdo-Bermudez, F. Rodriguez-Mateos, H. Prin, J. Rysti, E. Todesco, A. Verweij, D. Wollmann (CERN),

and many other CERN and LARP colleagues

Joint LARP CM26/Hi-Lumi Meeting at SLAC

19 May 2016

19 May 2016

- Powering scheme and Quench protection system
 - Circuit analysis
 - CLIQ configuration
 - Quench heater connection scheme
 - Worst-case analysis
- Analysis of the MQXFS01 quench protection tests
 - Heater minimum power density to quench (G. Chlachidze)
 - Measured and simulated heater delays (G. Chlachidze, T. Salmi & S. Izquierdo-Bermudez, J. Rysti)
 - Dynamic effects during the decays (G. Chlachidze, V. Marinozzi)
 - Energy extraction decays
- Next steps & conclusions

<u>MAGNETS</u> 4x 4.2 m QXF (LARP) 2x 7.15 m QXF (CERN)

PROTECTION SYSTEM

CLIQ system + Quench Heater system

Quench protection system based on **quench heaters** and **CLIQ** is expected to provide the best solution for reducing hot-spot temperature and thermal stress, both in nominal and failure scenarios.

6 CLIQ units and 4 warm diode strings per triplet

AC currents

Parallel diodes only carry small current differences between magnets during the discharge

Voltages to ground just after triggering

Simulated currents in the circuit

T_{hot}~230 K

Simulated voltages to ground

Voltages to ground and between coil sections in Q1/Q3 are 40% lower than Q2a/Q2b

Proposed QH connection scheme

- Connection scheme that compensates the voltages induced by CLIQ and QH
- For <u>inner</u> quench heaters, option to <u>power each strip</u> <u>individually</u> (increased deposited power density, but more inner QH supplies needed, 4→8 per magnet)

Standard LHC quench heater power supply

Charging voltage: 900 V Voltage to ground: ±450 V Capacitance: 7.05 mF Note: 2x 450 V, 14.1 mF modules in series

The probability of particularly dangerous failure cases can be almost nullified by implementing the proposed mitigations.

In the remaining "realistic" failure cases, the worst-case analysis yields

	Q2a/Q2b (7.15 m)	Q1/Q3 (4.2 m)
Peak hot-spot temperature	320 K	320 K
Peak voltage to ground	520 V	430 V
Peak coil-to-QH voltage	520 V	430 V
Peak mid-plane voltage	500 V	400 V
Peak layer-to-layer voltage	500 V	340 V
Peak turn-to-turn voltage*	50 V	30 V

* Currently in the process of refining these values. Updated results expected soon.

- Powering scheme and Quench protection system
 - Circuit analysis
 - CLIQ configuration
 - Quench heater connection scheme
 - Worst-case analysis
- Analysis of the MQXFS01 quench protection tests
 - Heater minimum power density to quench (G. Chlachidze)
 - Measured and simulated heater delays (G. Chlachidze, T. Salmi & S. Izquierdo-Bermudez, J. Rysti)
 - Dynamic effects during the decays (G. Chlachidze, V. Marinozzi)
 - Energy extraction decays
- Next steps & conclusions

Minimum QH energy density to quench

Measured and simulated heater delays LARP – Outer layer

Measured and simulated heater delays – Inner layer

▲ C103 IL, measured, 59 W/cm2

200

MQXFS01 stainless-steel only IL heaters not yet tested

Measured and simulated heater delays LARP Outer and inner layers

Measured and simulated decays – Dynamic effects

Energy extraction decays (no heaters) LARP

Energy extraction decays (no heaters) Quench back and inductance reduction

l₀=8.24 kA R_{FF}=90 mΩ

 L_{diff} ~50% L_{nom} R_{coil} ~5 m Ω \rightarrow The faster decay observed in this discharge is mainly due to a reduction of the inductance, not due to quench-back

Conclusions

- Improved confidence and validation of independent simulation tools
- <u>Next test campaign critical for the definition of the parameters of the integrated</u> <u>quench protection system (heaters and CLIQ)</u>

Targeted improvements

- Assure the effectiveness of the quench heaters below 3 kA
- Achieve faster response time of the inner-layer quench heaters
- Test performance of stainless-steel only IL heaters

Here you'll find:

- Additional information about the circuit (slides 20-23)
- Criteria for the powering and protection design choices (slides 24-27)
- Simulated currents, voltages to ground, hot-spot temperature (slides 28-31)
- Requirements on CLIQ terminals and leads to be updated (slide 32)
- Proposed electrical schemes for CLIQ tests (slide 33)
- Superposition of CLIQ and QH induced voltages (slides 34-36)
- Simulations of failure cases (slides 37-50)
- Tables of characteristic voltages in failure cases (slides 51-56)
- First redundancy studies (slides 57-58)
- Hot-spot temperature and temperature distribution for various protection system options (slides 59-60)
- Reason why parallel elements are needed in the circuit (slides 61-62)
- What is CLIQ (slide 63)
- Quick way to tell if a CLIQ configuration is optimized for MQXF or not (slides 64-65)
- Influence of an energy-extraction system (slide 66)

When not specified:

- The powering scheme includes **one power supply** (less expensive, more challenging)
- **EE** system is **not present**
- **QH** attached to the outer layer of the coil (2 circuits per pole) but not to the inner layer
- Current level set to the **nominal current** (I₀=16.47 kA)
- Each **CLIQ** unit has a capacitance C=40 mF charged to U₀=1 kV
- Each QH system has 8 circuits, each with a capacitance 9.6 mF charged to ±450 V (Q1/Q3) or ±300 V (Q2a/Q2b)

Powering and Quench protection system

This is a conceptual diagram. The actual electrical order and connection scheme of the poles of each magnet will depend on several factors:

- Opposite field orientation required for Q1/Q3 versus Q2a/Q2b
- Naming of the poles based on the physical position they occupy (with respect to the lead end? to the interaction point?)
- Pizza box design
- Rotation of the coil around its axis
- Positioning of the lead ends of each magnet

6 CLIQ units and 4 warm diode strings per triplet

- The proposed connection scheme of 2 units to Q1/Q3 greatly reduces the peak voltage to ground in the case of misfiring of one CLIQ unit
- Additional current lead between the 2 magnets of Q1/Q3 not needed
- All parallel elements can be installed to the leads already foreseen for the trim power supplies
- Polarities of the CLIQ units is a key ingredient! (QA, testing at 50 V)
- All CLIQ units have the same capacitance (easier to design, manufacture, maintain the units). Units connected to Q1/Q3 can be charged to a lower voltage (600 V)
- Warm diodes are preferred over resistors (no leakage current during ramps, better control of the voltages to ground in failure cases)

1 or 2 circuits – Advantages

		1 Circuit	2 Circuits				
Criterion	Fulfil Imen t	Advantages	Fulfil Imen t	Advantages			
Protection	1		1	Lower stored energy per circuit			
Compatibility	0.8	 Less effect of power converter ripples on beams as compensated. Faster ramp down (2 Quadrant PC) 	0.8				
Reliability	0.7	Less electromagnetic interference.	0.8	 Reduced # of high current quenches. Better distribution of voltage to ground during quench (without parallel elements). 			
Availability	0.8	 Less high current power converters & links → less beam aborts 	0.7	Quicker quench recovery (firing of heaters in less magnets).			
Maintainability	0.8	 Less high current power converters & links 	0.6				
Simplicity	0.7	Less high current leads.	0.6	Only two trim circuits.			
Cost saving	1	 1 main power converter (but 3 trims). Less high current leads + less splices. Reduced operational costs 	0.7				
Space Saving	1	 1 main power converter (but 3 trims). Less high current leads. 2 Quadrant power converters save space (less warm cables needed) 	0.6				

Options for the quench protection

	CLIC	Q + Outer QH (+Inner QH?)	Outer QH + Inner QH			
Criterion	Fulfillment	Features	Features	Fulfillment		
Protection	1	Hot-spot temperature <300 K and peak voltage to ground <500 V in all realistic failure cases analyzed		0.9		
Compatibility	1	Less dependence on magnet/cable/strand parameters		0.9		
Reliability	1	Higher redundancy No expected performance degradation More homogeneous temperature distribution in the coil windings	Lower characteristic voltages (in absence of failures) Some concern on long-term inner QH performance	0.75		
Availability	0.9 (0.8)	1 CLIQ and 8(+4) QH supplies per magnet [Option to rely on less QH power supplies increasing availability at the cost of redundancy]	8+4 QH supplies per magnet	0.9		
Maintainability	1	Very easy repair/replacement of damaged CLIQ units (room temperature operation)		0.9		
Simplicity	0.9	Less dependence on magnet/cable/strand parameters	R&D needed for Inner QH technology Easier modelling	0.9		
Cost saving	0.9 (0.8)	1 CLIQ and 8(+4) QH supplies per magnet	8+4 QH supplies per magnet	0.9		
Space Saving	0.9 (0.8)	1 CLIQ and 8(+4) QH supplies per magnet	8+4 QH supplies per magnet	0.9		

Options for CLIQ configuration

		6-CLIQ, 4 Warm Diodes	4-CLIQ, 4 Warm Diodes				
Criterion	Fulfill ment	Advantages	Advantages	Fulfillm ent			
Protection	1	Both options assure hot-spot temperature realistic failu	3 oth options assure hot-spot temperature <300 K and peak voltage to ground <500 V in all realistic failure cases analyzed				
Compatibility	1	Both options use identical CLIQ units for all magnets					
Reliability	1	Reduces voltages to ground and between coil sections in Q1/Q3 by 40%		0.85			
Availability	0.9		4 CLIQ units per triplet circuit instead of 6	1			
Maintainability	0.9		4 CLIQ units per triplet circuit instead of 6	1			
Simplicity	0.9	Same pole electrical order and similar CLIQ connection scheme for short and long magnets. CLIQ performance can be tested in machine-relevant configuration more easily.	4 CLIQ units per triplet circuit instead of 6	0.7			
Cost saving	0.9	No need to redesign the pizza box of Q1/Q3	4 CLIQ units per triplet circuit instead of 6	0.9			
Space Saving	0.9		4 CLIQ units per triplet circuit instead of 6	1			

6 CLIQ units and 6 warm diode strings per triplet

4 CLIQ units and 4 warm diode strings per triplet

Less CLIQ units, parallel elements, parallel leads. But change of the electrical order of Q1/Q3 required, and peak voltages to ground in Q1/Q3 increased.

19 May 2016

What are the expected voltages during a discharge?

High Luminosity LHC

Simulated currents in the circuit

Negligible difference in the hot-spot temperature (T_{hot}~230 K)

19 May 2016

4-CLIQ 4 Warm Diodes

LARP

CLIQ + QH's seems the best compromise for reducing hot-spot temperature and thermal stress, and increasing redundancy and robustness.

*Note1: QH simulations performed with and without quench-back and dynamic inductance effects, and assuming QH are triggered 1ms after detection/validation (present value is 5ms)

**Note2: CLIQ+QH simulations performed varying in a wide range the cable/strand parameters

Nominal I 400- O-OH - O-QH + I-QH 350 CLIO Hot-spot temperature, T_{hot} [K] CLIQ + O-QH300 CLIO + O-OH + I-OH----- Max allowed T_{hot} 250 200 150 100 50 8 10 12 18 4 14 16 20

What are the requirements for the CLIQ

- Leads attached to the coils: Copper cross-section >10 mm2, RRR>100
- Superconducting lead preferred to further reduce its resistance
- Leads outside the cryostat: If the units are located relatively far from the magnet area (80 m?), larger cross-section needed
- Target: Overall resistance of a CLIQ discharge system (external leads + internal resistance of the unit) < 10 mΩ

Test of magnets and cold masses

6 CLIQ units and 4 warm diode strings per triplet

Magnet test (7.15 or 4.2 m long)

Cold mass test (2x 4.2 m long)

CLIQ-induced voltage distribution

• The voltage distribution in the windings just after triggering CLIQ remains almost constant along the magnet length, but is inhomogeneous in the magnet cross-section

QH-induced voltage distribution

 The voltage distribution in the QH strips just after triggering varies linearly along the conductor length, but is homogeneous in the cross-section

Coil to heater voltage optimization

• CLIQ and QH are triggered simultaneously. It is important to choose a QH connection scheme that compensates the voltages induced by CLIQ and QH

Summary of failure cases -1

Failure	Consequences	Probability	Mitigation
One QH supply (2 strips) not triggered	Hot-spot T = Peak voltage to ground =	Low	Parallel diodes CLIQ
Two QH supplies (4 strips) not triggered	Hot-spot T = Peak voltage to ground =	Very low	Parallel diodes CLIQ
CLIQ capacitor in open circuit	Hot-spot T = Peak voltage to ground = ~500 A through the diodes	Low	Capacitors in parallel Parallel diodes
CLIQ capacitor in short circuit	Hot-spot T = Peak voltage to ground = ~1 kA through the diodes	Very low	Capacitors in series Parallel diodes
One CLIQ unit triggered spuriously	Hot-spot T = Peak voltage to ground = ~2 kA through the diodes	Very low	Units interlocked Parallel diodes
One CLIQ unit not triggered	Hot-spot T +70 K (290-305 K) Peak voltage to ground = ~2.5 kA through the diodes	Very low	Double triggers Voltage monitor Parallel diodes QH
One CLIQ unit <u>and</u> one QH supply not triggered	Hot-spot T +70 K (290-305 K) Peak voltage to ground = ~2.5 kA through the diodes	Very low	QH connection scheme Parallel diodes

Summary of failure cases -2

Failure	Consequences	Probability	Mitigation
One parallel element disconnected	Hot-spot T = Peak voltage to ground = ~500 A through the diodes	Very low	
One lead of the parallel elements disconnected	Hot-spot T = Peak voltage to ground = ~500 A through the diodes	Very low	
Two leads of the parallel elements disconnected	Hot-spot T = Peak voltage to ground 600 V ~500 A through the diodes	Nihil	Monitoring currents in the circuit during each discharge
Entire CLIQ unit in short circuit	Hot-spot T +70 K (<300 K) Peak voltage to ground = ~2.5 kA through the diodes CLIQ unit to replace	Nihil	Capacitors in series CLIQ chargers protected QH
One CLIQ unit not triggered <u>and</u> one lead of the parallel elements disconnected	Hot-spot T +50 K (<280 K) Peak voltage to ground 1.6 kV ~1.5 kA through the diodes	Nihil	Monitoring currents in the circuit during each discharge
One CLIQ unit <u>and</u> all QH protecting the same magnet not triggered	Hot-spot T >500 K Magnet current through the diodes	Nihil	Redundant triggers for CLIQ and QH

Characteristic voltage	4-CLIQ 4 2-CLIQ	40mF/600V 40mF/1kV	4-CLIQ 40mF/1kV		4-CLIQ 4 2-CLIC	0mF/600V Opt Q 40mF/1kV	
NO FAILURES	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	
Peak voltage to ground [V]	316	513	513	509	316	512	
Turn to turn voltage [V]	16*	29*	16*	28*	19*	32*	
Mid-plane voltage [V]	307	509	500	512	307	509	
Layer to layer voltage [V]	295	496	247	492	296	495	
Layer-layer of adjacent poles [V]	600	1000	505	1000	600	1000	
CLIQ unit Q1 not triggered	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	
Peak voltage to ground [V]	312	509	502	509	313	509	
Turn to turn voltage [V]	28*	32*	29*	32*	28*	32*	
Mid-plane voltage [V]	307	512	497	512	307	512	
Layer to layer voltage [V]	295	492	246	492	297	492	
Layer-layer of adjacent poles [V]	600	1000	502	1000	600	1000	
CLIQ unit Q2a not triggered	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	
Peak voltage to ground [V]	318	506	502	516	316	506	
Turn to turn voltage [V]	16*	42*	19*	47*	19*	46*	
Mid-plane voltage [V]	307	512	497	512	307	512	
Layer to layer voltage [V]	295	492	246	492	492	492	
Layer-layer of adjacent poles [V]	600	1000	502	1000	600	1000	

Characteristic voltage	4-CLIQ 40mF/600V 2-CLIQ 40mF/1kV		4-CLIQ	4-CLIQ 40mF/1kV		0mF/600V Opt Q 40mF/1kV	
Disconnection of 1 // lead	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	
Peak voltage to ground [V]	418*	522*			375	521	
Turn to turn voltage [V]	19*	32*			19*	33*	
Mid-plane voltage [V]	421	509			339	509	
Layer to layer voltage [V]	295	499			296	500	
Layer-layer of adjacent poles [V]	600	1000			600	1000	
Disconnection of 2 // leads	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	
Peak voltage to ground [V]	527*	642 *					
Turn to turn voltage [V]	19*	32*					
Mid-plane voltage [V]	493	509					
Layer to layer voltage [V]	295	498					
Layer-layer of adjacent poles [V]	600	1000					
One // diode in open circuit	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	
Peak voltage to ground [V]					385	521	
Turn to turn voltage [V]					19*	32*	
Mid-plane voltage [V]					314	509	
Layer to layer voltage [V]					296	498	
Layer-layer of adjacent poles [V]					600	1000	

Characteristic voltage	4-CLIQ 2-CLIQ	4-CLIQ 40mF/600V 2-CLIQ 40mF/1kV		40mF/1kV	4-CLIQ 4 2-CLIC	0mF/600V Opt Q 40mF/1kV	
1 OutHF QH not triggered	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	
Peak voltage to ground [V]	318	513			316	512	
Turn to turn voltage [V]	20*	32*			19*	32*	
Mid-plane voltage [V]	307	509			307	509	
Layer to layer voltage [V]	295	496			296	495	
Layer-layer of adjacent poles [V]	600	1000			600	1000	
2 OutHF QH not triggered	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	
Peak voltage to ground [V]	316	513			318	512	
Turn to turn voltage [V]	21*	32*			20*	32*	
Mid-plane voltage [V]	307	509			307	509	
Layer to layer voltage [V]	295	496			296	495	
Layer-layer of adjacent poles [V]	600	1000			600	1000	
CLIQ unit Q1 not triggered and disconnection of 1 // lead	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	
Peak voltage to ground [V]	909	509			1619	509	
Turn to turn voltage [V]	33*	32*			32*	50*	
Mid-plane voltage [V]	801	512			707	1494	
Layer to layer voltage [V]	295	492			295	492	
Layer-layer of adjacent poles [V]	725	1000			600	1336	

Characteristic voltage	4-CLIQ 40mF/600V 2-CLIQ 40mF/1kV		4-CLIQ 40mF/1kV		4-CLIQ 40 2-CLIC	0mF/600V Opt Q 40mF/1kV	
1CLIQ and 1 OutHF QH not trig'd	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	
Peak voltage to ground [V]	324	509			428	509	
Turn to turn voltage [V]	34*	32*			29*	32*	
Mid-plane voltage [V]	307	512			396	512	
Layer to layer voltage [V]	295	492			339	296	
Layer-layer of adjacent poles [V]	600	1000			600	1000	
1CLIQ and 2 OutHF QH not trig'd	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	
Peak voltage to ground [V]							
Turn to turn voltage [V]							
Mid-plane voltage [V]							
Layer to layer voltage [V]							
Layer-layer of adjacent poles [V]							
CLIQ Unit in short circuit	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	
Peak voltage to ground [V]	318	506			302	509	
Turn to turn voltage [V]	19*	46*			29*	32*	
Mid-plane voltage [V]	307	512			307	512	
Layer to layer voltage [V]	295	492			296	492	
Layer-layer of adjacent poles [V]	600	1000			600	1000	

<u>No CLIQ</u> – Sim characteristic voltages

Characteristic voltage	Q1/Q3	Q2a/Q2b
<u>No CLIQ</u> , With <u>// diodes</u> , 1 OutHF QH not trig'd	Q1/Q3	Q2a/Q2b
Peak voltage to ground [V]	324*	330*
Turn to turn voltage [V]	34*	46*
Mid-plane voltage [V]	162*	35*
Layer to layer voltage [V]	240*	374*
Layer-layer of adjacent poles [V]	149*	24*
<u>No CLIQ</u> , <u>No // diodes</u> , 1 OutHF QH not trig'd	Q1/Q3	Q2a/Q2b
Peak voltage to ground [V]	616*	729*
Turn to turn voltage [V]	29*	50*
Mid-plane voltage [V]	431*	170*
Layer to layer voltage [V]	245*	427*
Layer-layer of adjacent poles [V]	223*	111*
<u>No CLIQ</u> , <u>No // diodes</u> , 2 OutHF QH not trig'd	Q1/Q3	Q2a/Q2b
Peak voltage to ground [V]	988*	1020*
Turn to turn voltage [V]	27*	47*
Mid-plane voltage [V]	802*	229*
Layer to layer voltage [V]	408*	406*
Layer-layer of adjacent poles [V]	417*	146*

Characteristic voltage	4-CLIQ 40mF/600V 2-CLIQ 40mF/1kV		4-CLIQ	40mF/1kV	4-CLIQ 40 2-CLIC	0mF/600V Opt Q 40mF/1kV	
With CLIQ, All QH not trig'd	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	
Peak voltage to ground [V]					358	593	
Turn to turn voltage [V]					29*	47*	
Mid-plane voltage [V]					307	509	
Layer to layer voltage [V]					296	495	
Layer-layer of adjacent poles [V]					600	1000	
<u>No CLIQ</u> , Only Out QH trig'd	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	
Peak voltage to ground [V]							
Turn to turn voltage [V]							
Mid-plane voltage [V]							
Layer to layer voltage [V]							
Layer-layer of adjacent poles [V]							
<u>No CLIQ</u> , Out and In QH trig'd	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	Q1/Q3	Q2a/Q2b	
Peak voltage to ground [V]					179*	285*	
Turn to turn voltage [V]					18*	30*	
Mid-plane voltage [V]					46*	34*	
Layer to layer voltage [V]					115*	193*	
Layer-layer of adjacent poles [V]					47*	34*	

Level of redundancy

- Choose an optimum level of redundancy
 - Reduce capacitance of CLIQ units to reduce their size and cost? 1.
 - Keep some QH as spares to reduce the risk of degradation? 2.
 - **Redesign QH** to be more effective at **low-to-medium** current? (Tiina) 3.
- Next step: Once determined the baseline circuit, Failure cases with reduced number of QH units and with reduced capacitance of CLIQ units

Simulated hot-spot temperature

- CLIQ + Quench Heaters assure the most homogeneous temperature distribution in the coil windings at the end of a discharge
- Reducing the thermal gradients reduces the thermal stress

Protection system	Hot-spot T
CLIQ	250 K
CLIQ+8 outer QH's	230 K
CLIQ+8 outer QH's+4 inner QH's	220 K
CLIQ+4 outer QH in HF region	240 K

The more QH units are triggered, the higher the probability of degrading the electrical insulation

CLIQ+4 HF outer QH's seems the best compromise for reducing hot-spot temperature and thermal stress, and increasing redundancy and robustness.

Why do we need parallel elements? LAR

- Voltages to ground reduced by means of parallel elements across parts of the circuit which equalize the voltage distribution
- Avoid very high voltages to ground in several CLIQ failure cases
- Cold parallel diodes are probably incompatible with the very high expected radiation dose in the interaction regions
- Proposed solution: Warm parallel diodes utilizing existing leads of the trim supplies (but needs different connection schemes for Q1/Q3 and Q2a/Q2b)
- Back-up solution: 1Ω parallel resistors (but leakage currents, cryo loads)

1Ω resistors

19 May 2016

Why do we need parallel elements? Failure: One CLIQ unit not triggered

- Worst-case: CLIQ unit at one end of the circuit is not triggered
- Without parallel elements, the voltage to ground just after triggering the CLIQ units reach 3*U₀=3 kV

Why does it matter if the pole electrical order is different?

About 10 times <u>faster</u> heat deposition, AND <u>more uniform</u>

High Luminosity

Is there a quick rule to determine *LARP* whether a configuration is optimized?

Indeed!

Poles that are physically adjacent must receive opposite dI/dt.

- The addition of a 50 mΩ EE system decreases the hot-spot temperature only by a few degrees
- On the other hand, the peak voltage to ground is increased

