

Impedance update (other components than Crab Cavities)

Elias Métral for the impedance team (and BE-ABP-HSC section)

Joint LARP CM26/Hi-Lumi Meeting, SLAC, 19/05/2016

Contents

- Introduction
- Reminder on beam stability from LHC impedance model (2015)
- Reminder on the effect of Crab Cavities
- Other equipment (presently under study and optimization)
 - New experimental beam pipes: CMS and LHCb VELO
 - Collimator changes: 11 T dipole, 2-in-1 collimators, etc.
 - New devices in the triplet region: beam screen; BPMs; RF shielding for bellows; LESS (Laser treated surface to have SEY < 1) in IP2&8</p>
 - Y chambers and TDI re-design
- Summary of new elements: transverse and longitudinal
- Predicted beam stability from HL-LHC impedance model
- Conclusion

Introduction

- Transverse instabilities are a concern based on the experience of the LHC Run 1 (2012 with 50 ns) and beginning of Run 2 (2015 with 25 ns)
- A precise (and well understood) impedance model is needed for the future upgrade
- HL-LHC impedance model was optimized until now mainly focusing on the contributions of
 - Low-impedance collimators
 - Crab Cavities

E. Métral, 19/05/2016

New LHCb VELO

- Several meetings with LHCb
 - Feb 2015 (<u>https://indico.cern.ch/event/367805/</u>)
 - Nov 2015 (<u>https://indico.cern.ch/event/366422/</u>)
- New design and foils closer to the beam (3.5 mm instead of 5 mm in collision)
- Resistive and geometric contributions studied
- Transverse impedance effects reduced thanks to low β at collision point
- Main contribution is the longitudinal geometric impedance (~ 5% of LHC when inserted)
- Power loss of several 10s of W need to be extracted
- Design of RF foil studied, not the wakefield suppressor

Collimator changes

- New TCLD: collimator inside the 11 T dipole (prototype in production and call for tender for production)
 - 2 H per beam in IR7 with small gaps (1.2 to 1.4 mm) due to small β functions (30 to 45 m in H)
 - Similar jaw design with RF fingers, optimized tapering between BPM and active surface and wider box
- New collimators TCTH6 and TCTV6: 4 per beam
- TCLX would replace TCL4: 2 per beam (exit)
 - Proposed to use design with 2 beams in 1 tank (similar to the MKI, not to the TDI or TCTVB)
 - Large half-gap (17 mm) and high β functions (4 to 6 km)
- TCTPH4 would need more clearance: 2 per beam (exit)
 - Proposed to use design with 2 beams in 1 tank (similar to the MKI, not to the TDI or TCTVB)
 - Large half-gap (12 to 15 mm) and high β functions (4 to 7 km)
- Resistive contribution already included in the computations (they all appear already in our list of collimators - collgaps files)
- 3D simulations of the geometric impedance to be done to confirm the efficient shielding for the wider boxes

E. Métral, 19/05/2016

Collimator changes: 11 T dipole

Several checks on-going (operating length, angle for the RF fingers, heat load could be critical due to the cold transition, etc.) + impedance measurements to verify the shielding, but no critical issues expected

Technical solution based on 11T dipole 🔶

New devices in the triplet region: Octagonal carbon coated beam screen with 2 welds

Magnet	Cold bore ID (mm)	Beam screen ID between flats (mm)	Beam screen length (m)		
Q1	139	99.7/99.7	11		
Q2a	139	119.7/111.7	10.2		
Q2b	139	119.7/111.7	10.2		
Q3	139	119.7/111.7	11		
СР	139	119.7/111.7	7.3		
D1	139	119.7/111.7	8.3		
DFXJ	139	119.7/111.7	3.7		
D2	95	87/78	13.5		
Q4	80.8	73.8/63.8	9.5		
ARP	Info	o from N. Kos	E. Métra		

New devices in the triplet region: Octagonal carbon coated beam screen with 2 welds

- Summary
 - Impact remains small: ~ 0.1% of full LHC impedance per IP in both longitudinal and transverse for the coating (less in transverse for IP8)
 - Negligible effect from transverse weld
 - Longitudinal weld
 - Increase of an order of 50% to a factor 2 of real and imaginary longitudinal impedance (50% to factor 3 for transverse)
 - Increase can be reduced by 30 to 40% if the weld is displaced away from the center

New devices in the triplet region: Stripline BPMs => BPMQS

Foreseen 28 new stripline BPMs in IP1 and IP5 =>
< 1% increase in imaginary L and T impedances

New devices in the triplet region: RF shielding for the bellows

- High frequency resonances are gone when closing the structure with the bellow
- Still work on going to study the resonances for different finger

New devices in the triplet region: RF shielding for the bellows

- Number of shielded bellows => 7 per IP per side:
 - IP Q1 Q2a Q2b Q3 Corrector Package D1 DFBX
 - 1 with small diameter (100 mm) and 6 with large diameter (120 mm)
- Lateral offset could be 2 mm
- No showstoppers so far, but need to wait for the final results from measurements and simulations (both ongoing)

E. Métral, 19/05/2016

New devices in the triplet region: LESS

 Plans to produce LESS (Laser Engineered Surface Structures) on the triplets inner surface in IP2 and IP8 (± 45 m) for e-cloud mitigation (SEY < 1)

New devices in the triplet region: LESS

- Longitudinal grooves are better than transverse grooves, i.e. less impedance
- Transverse grooves give
 - An increase of ~ 0.8 % in the imaginary part of the longitudinal impedance
 - An increase of ~ 0.4 % in the imaginary part of the transverse impedance
- We assume that the LESS treatment gives a factor 5 increase (F. Caspers) in resistivity (a factor 2 is predicted applying Hammerstad's correction coefficient) => Still to be measured
- The factor 5 increase in resistivity gives a factor ~ 2.2 increase in heat deposition => ~ 1.7 W/m (reminder: 2 – 4 W/m from e-cloud)

Courtesy of O. Berrig

E. Métral, 19/05/2016

TDI redesign => TDIS

- Design from Nov 27th 2015
- Idea: reduce impedance with high priority (WP14)
- 2 fields of action:
 - Resistive wall contribution: efficiently addressed by the copper coated graphite
 - Modes: gave the guidelines to fill all gaps around the jaws, which are responsible for the low frequency modes (~ 1 kΩ at ~ 100 MHz => Could lead to up to several hundreds of W at injection)

	Zxdip [Ohm/m]	Zydip [Ohm/m]	Comments				%	of the	e tota	1	
HLLHC	2.08E+07	1.78E+07	Total budget without the elements listed below				70	01 111	2 1010	•	
	Zxdip [% of the total]	Zvdip [% of the total]	Comments	0.00%	0	.20%	0.40%	0.60%	6 02	80%	1.00%
LESS	0.38%	0.45%	In IP2 and IP8. Refined studies on going for resistivity estimations								
BPMS	0.77%	0.87%	In IP1 and IP5 (14 striplines/IP)								
11T dipole	no issues expected	no issues expected	Design close to existing collimators, but larger box								
TCLX	large gap: no issues expected	large gap: no issues expected	optimize holes size and distribution								
ТСТРН4	large gap: no issues expected	large gap: no issues expected	optimize holes size and distribution								
Octagonal beam screen IP1/IP5	0.12%	0.13%							Zxc	lip	
Octagonal beam screen IP2/IP8	0.01%	0.02%							Zyc	lip	
Transverse weld	0.02%	0.03%									
Longitudinal weld	negligible	negligible	Can reduce of a 40% moving far the weld from the beam								
RF fingers in triplet regions LHCb velo	ongoing	ongoing	Measurements analysis ongoing: HOMs canceled by bellow								
	0.21%	0.24%	mitigated by low beta* and stabilization in collision.								
Triplets NEG coating	0.72%	0.84%	for beam close as 0.5mm to surface								
Partially penetrated welds in LSS	0.01%	0.01%	Due to contact rings welding on LSS beam screens								
New CMS pipe	negligible	negligible	HOM above 1 GHz								
TDIS	ongoing	ongoing	Reduced volume, RF fingers, HOMs with higher frequency								
Y chamber	design ongoing	design ongoing	Impedance team waiting for design				Court	esy	ot N	. Bla	ncac

Summary of new elements: longitudinal

	Zlong [mOhm]	Comments											
HLLHC	93	Total budget without the elements listed below			%	of the	total						
	Zlong [% of the total]	Comments	0.00%	1.00%	2.00%	3.00%	4.00%	5.00%	6.00%				
LESS	0.82%	In IP2 and IP8. Refined studies on going for resistivity estimations											
BPMS	0.54%	In IP1 and IP5 (14 striplines/IP)		•									
11T dipole	no issues expected	Design close to existing collimators, but larger box											
TCLX	large gap: no issues expected	optimize holes size and distribution											
ТСТРН4	large gap: no issues expected	optimize holes size and distribution	-										
Octagonal beam screen IP1/IP5	0.06%							Zlong					
Octagonal beam screen IP2/IP8	0.06%						-	Liong					
Transverse weld	0.001%												
Longitudinal weld	n eglig ible	Can reduce of a 40% moving far the weld from the beam											
RF fingers in triplet regions	ongoing	Measurements analysis ongoing: HOMs canceled by bellow											
LHCb velo	5.05%	Large impedance due to bellow-like box.											
Triplets NEG coating	0.11%	for beam close as 0.5mm to surface											
Partially penetrated welds in LSS	0.002%	Due to contact rings welding on LSS beam screens											
New CMS pipe	n eglig ible	HOM above 1 GHz											
TDIS	ongoing	Reduced volume, RF fingers, HOMs with higher frequency											
Y chamber	design on going	Impedance team waiting for design					Сс	urte	sy o	f N. B	iancac	ci	3

Conclusion

- The HL-LHC impedance model is in relatively good shape and sufficient margins should exist for beam stability in both L and T planes
- Beam stability measurements in the LHC in both L and T planes (for Q' > ~ 2 units) are in good agreement with predictions
- However, the effort to control and minimize the impedance should continue!... As some instabilities are not understood yet (even if other mechanisms are also expected to be involved => See talk on beam stability) and several impedance modifications are foreseen for HL-LHC
 - E.g., more margin could be gained in the T plane by damping the transverse mode at 920 MHz from the DQW Crab Cavity
 - Beam-induced RF heating to be kept under control for all equipment

Conclusion

- Furthermore, some "direct measurements" of the LHC impedance model are still missing (due to other priorities until now)
 - Instability rise-time vs. (negative) chromaticity with 1 bunch (with neither ADT nor Landau octupoles)
 - Started in the past with 48 (12 + 36) bunches at 450 GeV => Good agreement
 - To be done when possible

TMCI instability threshold at high energy

 Should be higher than HL-LHC bunch intensity by a factor slightly more than 2 (see also talk from K. Li) => Need an impedance model better than a factor of 2...

