

High Performance Simulation of Beam-Beam and Electron Cloud Effects for LHC Upgrades Using a Self-Consistent Model

Ji Qiang, Jean-Luc Vay

Lawrence Berkeley National Laboratory

Yue Hao Brookhaven National Laboratory

Joint LARP/Hi-Lumi Collaboration meeting, SLAC, May 18-20,2016

Motivations

High Energy Collider Needs Large Luminosity for Physics Study

- The probability of event is proportional to the luminosity of colliding beams.
- Luminosity depends on:

$$L = f_b \underbrace{\xi}_{e} \underbrace{\frac{4\rho g_p g_e}{r_p r_e}}_{k_p r_e} \underbrace{\frac{\ddot{\sigma}}{\dot{\sigma}}}_{k_p r_e} (X_p X_e) \left(S_p S_e \right) \frac{e^{-\frac{d^2 x}{4\sigma x^2}}}{\sqrt{1+\zeta^2}}$$
$$X_p = \frac{r_p b_p^*}{4\rho g_p} \frac{N_e}{S_e^2} \qquad X_e = \frac{r_e b_e^*}{4\rho g_e} \frac{N_p}{S_p^2} \qquad \zeta = \frac{\phi}{2} \frac{\sigma_s}{\sigma_x}$$

- Larger luminosity wants higher repetition rate, larger beam-beam parameters, smaller crossing angle and beam separation.
- However, beam-beam effects limit these factors and eventually luminosity.

High Performance Computer Simulation Is Needed

- ✤ High Luminosity LHC upgrade Requires:
- higher bunch intensity
- smaller beta*
- smaller emittance
- larger crossing angle
- -> stronger beam-beam effects

✤ E.g. Crab cavity will be a critical component in HL-LHC for crossing angle compensation.

– what are the effects of crab cavity on the colliding beams?

Simulation provides an important way for risk reduction and performance optimization in hardware upgrade.

Proposed Study Plan

AWRENCE BERKELEY NATIONAL LABORATORY

- beam-beam interaction in the presence of noise and modulation
 - crab cavity noise effects
 - HOM in crab cavity
 - conducting wire + others
 - benchmark with MDs at LHC and SPS
- beam-beam interaction in the presence of impedance
 - crab cavity impedance
 - other machine impedance
- beam-beam interaction with electron lens compensation
 - long range + head-on
- beam-beam interaction in the presence of misaligned hollow beam
- beam-beam interaction with none-round beam
- beam-beam interaction with crab waist compensation
 LAWRENCE BERKELEY NATIONAL LABORATORY

- Electron cloud build up with 25ns bunch train in LHC
- Beam instability due to electron cloud
- e-cloud build-up and effect on beam simulated concurrently on trains of bunches
- Code benchmark

Warp-Posinst enables direct simulation of a train of 3x72 bunches -- using 9,600 cores on Franklin CRAY supercomputer (NERSC)

➔ multi-physics integrated simulations are key for detailed physics understanding and high-fidelity predictions.

J.-L. Vay, et al, IPAC12 Proc., (2012) TUEPPB006

8

8

Available High Performance Computing Tools

AWRENCE BERKELEY NATIONAL LABORATORY

Berkeley Lab Accelerator Simulation Toolkit *blends LBNL experience in accelerators* & HPC

State-of-the-art open source codes: BEAMBEAM3D, IMPACT, POSINST, WARP.

Supporting many accelerators:

 across DOE (HEP, BES, NP, FES, DNN) and abroad (CERN, DESY, KEK, ...).

Large set of physics & components:

• beams, plasmas, lasers, structures, etc in linacs, rings, injectors, traps, ...

High-Performance Computing (HPC):

 multi-level optimizations & simulations on tens of thousands of cores

From physics studies to start-to-end self-consistent designs.¹⁰

Benefits to the US Accelerator Program

AWRENCE BERKELEY NATIONAL LABORATORY

11

- Direct contribution to the success of the LHC upgrades and future colliders
- Preservation of the expertise in accelerator colliders for future high energy physics and nuclear physics studies
- Improvement of advanced computational method on large-scale high performance supercomputers
- Test of exascale computing with real applications

Budget Request: \$250k/year

AWRENCE BERKELEY NATIONAL LABORATORY