

DQW Tuner Mockup Test

Alejandro Castilla on behalf of Kurt Artoos, Jean-Pierre Essombe, Pablo Fernandez Lopez, Benoit Frere-Bouniol, Alick Macpherson, Pierre Minginette, Joanna Swieszek.

Joint LARP CM26/Hi-Lumi Meeting SLAC 18-21 May 2016

Planning Overview

Recent preparations:

- Setup of DQW tuner test in parallel with validation of new insert.
- 2 month test period reserved for DQW tuner test.
- Preparation of V4 proceeding in parallel (for LLRF setup).

Planning Overview

CERN

DQW Slow Tuner Test

Warm:

- Step resolution and speed tests of the motor at warm w/o cavity using potentiometers and LVDTs (Kurt's team).
- Backlash characterization (expected post SM18).

Cold:

- Cool down procedures (disengaging tuner frame and motor).
- Feedback loop and frequency resolution at 2 K (200 kHz required).
- Driving modes and motor routines testing (ramping).

SM18_V3 Insert for Cryo Test

- Preparation of insert divided into 2 parts:
 - Assembly of and validation of top plate.
 - Assembly of cavity and tuner system.
- Cavity mounted horizontally new V3 insert.

Top Plate Assembly

Top-plate assembled and tuner motor installation done in parallel.

Top-plate received: Week 11 Transferred to assembly area in 252-R-10 and assembly started immediately.

Cavity and Tuner Frame

- Dry assembly done in 252-R-10:
 - Cavity assembly in insert structure finish in wk 8.
- Currently: Cavity preparation for cold test.
 - Demounted, degreased, HPR'ed, to be assembled in the cleanroom.

Tuner Systems

 Some mechanical issues found during assembly. Resolved with designer & workshop.

Tuner Systems

• Tuner control system:

- Based on prototype defined by Kurt Artoos
 & developed by Luca Arnaudon
- PLC based: Developed and implemented by Pablo Fernandez Lopez
 - Compatible with existing SM18 sowftware infrastructure

Motor System at 300K

Linear motor prototype tested without load

Fully assembled and tested with 400 microsteps (with LVDT)

10

Retested with PLC.

Cycle length: 0.131mm Largest deviation: 6.8um => scales to 52um for 1mm cycle

Testing the Tuner Systems

11

First Test of Tuner Control Loop: 27/04/2016

In steady-state with feedback not fully closed, we see integration of noise => drift. This should not be an issue for the cavity with fully closed loop.

A. Castilla Join LARP CM26/Hi-Lumi Meeting SLAC 18/05/2016

2000 Hp

399,9998

200 00000

300 0008

300 000811041

Stop motor

Disable motor

Go to zero

Data saved successfully at: C:\SRF\Tunes

Tuper motor 20160427 162337 b

Save data

-64000

-62229.9

16-32-36 16-32-30 16-32-31 16-32-34

2000 Hz

Notes from the Warm Test

- Motor system and bearings re-checked after nonconformities:
 - No issues found.
- Calibration of strain gauge is done.
- Software:
 - Full set of monitoring instrumentation implemented.
 - Control software integrated into SM18 LabView structure.
 - Measurement data integrated into SM18 data structure.

Notes from the Warm Test

Position Range:

- Elastic range =0.5 mm/plate => max motor range =1 mm.
- For 'Push mode: Load offset assumed to be ~0.2 mm.
- Protection of cavity from tuner:
 - Software interlock on position : tested and functional.
 - Hardware interlock on position: tested and validated.

14

System Protection

- Software interlocks:
 - Redundant and set after first manual operation.
 - Closed loop target frequency inside range.
 - Limit displacement of the potentiometers...
- Hardware interlocks:
 - Limit switches.
 - Potentiometers.
 - Strain gauge.
 - Frequency measurement.

DQW Tuner Test Plan

1. Setup at Warm:

At 300K, disengage motor => assembly (bellows) to be free.

2. Cool down to 2K:

Monitoring of position potentiometers, correlated with pressure & temperature

May need He pressure in cavity to avoid mechanical stress on tuner system.

- **3.**Test cavity without tuner engaged.
- 4. Set of limit switches & engage motor.
- 5. Tuner Test in Manual mode => no FBL.
 - 1. 'Push' phase of testing: with defined motor load offset (0.2mm).

CERN

2. Cycle measurement (push and release in increasing step blocks) => measure range, and backlash.

- 3. Backlash measurements with coarser step size on the stepper motor.
- 4. Frequency measurements: Test sensitivity/ precision.

6.Tuner Test: Auto mode => with FB.

1. Commissioning of feedback mechanism => verify that follows a frequency change.

Variation from PLL on/off, Frequency modulation, & Lorentz Force detuning.

- 2. FB sensitivity/precision at holding a set point.
- 7. Repeat step 5 for the pull phase.
- 8. Repeat across zero strain point.
- 9. Access results before next steps.

Notes for Cooldown

- Tuner concentric push-pull tubes :
 - Requirement: Should not exceed 50 MPa on cavity from tuner rods.

Cooldown (ΔT= several K):

 Fast cool down => differential contraction in mm range => pressure on cavity => risk of plastification.

Mitigation:

- Uncouple the two tubes during cool down
 - By removing the coupling between Harmonic Drive and Roller screw
 - By shifting/removing the mechanical end stops + end switches.
- Result: Reduces effective push on cavity (to sub 0.055 mm) => pressure seen by cavity during cooldown: 32 MPa
 - This is below the 50MPa limit

Protection for Cooldown

Motor uncoupled during a cool down

Break a connection between inner and outer tube.

Pressure compensation is not working like before:

These forces go to the cavity (44 Kg).

As for 18/05/2016

Top plate at the SM18

- In standby waiting for the insert support to be freed.
- V3 will go to validation with 2.8 bar g w/o motor on week
 20.

As for 18/05/2016

- The cavity at the SM18 cleanroom
 - 30 h HPR, currently drying for assembly.
 - Assembly of tuner frame and fixing the plungers will follow.

Thanks.

A. Castilla Join LARP CM26/Hi-Lumi Meeting SLAC 18/05/2016