
The architecture of LArSoft toolkit (draft)

The LArSoft project

November 30, 2015

Contents

Introduction 2

Purpose . 2

Scope . 2

Architecture 2

Overview . 2

Simulation . 6

Reconstruction . 7

Testing . 9

Extensibility 9

Data products . 9

User code . 10

External libraries . 13

References 15

Comments 15

Sunday 7:51:39, Ruth Pordes ruth@fnal.gov (“Re: First draft of the
architecture description document”) 15

1

mailto:ruth@fnal.gov

Introduction

Purpose

LArSoft toolkit is designed to enable simulation, reconstruction and physics
analysis of data from any detection system based on Liquid Argon TPCs. Its
common tools and algorithms render the development and analysis process more
uniform across the Experiments. LArSoft is extensible to accommodate evolving
Experiments’ needs and adoption by new Experiments.

This document provides an overview of the architecture of LArSoft toolkit,
including its relationship with the surrounding software environment. The
internal flow of the different subsystems is also described. The document intends
to capture and convey the significant architectural decisions which have been
made on the system, that reflect into the current implementation or drive its
development.

Scope

This document describes the architecture of LArSoft to date. It includes de-
scription of the communication protocols with libraries it relies on and with
packages LArSoft cooperates with. The design and flow of different components
is described.

The document is aimed to first-time LArSoft users and developers who want
to gain insight of the areas covered by the toolkit, the structure and general
organization of the components, and the relationship between components.
It also contains useful information for developers of experiment code who are
going to design new experiment code, and it is a suggested introductory reading
for developers aiming to add new tools to LArSoft or to extend existing ones.
Finally, it is provided as a snapshot of the current status and principles of
LArSoft design, that can be used as a reference for review and as a starting
point to define future developments.

This document employs some commonly used LArSoft elements to exemplify
flows and connections, but it does not try to exhaustively describe each, or any,
of the single elements.

Architecture

Overview

To provide the best solutions for LAr TPC simulation, reconstruction and
analysis of data, LArSoft provides a mix of built in tools and algorithms and

2

interfaces to other existing libraries. Figure 1 illustrates the relation between
LArSoft and these libraries.

LArSoft
toolkitExternal

analysis
tools

recob::, reco::,
anab::, ana::

histograms, trees...

External
generators

API,
exchange format

External
simulation libraries

(GEANT)

API

Detector

data

Data bases

API

External
reconstruction

tools

recob:, reco::
exchange format

Experiment
code

data
products

art
framework

nutools

data
products

data
products

Figure 1: Relationship between LArSoft and other packages and libraries

LArSoft is designed to rely on the art framework[ref]. This framework provides an
event data model, centralized configuration, data and configuration persistency,
management of user algorithm through “modules”, exception handling, and more.
LArSoft takes advantage of the libraries art framework depends on, by using
them directly:

• FHiCL language[ref] to propagate the configuration to its components
• message facility[ref] to regulate text output to console
• CLHEP, ROOT, Boost libraries as needed

LArSoft also shares a common platform, nutools [ref], with other neutrino
experiments (NOvA). This library provides LArSoft with some basic event
display facilities and simulation data structures.

3

LArSoft interactions include:

• experiment detector data, through customized input modules converting
data into LArSoft data classes

• external event generators (e.g., CRY[ref], GENIE[ref]), via API or through
HEPEVT exchange format; additional event generators are natively imple-
mented in LArSoft

• GEANT[ref], an external detector simulation library
• data bases, via direct connection or web proxy (libwda [ref])
• external reconstruction tools (e.g., pandora), through a LArSoft interface
• custom analysis tools, that can use LArSoft data classes directly or tailored

data formats produced by custom LArSoft modules
• experiment code, written in the form of LArSoft algorithms, modules and

services

LArSoft encompasses a collection of tools that can be roughly groups in the
following categories:

1. simulation
2. reconstruction
3. analysis

• display

The typical full processing chain (fig. 2) includes a reconstruction and an analysis
sequence. For simulated events, a preliminary simulation sequence can be run.
Processing chains are defined by the experiments according to their needs.
LArSoft inherits the flexibility from the art framework, that provides users with
the flexibility of choosing and arranging processing modules at will, with the
only limitation that each module must be provided with all the information it
needs to operate. The same module can also be executed multiple times, with
different configurations.
The event display is capable of showing many of the data classes from the
simulation and reconstruction steps, and it includes a limited ability of running
modules with different configuration at run time.

LArSoft also provides an extensible set of data structures describing objects
involved in many levels of the physics analysis, e.g., the time-dependent shape
of signal from a photon detector, a simulated neutrino or a reconstructed
electromagnetic cascade. The use of these common structures is key to flexibility,
allowing to replace and directly compare algorithms that use the same data
structures.

4

LArSoft

Detector I/F

Reconstruction

raw::

Event display

raw::

Generator I/F

Simulation

simb::
sim::

simb::
sim::
raw::

simb::
sim::

Analysis

recob::
reco::

recob::
External

reconstruction
tools

recob:,reco::
exchange format

External
analysis

tools

recob::
reco::

anab::
ana::

anab::
anab::, ana::

histograms, trees...

External
generators

API,
exchange format

External
simulation libraries

(GEANT)

API

Detector

data

Data bases

API

API

recob:,reco::
exchange format

Figure 2: Components of LArSoft and their interaction with external libraries

5

Simulation

The purpose of LArSoft simulation is to describe a realistic response of the
detectors to a known physics event (“truth”). Since the result of the simulation
should be equivalent to the output of the detectors, this result is represented by
the same data classes. The truth information, not available from the detector, is
produced and stored in additional structures.

LArSoft simulation

Event generator
interfaces

Detector physics simulation

simb::
sim::

Internal
event generators

simb::
sim::

Detector readout simulation

sim::
simb::

simulated data (raw::)

External
event generators

(GENIE, CRY, ...)

API,
exchange format

External
simulation libraries

(GEANT)

API

Data bases

API

API

Figure 3: LArSoft simulation flow

The complete simulation chain is summarized in fig. 3. The process is typically
described as three steps:

1. event generation
2. detector physics simulation
3. detector readout simulation

The physics event can be generated by an external program or library. LArSoft
interfaces directly to GENIE generator (neutrino interactions) and CRY (cosmic

6

rays). It can also read a generic HEPEVT[ref] format. In addition, LArSoft
provides built-in generators to simulate single particles, Argon nucleus decays,
and more.

The detector physics simulation includes the interaction of the generated particles
with the detector, and the propagation to the readout of produced photons and
electrons. This part of the simulation relies on GEANT4 for the interaction of
particles with matter. Photon and electron transportation to the readout are
implemented in built-in code. Detector parameters (e.g., the intensity of the
electric field) can be acquired from the job configuration or from a custom data
base.

The last step transforms the physics information, electrons and photons, into
digitized detector response, including the simulation of electronics noise and
shaping. This is typically implemented with experiment-specific code.

Reconstruction

The reconstruction phase provides standard physics objects to describe the
physics event. Reconstruction delivers objects with different level of sophistication
and from different steps, as for example hits describing localized charge deposition
as detected on a wire, down to a complete hierarchy of three-dimensional tracks.
These objects are handed over for further analysis.

Starting from detector response, either real or simulated, there are many pos-
sible patterns of analysis. The more “traditional” one (fig. 4) starts with the
calibration of the signals, attempting to suppress noise and revert electronics
distortions, and then it proceeds with the reconstruction of charge deposition on
a single TPC wire (hits), to cluster them in groups lying on the same wire plane,
and finally with combining clusters from different planes in trajectories (tracks)
and particle cascades (showers), connected by interaction points (vertices). The
hierarchal connection between them is called a particle flow. Many options are
implemented in LArSoft for each of these steps, that are interchangeable as they
use the same input and output classes.

During any of these steps the detector and data acquisition parameters can be
acquired from experiment data bases.

Any external library that utilizes LArSoft data classes to receive inputs and
deliver results is also fully interchangeable with the algorithms implemented in
LArSoft. A noticeable example is the pandora pattern recognition toolkit, that
accepts LArSoft hits as input and can present its results in the form of LArSoft
clusters, tracks and particle flow objects.

Further common analysis steps are the calibration of the energy deposited in
liquid argon by the interacting particles and their identification as specific types
(e.g., muons, protons, etc.).

7

LArSoft reconstruction

simulated data

Calibration

raw::
(e.g.: raw::RawDigit)

reconstructed objects (recob::, reco::)

Detector
interface

raw::
(e.g.: raw::RawDigit)

Hit finding
(1D)

recob::
(e.g.: recob::Wire)

recob::
(e.g.: recob::Hit)

Cluster finding
(2D)

recob::
(e.g.: recob::Hit)

recob::
(e.g.: recob::Cluster)

recob::
(e.g.: recob::Cluster)

Track finding
(3D)

recob::
(e.g.: recob::Cluster)

Shower finding
(3D)

recob::
(e.g.: recob::Cluster)

recob::
(e.g.: recob::Track)

Calorimetry

recob::
(e.g.: recob::Track)

recob::
(e.g.: recob::Shower)

recob::
(e.g.: recob::Shower)

Particle identification

Detectors

Experiment-
specific

External
reconstruction

libraries

API, exchange format

API, exchange format

API, exchange format

API, exchange formatAPI, exchange format

Data bases

API

API

API

APIAPI

Figure 4: LArSoft “traditional” reconstruction flow

8

Testing

LArSoft development model allows multiple contributors to modify the code
at the same time. This model can create conflicts and dysfunction in the code.
Tests are instrumental to the early detection of such defects. LArSoft includes
tests at two levels, called unit tests and integration tests.

Unit tests exercise a limited part of the system, typically a single algorithm.
Ideally a unit test for an algorithm should test all the functions of that algorithm.
In practice, tests for complex algorithms tend to set up and test a few known
typical cases.

Integration tests involve the framework and one or more processing modules.
These tests can reproduce real user scenarios, for example a part of the official
processing chain of an experiment, and they can compare new and historical
results. LArSoft tools allow these tests to be run at any time, and a standard
suite of tests is meant to be automatically and periodically run.

Extensibility

The extensibility of LArSoft is largely based on the underlying framework, art.
The art framework processes physics event independently, executing on each
of them a sequence of modules. The framework also provides a list of global
“services” that modules can rely on. Examples of services implemented by
LArSoft include the description of detector geometry and channel mapping, the
set of detector configuration parameters, and access to TPC channel quality
information.

Our description focuses on extensibility in terms of new persistable data struc-
tures, of new algorithms implemented in LArSoft and of using external libraries.

Data products

LArSoft provides a basic set of persistable data classes. Each class is associated
to a simple concept and a set of related quantities. For example, raw::RawDigit
describes the raw data as read from a TPC channel; recob::Cluster describes
a set of hits observed on a wire plane; anab::Calorimetry contains information
about calibrated energy of a track.

A data product is a class that:

• is simple: contains just data and trivial logic to access it; more complex
elaborations belong to algorithms

• contains only members from a small selected libraries: C++ standard
library is highly recommended; ROOT classes are also accepted

9

• is not polymorphic

Limitations to ROOT I/O system impose restrictions on the types of allowed
data members, e.g., on the set of supported C++11 containers. Relations
between data products are expressed by associations. Associations are data
products provided by art that can relate a data product, or an element of it,
to another element from another data product. Examples of use in LArSoft
include the association between a reconstructed hit and the calibrated signal it’s
reconstructed from, and between a cluster and all the hits that constitute it.

Data products have a fundamental structural role: they act as messages to be
exchanged between algorithms. As such, they are also the format in which most
of the results are saved. This allows to arbitrary split the processing chain in
multiple sequences of jobs.

User code

Algorithms constitute, together with data products, the heart of LArSoft, and
the ability for user to add their own algorithm is central to its design. In fact,
LArSoft algorithms differ from users’ algorithms only in the judgment that their
purpose is considered of wider interest than just for the single user. Indeed, most
of the algorithms in LArSoft were written by users to solve a specific problem,
and then adopted into the common toolkit. LArSoft encourages users to produce
algorithms that perform correctly on any liquid argon detector, and to integrate
them into LArSoft itself.

The preferred model for algorithm structure is represented in fig. 5. We refer
to it as factorization model. The underlying principle it is that the algorithm
must be independently testable and portable, using the minimal set of necessary
dependences. This also allows for the algorithms to be used in contexts where
the art framework is not available, provided that some other system supplies
equivalent functionalities as, and only when, needed. The model is made of two
layers:

1. the algorithm, in the form of a class that

• is configurable with FHiCL parameter sets
• consumes LArSoft data products as input
• produces LArSoft data products as output
• has the minimal convenient set of dependencies
• elaborates a single event or part of an event at a time

2. a module for the art framework, that:

• owns and manages the lifetime of one or more algorithm classes

10

art framework

service(s) module(s)

art::Event

unit testunit test

provider(s)

provider algorithm(s)

providers,
data products

functionality

Figure 5: LArSoft algorithm and service model

11

• provides the algorithm(s) with the configuration, the data products and
the information it needs to operate

• delivers algorithm output to the art framework

Since algorithms often rely on services, the services also need to follow the same
factorization model and be split in:

1. a service provider, in the form of a class that:

• is configurable with FHiCL parameter sets
• has the minimal convenient set of dependencies
• provides the actual functionalities

2. a service for the art framework, that:

• owns and manages the lifetime of its service provider
• provides modules with a pointer to the provider
• when relevant, propagates messages from the framework (e.g., the beginning

of a new run) to the provider

The module is also responsible of communicating to its algorithms which service
providers to use. Algorithms exclusively interact with service providers rather
than with art services.

Other important guidelines for the development of algorithms are:

• interoperability: they should document their assumptions in detail, and
correctly perform on any detector if possible

• modularity: each algorithm should perform a single task; complex tasks
can be performed by hierarchies of algorithms

• maintainability: they should come with complete documentation and
proper tests

Figure 5 shows that if algorithms are not framework-dependent, their unit test
can also be framework-independent. Therefore, not only those algorithms can
be developed in a simplified, framework-unaware environment, but they can
also be tested in that same development environment. In other words, the full
development cycle, of which testing is an integral part, can seamlessly happen in
the same environment.

12

LArSoft

External
library

Library/LArSoft
interface

Exchange format,
API LArSoft

tools

data
products

Figure 6: Interaction between LArSoft and an external library

External libraries

We call “external” any library that does not depend on LArSoft, with the possible
exception of its data products. Examples in this category are GENIE, GEANT4,
and pandora.

LArSoft’s modularity can accommodate contributions from external libraries
into its workflow (fig. 6). The preferred way is to use directly the external library
via its interface. This requires an additional interface module between LArSoft
and the library, in charge of converting the LArSoft data products into a format
digestible by the external library, configuring and driving it, and extracting and
converting the results into a set of LArSoft data products.

This is exemplified in the interaction between LArSoft and pandora (fig. 7):
pandora uses its own data classes for input hits, particle flow results and geometry
specification. A base module exists that reads LArSoft hits, converts them into
pandora’s, translates geometry information, and recreates out of pandora particle
flow objects LArSoft clusters, tracks, vertices, and more.

This approach has relevant advantages: it can be fairly fast; it allows a precise
translation of information; it provides the greatest control on the flow within
the library; it defines and tracks the configuration of the external library. Its
greatest drawback is the need for the LArSoft interface to depend on the external
library. If this limitation is not acceptable, a more independent communication
channel can be established via exchange files. In this case, LArSoft interface
translates data products into a neutral format, possibly based solely on ROOT
objects or on a textual representation, and back into data products. The external
library is in charge of performing the equivalent operations with the library data
format. This is for example the generic communication mechanism with event
generators that support HEPEVT format. The strong decoupling comes at the
price of a fragmented execution chain and the burden of additional configuration
consistency control, for example to ensure that a consistent geometry was used
for the information (re)entering LArSoft.

13

LArSoft

pandora

module derived from
LArPandoraParticleCreator

particle flow
(via API)

Hit finder

recob::Hit

hits (via API)

More reconstruction
(e.g. particle ID, calorimetry...)

recob::Cluster
recob::PFParticle

...

Figure 7: Interaction between LArSoft and pandora

14

References

[ref] art framework

[ref] FHiCL language

[ref] message facility

[ref] nutools

[ref] CRY

[ref] GENIE

[ref] GEANT4

[ref] libwda

[ref] HEPEVT format

Comments

Sunday 7:51:39, Ruth Pordes ruth@fnal.gov (“Re: First
draft of the architecture description document”)

[Q 001] does the scope include human interfaces as well as software?
[A 001.1] [GP] I thought mostly not, but I am not completely sure what human
interface includes. To be clarified. (TODO)

[Q 002] nutools event display facility and simulation data structures – still does
not make sense to me. Is Visualization one special kind of analysis or does
Larsoft have specific interfaces to it?
[A 002.1] [GP] Visualization is a special kind of analysis. But our event display
crosses the border with its (limited) ability to interactively reprocess the input.

[Q 003] page 4 – can components of the chain be re-executed during a single
pass?-
[A 003.1] [GP] I have added a couple of sentences in the previous-to-last
paragraph of Architecture > Overview section, that I hope give an answer. The
answer is very much in the features of art, that I have not covered at all in this
text. Should we? (TODO)

[Q 004] does event display have a specific meaning - I’ll include it in the
Requirements glossary – it is different from a generalized visualization and I
presume the definition should explain this? Also, if the event display is in nutools
it is not part of larsoft??? Can we share a glossary in some fashion?
[A 004.1] [GP]

[Q 005] Figure 2. You explicitly mean Detector not DAQ ? Does/shoud daq
show up somewhere

15

mailto:ruth@fnal.gov

[A 005.1] [GP] in practice DAQ products is what we communicate with. It
doesn’t have to be only that, but I guess that is it effectively what happens.
(TODO)

[Q 006] a Fluka interface is in the works with integration hoped for before the
end of Dec. Can you include a sentence on this interface?
[A 006.1] [GP] Erica, confirm? (TODO)

[Q 007] page 10.Unit test. These are important. These are not the only tests. I
don’t see them referred to and perhaps some more specifics might be useful?
[A 007.1] [GP] I added a section about testing. I have added a few words also at
the point Ruth specified (at the end of “User code” section). I think it would be
good to add a “test” block in one of the high-level diagrams, but I can’t figure
out where (probably in 2, but how?). Or maybe we have to add a development
model section?

16

	Introduction
	Purpose
	Scope

	Architecture
	Overview
	Simulation
	Reconstruction
	Testing

	Extensibility
	Data products
	User code
	External libraries

	References
	Comments
	Sunday 7:51:39, Ruth Pordes ruth@fnal.gov (``Re: First draft of the architecture description document'')

