Art Mixing:
Data and beyond!

Wesley Ketchum

LArSoft Coordination Meeting 8 December 2015

Quick outline

= \Why mix?

= Art mixing modules
Using the ubdataoverlay as an example

= References:
See github project site:

LArSoft Coordination Meeting 08/12/15

What?/why? Mixing

= Data mixing

MicroBooNE wants to mix MC neutrino interactions onto off-beam data
events

® Detector noise, detector cosmic rate, etc.

= MC Mixing
Improvements to background simulation generation
= |ike cosmics, “dirt” interactions, etc.

LArSoft Coordination Meeting 08/12/15

Implementation

= Art contains templated functions for “mixing filters”

m User specifies...
List of files containing events with products to add in
Number of events to add in
What order (sequential or random) to access events from those files
How to “mix” products together
Any additional information to put on the event

® See mu2e example from Rob Kutschke

LArSoft Coordination Meeting 08/12/15

Example

(ubdataoverlay/DataOverlayMixer/
OverlayRawDataMicroBooNE_module.cc)

namespace mix {
class OverlayRawDataDetailMicroBooNE;
typedef art::MixFilter<OverlayRawDataDetailMicroBooNE> OverlayRawDataMicroBooNE;

class mix::OverlayRawDataDetailMicroBooNE : public boost::noncopyable {
public:

OverlayRawDataDetailMicroBooNE(fhicl::ParameterSet const& p,
art::MixHelper &helper);

void startEvent(const art::Event&); //called at the start of every event
void finalizeEvent(art::Event &); //called at the end of every event

size_t nSecondaries() { return fEventsToMix; }

//void processEventIDs(art::EventIDSequence const& seq); //bookkepping for event IDs
// Mixing Functions

// For now, allow exactly one input. Assume MC inputs have been merged

// previously and one detsim output created if needed. This could be changed
// but would require mixing functions for MC here.

bool MixRawDigits(std::vector< std::vector<raw::RawDigit> const* > const& inputs,
std::vector<raw::RawDigit> & output,
art::PtrRemapper const &);

/*

//TODO: OpDetWaveform

bool MixOpDetWaveform(std::vector< std::vector<raw::OpDetWaveform> const* > const& inputs,
std: :vector<raw: :OpDetWaveform> & output,
art: :PtrRemapper const &);

*/

private:

// Declare member data here.

LArSoft Coordination Meeting 08/12/15

Example

(ubdataoverlay/DataOverlayMixer/
OverlayRawDataMicroBooNE_module.cc)

namespace mix {

class OverlayRawDataDetailMicroBooNE; Your ClaSS

typedef art::MixFilter<OverlayRawDataDetailMicroBooNE> OverlayRawDataMicroBooNE;

class mix::OverlayRawDataDetailMicroBooNE : public boost::noncopyable {
public:

The art class/module
OverlayRawDataDetailMicroBooNE(fhicl::ParameterSet const& p, . y
’ art::MixHelper &helper); ’ (WhICh yOU dOn t

void startEvent(const art::Event&); //called at the start of every event tOUCh!)
void finalizeEvent(art::Event &); //called at the end of every event

size_t nSecondaries() { return fEventsToMix; }

//void processEventIDs(art::EventIDSequence const& seq); //bookkepping for event IDs
// Mixing Functions

// For now, allow exactly one input. Assume MC inputs have been merged

// previously and one detsim output created if needed. This could be changed
// but would require mixing functions for MC here.

bool MixRawDigits(std::vector< std::vector<raw::RawDigit> const* > const& inputs,
std::vector<raw::RawDigit> & output,
art::PtrRemapper const &);

/*

//TODO: OpDetWaveform

bool MixOpDetWaveform(std::vector< std::vector<raw::OpDetWaveform> const* > const& inputs,
std: :vector<raw: :OpDetWaveform> & output,
art: :PtrRemapper const &);

*/

private:

// Declare member data here.

LArSoft Coordination Meeting 08/12/15

Example
(ubdataoverlay/DataOverlayMixer/
OverlayRawDataMicroBooNE_module.cc)

namespace mix {

class OverlayRawDataDetailMicroBooNE; Ca”ed at the Start

typedef art::MixFilter<OverlayRawDataDetailMicroBooNE> OverlayRawDataMicroBooNE;

) of every event

class mix::OverlayRawDataDetailMicroBooNE : public boost::noncopyable {
public:

OverlayRawDataDetailMicroBooNE(fhicl::ParameterSet const& p, Ca”ed at the end Of
art::MixHelper &helper);
every event

void startEvent(const art::Event&); //called at the start of every even
void finalizeEvent(art::Event &); //called at the end of every event

size_t nSecondaries() { return fEventsToMix; }

Determines how
//void processEventIDs(art::EventIDSequence const& seq); //bookkepping Tommayggnt IDs many events to miX in

/1 i Functions from source files
// For now, allow exactly one input. Assume MC inputs have been merged (Could fO”OW

// previously and one detsim output created if needed. This could be changed
// but would require mixing functions for MC here. POisson!)
bool MixRawDigits(std::vector< std::vector<raw::RawDigit> const* > const& inputs,

std::vector<raw::RawDigit> & output,

art::PtrRemapper const &);

. Your mixing functions
/1000 Opberiaverorn (following that exact

bool MixOpDetWaveform(std::vector< std::vector<raw::OpDetWaveform> const* > const& ipg
std: :vector<raw: :OpDetWaveform> & output, Sig natu re')
art: :PtrRemapper const &); .
*/

The usual private
class stuff you need

private:

// Declare member data here.

LArSoft Coordination Meeting 08/12/15

Example: fcl snippet

filters : {
mixer: { module_type : OverlayRawDataMicroBooNE
fileNames : [" prod_pions_detsim.root"]
readMode : sequential
wrapFiles : true
coverageFraction :

detail : {
RawDigitInputModulelLabel : daq

EventsToMix: 1
DefaultMCScale: 1.0

LArSoft Coordination Meeting 08/12/15

Mixing module specifics

= Order in which things are called in event
startEvent()
= |nitialization...
nSecondaries()
= How many events to mix
processEventIDs()
= Details on the events you pull from mixing files
= NOTE: you must have unique event IDs (run, subrun, event numbers)
Methods registered by declareMixOp, in the order you registered them
finalizeEvent()

LArSoft Coordination Meeting 08/12/15

UB TPC data overlay details

® Module startEvent

Can use data or MC file as the input file, and the other must be in the
mixing file list

“Generates” scaling factors to apply to MC raw digits

= Right now, defaults to 1 for all channels

= Except ... gets channel status, and assigns 0 for dead channels
Calibration = non-zero/non-unity factors in the future?

= Mixing work done by RDMixer class
Module enforces to one event to mix
Ignores MC contributions from channels not in data collection
Aligns start of MC waveform to start of data waveform
= Assigns pedestal and sigma of data channel to new raw digit

LArSoft Coordination Meeting 08/12/15

Results...

&
=

200 |

'
= |

T

]

LArSoft Coordination Meeting 08/12/15

Results!

oo [
0 F
oo f
00
000
400
L
20
10060
[y

LArSoft Coordination Meeting 08/12/15

Results!

oo [
0 F
oo f
00
000
400
L
20
10060
[y

LArSoft Coordination Meeting

MC Scale Factor:
10.0

08/12/15

Current hangups/issues/notes

= You need to explicitly copy collections from mixing files if you want
them included

| wrote simple templated function that works

m Associations need to be remade

There is a PtrRemapper utility provided, which does much of the work, but
there is still more to do

In discussion with artists about requesting this feature
Decided to mix data event onto MC for this reason

= Currently some small trouble with putting info onto the event
Not sure why...probably something I'm doing wrong

LArSoft Coordination Meeting 08/12/15

Where next (1)

= Updates from past few days
MC information all being included in mixed event
Channel status information
Incorporating optical data
See remaining issues:

= Different modes for mixing?

Could mix in MC and data event together, with some empty or specialized
“mix info” source

= Production routine will probably be next hurdle for MicroBooNE in
relation to data overlays

I’'m sure we’ll share anything we uncover on best practices

LArSoft Coordination Meeting 08/12/15

16
Where next (2)

= This all lives in its own project

got even in uboonecode(!), though the plan will be to merge it there in next few
ays

QUESTION: who's interested in a generic data overlay utility, and what are the
ideas with respect to that?

= \Who wants to work on it? ©

= Mixing modules could be used for cosmic ray generation/other
backgrounds

Currently track every particle in large bounding box - heavy memory use
Could allow us to launch large cosmic-ray generation project across OSG
= Mixing would involve varying particles in time?

Cou_ldbalso allow us more freedom in what level we track/bounding box to track
per jo

Could allow us to update cosmic rate later based on data
= Or do studies with cosmic rate as systematic
QUESTION: who'’s interested? We may attack this in next month...

LArSoft Coordination Meeting 08/12/15

