Electron/Positron Measurement in FGT

Xinchun Tian, Sanjib R. Mishra, Roberto Petti

..... very much a work in progress

• Pressurized Ar-target ($\simeq x5$ FD-Stat) \Longrightarrow LAr-FD

High-Resolution Fine Grain Tracker: **Reference ND of DUNE**

μ Detector

Dipole-B

 $\implies e^{+/-} ID \Rightarrow \gamma$ Transition Radiation \implies Proton, $\pi^{+/-}$, K^{+/−} dE/dx Magnet/Muon Detector $\Rightarrow \mu^{+/-} e^{+/-}$ $(\Rightarrow$ Absolute Flux measurement) $1X_0 \sim 600 \text{ cm} / 1 \lambda \sim 1200 \text{ cm}$

A ν_{μ} CC candidate in NOMAD

- (1) Hadrons are tracks, enabling the momentum vector measurement
- (2) μ is kinematically separated from Hardon-vector \Rightarrow Miss-PT Measurement

FGT offers ~x5 higher tracking-points for hadronic tracks

A $\bar{\nu}_e$ CC candidate in NOMAD

 \rightarrow Most difficult to measure among the 4 ν -species In FGT, >x5 higher track-points YZ View |Run 8754 | Event 396 | Type Nu2 | Delay 1412.0 *e+* Δ Δ

Conclusion *→*

(1) $e \leftarrow Ve \leftrightarrow \mu \leftarrow V\mu$ are Tracks: Curvature & Direction with very high precision

(2) Universality equivalence: $\mu - \nu \mu \leftrightarrow e - \nu e$

Resolutions in FGT

• $\rho \simeq 0.1 gm/cm^3$ • Space point position $\simeq 200\mu$ • Time resolution $\simeq 1ns$

Substituting CC-Events (≥2Trk)Vertex: δ ≃ O(100µ)
Energy in Downstream-ECAL ≃ 6%/√E
µ-Angle resolution (~3 GeV) ≃ O(2 mrad)

μ-/+ Energy resolution (~3 GeV) ~ 3.5%
e-/+ Energy resolution (~3 GeV) ~ 3.5%

Electron/Lositron Measurement in FGT

$*\mathcal{V}_{e} \leftrightarrow e^{+}; \quad anti-\mathcal{V}_{e} \leftrightarrow e^{+};$

* e- Momentum Vector Measurement:

Track-reconstruction in STT: Curvature $\Rightarrow |\mathbf{p}| \& "-" \text{ or } "+"$ Direction-cosines \Rightarrow STT Track-fit extrapolated to the vertex including dE/dx

Energy \Rightarrow Cluster & Brem-Strip in the ECAL: *A more precise measure of* $|\mathbf{p}_e|$

* e-ID Measurement:

 r^{st} : Transition Radiation (TR) measurement in the STT

 \mathcal{P}^{nd} : Energy-profile, *Transverse and Longitudinal energy-deposition pattern*, in the ECAL (match the STT-Track with the ECAL-Track) Note: *ECAL has a* 4π -coverage \Rightarrow *Wide-angle e-/e+ acceptance* $\Rightarrow \pi/\mu$ reduced by $\sim 10^{-4}$ while Electron-Eff > 90%

3rd: Pattern of energy loss (*Helical track-fit*) in STT

Electron ID: TR - The most potent discriminant

unuts *Electron TR-Eff as a function of Pe* dN/dE (arbitrary units) 00 05 07 07 10 GeV/c pions/electrons arburary 0.03 for 10⁻³ rejection of π/μ 90% electron cut **Pions** 5 GeV/c muons INVAL 0.025 Electrons 0.02 Electron efficiency E, 2 GeV/c electrons 80 95 0.015 δ-ray electrons 60 0.01 90 40 0.005 20 85 10 15 20 Likelihood ratio -20 -15 -10 -5 20 10 30 E (keV) L_{μ} NOMAD TRD reaches a 0.1% pion contamination for isolated tracks 80 of momenta 1-50 GeV/c with 90% electron efficiency 75 South Carolina G 70

Analog readout: pulse height

*Atlas-TRT's-simulation conducted for the FGT config. verifies the e/μ - π separation > (See P.Nevski LBNE-DocDB#432-V1)

Fig. 8. Monte Carlo predicted electron efficiency ε_e corresponding to $\varepsilon_{\pi} = 10^{-3}$ as a function of the momentum of the particle for 9 associated hits.

10

65

Particle momentum, GeV/c

Electron ID: ECAL - Energy, Longitudinal and Transverse Profiles as discriminants

Measure $\gg e, \gamma, \& n/K^0s$

 * Scintillator-Pb calorimeter: Motivated by the T2K-ECAL design Alternating planes of X/Y planes
2.5cm Sci-slats read on both ends (SiPM)

* Downstream (Forward) ECAL:

60 Layers with 1.75mm Pb-sheets: 20X0 Single electron $\Rightarrow \sim 6\%/\sqrt{E}$

* Barrel ECAL:

18 Layers with 3.5mm Pb-sheets: 10X0

* Upstream ECAL:

18 Layers with 3.5mm Pb-sheets: 10X0

Will be updated: *More details (plots/#s) later*

Electron Efficiency in FGT (Prelim.)

Efficiencies/Purity from Fast-MC. (TR cut: 40-planes of ST) Cross-checked against NOMAD Data -vs- MC

* P > 0.5 GeV: Efficiency ~ $\sim 58\%$; Purity >90%

* Efficiency & Purity largely energy independent

* Fast-MC of NOMAD yeilds : Efficiency ~ ~38%; Purity ~82%
NOMAD Geant-MC (Data-driven): Efficiency ~ ~40%; Purity ~79%

Electron Energy Resolution in FGT (Prelim.)

- * $\boldsymbol{\delta} |\mathbf{P}| \sim 10\%$ (@FWHM)
- * $\delta |E|$ (ECAL) ~ 3.6% (consistent with 6%/ $\int E$)
- * NOMAD Geant-MC (Data-driven): $\delta |P| \sim 13\%$ (@FWHM) $\delta |E|$ (ECAL) ~ 2.0% (~ 3%/ \sqrt{E})

A final separation of $Ve \Rightarrow e$ from the non-prompt $\pi^0/\pi^+ \Rightarrow e/e$ -like

* Use the Lepton-Hadron kinematic isolation to reduce the impurity (...later)

Test-Beam Calibration of STT (TR) and ECAL (Shape)

* Measurement of the STT prototype in a Test-Beam

- ⇒ Check/obtain calibration
- \Rightarrow dE/dx, TR: e vs μ vs π vs in momentum bins
- ⇒ Essential before full-scale fabrication

* Measurement of the STT and ECAL prototypes in a Test-Beam

- \Rightarrow Obtain energy (ADC \Rightarrow GeV) calibration
- ⇒ Measure the energy-dependent non-Gaussian tails
- \Rightarrow Particle ID: e vs μ vs π shower-shape discriminant in momentum bins
- ⇒ Essential before full-scale fabrication

in situ Constraint on the Electron-efficiency

* Measure the TR and ECAL Efficiencies using source of pure e⁺e⁻

(1) Select $\gamma \rightarrow e^+e^-$ conversions using track reconstruction

& kinematics

⇒ A V⁰ separated from the vertex (>1cm) ⇒ The opening angle in X-Z plane is <5 mrad ⇒ Mee < 30 MeV (consistent with a Photon) ⇒ ~ 5. 10^7 reconstructed Photons with Purity > 99%

Sanity-Check: Apply the analysis to, and learn from, the NOMAD data (*see fig.*) *Estimates of the parametrized calculation, Purity & Eff, agree within 15%.*

(2) On the e^{-/+} tracks, impose the TR-cuts (Data & MC) \Rightarrow Evaluate the TR efficiency in Data and MC

(3) On the e^{-/+} tracks, impose the ECAL Shower-Shape cuts (Data & MC)
⇒ Evaluate the ECAL-Id efficiency in Data and MC

e-/e+ TR-Efficiency in Data .vs. MC Using $\gamma \rightarrow e^+e^-$ sample

NOvA experience: EM-Shower-ID

*NOvA is a tracking calorimeter

- \Rightarrow Cell: 4cm(X) * 15.6m(Y) * 6.6cm(Z) [ND: 4.2m(Y)]
- ⇒ Longitudinal Sampling: 0.17X0 along the beam-direction (6.6cm)
- ⇒ Transverse Sampling: ~4cm alternating X/Y planes
- \Rightarrow Timing: 500 ns window in 10 μ s spill

Versus/

*****FGT-ECAL

- \Rightarrow Cell: 2.5cm(X) * 4m(Y) * 20cm(Z)
- \Rightarrow Longitudinal Sampling: 0.3X0 along the beam-direction (0.55X0 for Barrel)
- ⇒ Transverse Sampling: ~2.5cm alternating X/Y planes
- \Rightarrow Timing: ~1 ns Ecal-Cluster time-resolution in 10 μ s spill

in situ Constraint on the Em-Shower reconstruction in NOvA

*Use the μ -Removed Cosmic-Brem in FD

in situ Constraint on the Electron/ECal Energy Scale

* Measure π^0 produced in the ν -interactions

Expect ~ $\mathcal{O}(10M)$ reconstructed π^0 using γ -conversion and γ -clusters

Use π^0 mass, constrain the ECAL energy scale (..., see Figs.)

* Measure K⁰ produced in the ν -interactions Expect ~ $\mathcal{O}(200k)$ reconstructed $K^0 \rightarrow \pi^0 \pi^0$ using γ -conversion and γ -clusters Use sharp K⁰ mass, constrain the ECAL energy scale

*Measure $\eta \gg \gamma \gamma$ produced in the ν -interactions (...see Fig.)

Expect ~ $\mathcal{O}(0.4M)$ reconstructed η using γ -conversion and γ -clusters

Use sharp η mass, constrain the ECAL energy scale

π^{0} Reconstruction using NOMAD Data (V μ -CC Sample).

(background: fit data excluding 80< Mγγ <170 MeV)

 π^{0} Reconstruction in NOvA (NC \Leftrightarrow no- μ Sample)

Constraint on the EM-energy Scale

Reconstruction using NO <u>u-CC Sample</u>,

(background: fit data excluding $475 < M\gamma\gamma < 625 MeV$)

Summary/Outlook: Electron Measurement in FGT ... in progress

(1) 100% distinction between e^{-1} .vs. e^{+1} in ~0.3 - 50 GeV

(3) Measure Pe in STT

- ⇒ Direction-cosines using the track-fit
- \Rightarrow Resolution of |Pe| ~ 12% using curvature
- \Rightarrow Resolution of $|Ee| \sim 6\%/\sqrt{Ee}$
- \Rightarrow Resolution of $\theta e \sim 3 \text{ mrad} (3 \text{ GeV } e^{-})$

(4) Electron-ID measurement via

- \Rightarrow TR (Transition Radiation) in STT
- ⇒ Shower-shape in ECAL
- \Rightarrow Patter of Energy-Loss (track-fit) in STT
- (5) in situ constraints on the electron-ID efficiency using e^+/e^- tracks originating from the reconstructed $\gamma \gg e^+e^-$

(6) in situ constraints on the electron-energy using reconstructed $\Rightarrow \sim \mathcal{O}(10M) \pi^0$ using γ -conversion and γ -clusters

 $\Rightarrow \sim \mathcal{O}(200 \text{k}) \text{ K}^0 \implies \pi^0 \pi^0 \& \sim \mathcal{O}(400 \text{k}) \eta \implies \gamma \gamma$

Backup