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THE DUNE FGT CONCEPT

4 Evolution from the NOMAD experiment

4 High resolution spectrometer
B=04T
4 Low density "transparent” tracking
p~0.1g/em® Xg~ 5m
4 Combined particle ID & tracking
for precise reconstruction of 4-momenta

e Transition Radiation = ¢~ /e™ ID, ~
e dE/dx = Proton ID, 7%/~ K+/~

4 Tunable thin target(s) spread over entire
tracking volume —> target mass ~ 7t

4 41 ECAL in dipole B field

Barrel

4 47 p-Detector (RPC) =yt /i~ Ny

"ELECTRONIC BUBBLE CHAMBER" WITH O(10%) EVENTS
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DETECTION OF e~ /e IN FGT

4 Key feature reconstruction of e~ /et as single CHARGED TRACKS, as opposed to
compact electromagnetic showers:
e Require low density (< 0.1 g/cm?) tracking with thickness ~ 1Xq and track sampling O(1073);

e Require magnetic field to separate et from e~ and reconstruct v converted in tracking volume
— With B=0.4 T e~ /e* tracks can be reconstructed down to ~ 80 MeV

e Provide accurate 4-momentum measurement of e~ /et (measure both p’ and E)

4 Continuous e~ /e™ identification fully integrated into tracking volume:
e Transition Radiation (TR) only produced by e~ /et with v > 1000,
e lonization dE/dx provides additional e/m separation in the DUNE energy range;

= Measurement of energy deposition in active straws sensitive to both

4 Matching of extrapolated e~ /e™ tracks with ECAL electromagnetic showers (clusters):
e Energy deposition in ECAL powerful e/ rejection;

e Transverse and longitudinal profile of electromagnetic showers (clusters) in ECAL provides
additional e/m rejection;

e Reconstruction of Bremsstrahlung ~'s emitted by e~ /e in the bending plane from ECAL and STT
(conversions).
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THE STRAW TUBE TRACKER

4 Main parameters of the STT design: STT double module
e Straw inner diameter 9.530 & 0.005 mm; FE electronics XX YY assembly
repeated on 80mm

e Straw walls 70 £+ 5um Kapton 160XC370/100HN 10 boards pitch leaving room
(p = 1.42, Xy = 28.6¢cm, each straw < 5 x 107X, ); for thin target(s)

o Wire W gold plated 20pum diameter;

e Wire tension around 50g;
o Operate with 70%/30% Xe/CO, gas mixture.

e Straws are arranged in double layers of 336 straws glued
together (epoxy glue) inserted in C-fiber composite frames;

o Double module assembly (XX+YY) with FE electronics
(each XX+YY tracking module ~ 2 x 103X );

e Readout at both ends of straws (10 & FE boards on all
sides of each XX+YY STT module);

e 160 modules arranged into 80 double modules over ~ 6.4
m (total 107,520 straws).

— Total tracking length ~ 0.3X

4 Add dedicated (anti)neutrino thin target(s) to each
STT double module keeping the average STT den-
sity ~ 0.1 g/cm® for required target mass.

62mm

hs

.j'\" -
j\fj ~2x107%X,
B
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RADIATOR TARGETS

. . .. . " STT double module
4 Design and physics performance (Transition Radia- FE electronics XX YY assembly

tion) of radiator targets optimized (docdb # 9766)
— Mechanical engineering model available

with radiator foils
1O boards

4 Radiator targets integrated at both sides of each
STT (double layer) module to minimize overall
thickness (foils could be removed if needed):

e Embossed polypropylene foils, 25 yum thick, 125 ym gaps;

e Total number of radiator foils 240 per XXYY module,
arranged into 4 radiators composed of 60 foils each;

e Total radiator mass in each XXYY module:
69.1 kg, 1.25 x 1072X,.

Radiator foils
60 x 4 =240

:\,%L\" 76mm

Roberto Petti USC

— The radiator represents 82.6%
of the total mass of each STT module

= Tunable for desired statistics & p resolution
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Sketch of the embossing pattern for the polypropylene radiator foils
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FGT G4 simulation: 1 GeV e™

25 m
I

50m

p=0.1g/cm?, Xy =500cm, track sampling 1.9cm/500cm = 0.38%
track sampling 1L 0.95¢m/500cm = 0.19%
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FD G4 simulation: 1 GeV e*

25 m
>
™
+

50m

p=14 g/em?, Xo = ldcm, track sampling 4.667mm/140mm = 3.33%

uscC



TR photons emitted within a cone 1/~ < 1 mrad from the track direction
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Absorption length (mm)

* radiator foils straw tube

' 10 10°
Photon energy (keV)

Xe gas has an absorption length 10 times smaller than Ar and < straw diameter
Use a proven gas mixture with 70% Xe and 30% CO, for TR detection

Need closed gas system to minimize Xe leakage (Xe is expensive)
and avoid Xe content in gas volume outside straws (flush with CO3)
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TRANSITION RADIATION

4 Simulation of Transition Radiation (TR) based on

formalism by Garibian (1972), Cherry (1975)
—> Narrow energy range ~ few keV

4 Radiator design optimized for TR performance:

e TR build-up over many interfaces;
e Self-absorption of lower part of energy spectrum;
o Need compact radiarors to keep large tracking sampling.

= Select 25 ym foils, 125 um spacing

4 On average ~1 TR photon with E > 5 keV
detected in a single STT module from a 1 GeV e

4 dE/dx in straws are of the same order as TR at

energies of few GeV: a 5 GeV e(m) has a probability
~ 41%(18%) of depositing E > 6 keV
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COMPARISON WITH NOMAD

4 Continuous TR+dE/dx detection over entire STT
volume, NOMAD only limited forward coverage
—> Improved acceptance and e* /e~ ID

4+ NOMAD TRD configuration:

e 9 radiators made of 315 (C3Hg ), foils each;
o foils 15 um thick, with 250 um air gaps;
e 16 mm diameter straws without tracking capability.

= Total 2,835 foils over ~ 154 cm length

4 Need ~ 12 double STT modules (4 straw layers
each) to match the total foils of the NOMAD TRD
—> More compact design with length ~ 92 cm

4 Opposite effects in STT:

e Smaller air gaps and thicker foils reduce TR production
with respect to NOMAD;

o Larger Xe volume more uniformly distributed within radi-
ator foils increases TR detection efficiency.
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Fig. 8. Monte Carlo predicted electron efficiency ¢, correspond-
ing 10 ¢, = 1072 as a functien of the momentum of the particle

Efficiency
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THE ELECTROMAGNETIC CALORIMETER

4 | Glo-Sci-51,23 | measure absolute and relative v,,, v, and v, U, spectra separately.

Glo-Sci-24 | measure rates, kinematic distributions and topologies of bkgnd processes

—> reconstruction of e* /e~ ~ with accuracy comparable to u*/u~ and FD
— containment of > 90% of shower energy | NDC-L2-29,37

— energy resolution < 6% /+/E [NDC-L2-38

4 Based upon the design of the T2K ND-280 ECAL (to be further optimized)

4+ Sampling electromagnetic calorimeter with Pb absorbers and alternating horizontal
and vertical (XYXYXY....) 3.2m x 2.5¢m x lem scintillator bars readout at both
ends by ~ 1 mm diameter extruded WLS fibers and SiPM

o Forward ECAL: 60 layers with 1.75 mm Pb plates — 20X
e Barrel ECAL: 18 layers with 3.5 mm Pb plates — 10X,

o Backward ECAL: 18 layers with 3.5 mm Pb plates —> 10X

Roberto Petti
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Front End Board
(64 Channel)

27.
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Back End Board
(Services 32 FE Boards)

Forward ECAL
mass 21.7 tons

Barrel ECAL Module
(16 Barrel, 2 Backward ECAL)
mass 4.9 tons
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SiPM reading a WLS fiber




Backup slides
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Simulation of a 10 STT MODULES

Electrons E=1.5 GeV

Electrons E=5.0 GeV

Geometry variant >50 >55 >60 |>50 >255 >6.0
(# foils, thickness) keV  keV keV keV  keV keV
N =75,d = 40um 520 5.01 4.82 744  7.23 7.00
N =150,d =40um | 6.08 5.92 5.74 721  7.04 6.85
N =120,d =25um | 830 8.08 777 9.47 9.21 8.85
N =150,d =25um | 8.44 822 7.91 9.40 9.15 8.80
N =120,d = 15uym | 7.83 7.33 6.76 846 793 7.32
N =120,d =20um | 854 817 7.71 946 9.05 8.54
N =130,d =20um | 8.65 8.29 7.82 9.52 9.12 8.61
N =130,d =25um | 839 8.16 7.85 9.48 9.22 8.87
N =150,d =20um | 8.77 841 7.96 9.54 9.16 8.67

Total longitudinal length of 10 STT modules (double layers) 40 cm
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STT READOUT

4 Double readout at both ends of straws: 215,040 channels in STT

4 Each of the 80 STT XXYY assemblies equipped with:
e 44 1/0 Boards (11 per side) with 64 channels each;

e 44 Front End Boards (FEB) with 64 channels each (11 per side).
Consider VMM?2 chip (ASICS) developed for ATLAS upgrades, with fast ADC and TDC;

o Number of straw ends readout:
21 groups of 32 straws per double layer (XX or YY) x 2 ends x 2 modules = 2,688

4 Back End electronics:

o 80 receiver modules - Readout Merger Board (RMB) - (one per XXYY assembly) mounted in racks;

o 5 crates (MicroBooNE), each holding 16 receiver modules, 1 controller, 1 XMIT, 1 trigger module;

4 High Voltage: 160 channels, one for each XX (or YY) double layer module

4 Low Voltage: one per RMB (80 total) servicing each 48 FEB + 80 distribution boards.
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Straw Tube Chamber |0 Board (304mm x 30mm): 3,520 total

| i | | I I | | | | | | | | | | |
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Front End Board (175mm x 60mm): 3,520 total Back End Board (200mm x 300mm): 80 total
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STT GAS SYSTEM

4 The active gas is Xe(70%)/C0O,(30%) mixture for the STT modules with radiators
and Ar(70%)/C0O5(30%) for the STT modules with nuclear targets.

4 Total active gas volume 26.7 m* and should be flushed with approximately one
volume change/hour;

4 Gas distribution is a closed recirculation system to minimize Xe losses;
4 Exit gas from the straws is recovered, cleaned and recirculated;

4 Gas tightness of straws ~ 1 mbar/min/bar to minimize Xe losses (standard ATLAS
acceptance criteria);

4 To protect straws from moisture CO, is flushed around the straws throughtout the
outer envelope of the STT (53.4 m*);

4 Forced flaw of ~ 100 m? /hour.
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TRIGGER AND EVENT RATES

4 The maximum drift time for a Xe/CO, gas mixture is 125 ns for a distance of 5mm
(lower for Ar), as measured in testbeam.

4 The STT can resolve individual beam pulses (resolution ~ ns)
4 Expect a rate of 1.5 events/spill (~ 10 us) for events originated within STT volume.

4 Possible a self-triggering scheme in which hits are stored in pipelines (can use FE ADC
to operate in digital domain) waiting a later decision

= Avoid trigger based upon geometrical acceptance (problem in NOMAD).

4 Depending upon the background rate, it should be possible to read and timestamp
everything within one spill and to take a decision later in the cycle.

4+ In addition, calorimetric trigger (complementary)
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