Detectors for e^+/e^- **Identification in FGT**

R. Petti

University of South Carolina, USA

DUNE ND Working Group Meeting December 3, 2015

THE DUNE FGT CONCEPT

- Evolution from the NOMAD experiment
- ♦ High resolution spectrometer
 B = 0.4 T
- Low density "transparent" tracking $\rho \sim 0.1g/cm^3$ $X_0 \sim 5m$
- Combined particle ID & tracking for precise reconstruction of 4-momenta
 - Transition Radiation $\Longrightarrow e^-/e^+$ ID, γ
 - $dE/dx \Longrightarrow$ Proton ID, $\pi^{+/-}$, $K^{+/-}$
- ◆ Tunable thin target(s) spread over entire tracking volume ⇒ target mass ~ 7t
- 4π ECAL in dipole B field
- $4\pi \ \mu$ -Detector (RPC) $\Longrightarrow \mu^+/\mu^-$

"ELECTRONIC BUBBLE CHAMBER" WITH $\mathcal{O}(10^8)$ EVENTS

DETECTION OF e^-/e^+ IN FGT

- ♦ Key feature reconstruction of e⁻/e⁺ as single CHARGED TRACKS, as opposed to compact electromagnetic showers:
 - Require low density (< 0.1 g/cm³) tracking with thickness $\sim 1X_0$ and track sampling $O(10^{-3})$;
 - Require magnetic field to separate e^+ from e^- and reconstruct γ converted in tracking volume \implies With B=0.4 T e^-/e^+ tracks can be reconstructed down to ~ 80 MeV
 - Provide accurate 4-momentum measurement of e^-/e^+ (measure both \vec{p} and E)
- Continuous e^-/e^+ identification fully integrated into tracking volume:
 - Transition Radiation (TR) only produced by e^-/e^+ with $\gamma > 1000$;
 - Ionization dE/dx provides additional e/π separation in the DUNE energy range;

⇒ Measurement of energy deposition in active straws sensitive to both

- Matching of extrapolated e^-/e^+ tracks with ECAL electromagnetic showers (clusters):
 - Energy deposition in ECAL powerful e/π rejection;
 - Transverse and longitudinal profile of electromagnetic showers (clusters) in ECAL provides additional e/π rejection;
 - Reconstruction of Bremsstrahlung γ 's emitted by e^-/e^+ in the bending plane from ECAL and STT (conversions).

THE STRAW TUBE TRACKER

Main parameters of the STT design:

- Straw inner diameter 9.530 ± 0.005 mm;
- Straw walls $70 \pm 5\mu m$ Kapton 160XC370/100HN ($\rho = 1.42$, $X_0 = 28.6cm$, each straw $< 5 \times 10^{-4} X_0$);
- Wire W gold plated 20µm diameter;
- Wire tension around 50g;
- Operate with 70%/30% Xe/CO₂ gas mixture.
- Straws are arranged in double layers of 336 straws glued together (epoxy glue) inserted in C-fiber composite frames;
- Double module assembly (XX+YY) with FE electronics (each XX+YY tracking module ~ 2 × 10⁻³X₀);
- Readout at both ends of straws (IO & FE boards on all sides of each XX+YY STT module);
- 160 modules arranged into 80 double modules over ~ 6.4 m (total 107,520 straws).
- \implies Total tracking length $\sim 0.3X_0$
- Add dedicated (anti)neutrino thin target(s) to each STT double module keeping the average STT density ~ 0.1 g/cm³ for required target mass.

RADIATOR TARGETS

- Design and physics performance (Transition Radiation) of radiator targets optimized (docdb # 9766)
 Mechanical engineering model available
- Radiator targets integrated at both sides of each STT (double layer) module to minimize overall thickness (foils could be removed if needed):
 - Embossed polypropylene foils, 25 μm thick, 125 μm gaps;
 - Total number of radiator foils 240 per XXYY module, arranged into 4 radiators composed of 60 foils each;
 - Total radiator mass in each XXYY module: 69.1 kg, $1.25 \times 10^{-2} X_0$.
 - ⇒ The radiator represents 82.6% of the total mass of each STT module
 - \implies Tunable for desired statistics & p resolution

Sketch of the embossing pattern for the polypropylene radiator foils

FGT G4 simulation: 1 GeV e^+

 $ho = 0.1 \ g/cm^3, \ X_0 = 500 \ cm, \ track \ sampling \ 1.9 \ cm/500 \ cm = 0.38\%$ track sampling $\perp \ 0.95 \ cm/500 \ cm = 0.19\%$

FD G4 simulation: 1 GeV e^+

 $\rho = 1.4 \ g/cm^3, X_0 = 14 cm, track sampling 4.667 mm/140 mm = 3.33\%$

TR photons emitted within a cone $1/\gamma < 1$ mrad from the track direction

Xe gas has an absorption length 10 times smaller than Ar and \ll straw diameter Use a proven gas mixture with 70% Xe and 30% CO₂ for TR detection

Need closed gas system to minimize Xe leakage (Xe is expensive) and avoid Xe content in gas volume outside straws (flush with CO_2)

TRANSITION RADIATION

- ◆ Simulation of Transition Radiation (TR) based on formalism by Garibian (1972), Cherry (1975)
 ⇒ Narrow energy range ~ few keV
- + Radiator design optimized for TR performance:
 - TR build-up over many interfaces;
 - Self-absorption of lower part of energy spectrum;
 - Need compact radiarors to keep large tracking sampling.
 - \implies Select 25 μm foils, 125 μm spacing
- ◆ On average ~1 TR photon with E > 5 keV detected in a single STT module from a 1 GeV e
- *dE/dx* in straws are of the same order as TR at energies of few GeV: a 5 GeV e(π) has a probability ~ 41%(18%) of depositing E > 6 keV

Ionization dE/dx, E=5 GeV

COMPARISON WITH NOMAD

 ◆ Continuous TR+dE/dx detection over entire STT volume, NOMAD only limited forward coverage ⇒ Improved acceptance and e⁺/e⁻ ID

NOMAD TRD configuration:

- 9 radiators made of 315 $(C_3H_6)_n$ foils each;
- foils 15 μm thick, with 250 μm air gaps;
- 16 mm diameter straws without tracking capability.
- \implies Total 2,835 foils over \sim 154 cm length
- ♦ Need ~ 12 double STT modules (4 straw layers each) to match the total foils of the NOMAD TRD
 ⇒ More compact design with length ~ 92 cm

Opposite effects in STT:

- Smaller air gaps and thicker foils reduce TR production with respect to NOMAD;
- Larger Xe volume more uniformly distributed within radiator foils increases TR detection efficiency.

Fig. 8. Monte Carlo predicted electron efficiency ε_e corresponding to $\varepsilon_{\pi} = 10^{-3}$ as a function of the momentum of the particle

THE ELECTROMAGNETIC CALORIMETER

- ◆ Glo-Sci-51,23 measure absolute and relative ν_μ, ν_e and ν
 _μ, ν
 _e spectra separately.
 Glo-Sci-24 measure rates, kinematic distributions and topologies of bkgnd processes
 ⇒ reconstruction of e⁺/e⁻, γ with accuracy comparable to μ⁺/μ⁻ and FD
 ⇒ containment of > 90% of shower energy NDC-L2-29,37
 ⇒ energy resolution < 6%/√E NDC-L2-38
- ◆ Based upon the design of the T2K ND-280 ECAL (to be further optimized)
- Sampling electromagnetic calorimeter with Pb absorbers and alternating horizontal and vertical (XYXYXY....) 3.2m × 2.5cm × 1cm scintillator bars readout at both ends by ~ 1 mm diameter extruded WLS fibers and SiPM
 - Forward ECAL: 60 layers with 1.75 mm Pb plates $\implies 20X_0$
 - Barrel ECAL: 18 layers with 3.5 mm Pb plates $\implies 10X_0$
 - Backward ECAL: 18 layers with 3.5 mm Pb plates $\implies 10X_0$

Forward ECAL mass 21.7 tons

Barrel ECAL Module (16 Barrel, 2 Backward ECAL) mass 4.9 tons

SiPM reading a WLS fiber

Backup slides

Roberto Petti

Simulation of a 10 STT MODULES

	Electrons E=1.5 GeV			Electrons E=5.0 GeV		
Geometry variant	> 5.0	> 5.5	> 6.0	> 5.0	> 5.5	> 6.0
(# foils, thickness)	keV	keV	keV	keV	keV	keV
$N = 75, d = 40 \mu m$	5.20	5.01	4.82	7.44	7.23	7.00
$N = 150, d = 40 \mu m$	6.08	5.92	5.74	7.21	7.04	6.85
$N = 120, d = 25\mu m$	8.30	8.08	7.77	9.47	9.21	8.85
$N = 150, d = 25\mu m$	8.44	8.22	7.91	9.40	9.15	8.80
$N = 120, d = 15 \mu m$	7.83	7.33	6.76	8.46	7. <i>93</i>	7.32
$N = 120, d = 20\mu m$	8.54	8.17	7.71	9.46	9.05	8.54
$N = 130, d = 20\mu m$	8.65	8.29	7.82	9.52	9.12	8.61
$N = 130, d = 25\mu m$	8.39	8.16	7.85	9.48	9.22	8.87
$N = 150, d = 20\mu m$	8.77	8.41	7.96	9.54	9.16	8.67

Total longitudinal length of 10 STT modules (double layers) 40 cm

STT READOUT

◆ Double readout at both ends of straws: 215,040 channels in STT

+ Each of the 80 STT XXYY assemblies equipped with:

- 44 I/O Boards (11 per side) with 64 channels each;
- 44 Front End Boards (FEB) with 64 channels each (11 per side). Consider VMM2 chip (ASICS) developed for ATLAS upgrades, with fast ADC and TDC;
- Number of straw ends readout: 21 groups of 32 straws per double layer (XX or YY) × 2 ends × 2 modules = 2,688

Back End electronics:

- 80 receiver modules Readout Merger Board (RMB) (one per XXYY assembly) mounted in racks;
- 5 crates (MicroBooNE), each holding 16 receiver modules, 1 controller, 1 XMIT, 1 trigger module;
- + High Voltage: 160 channels, one for each XX (or YY) double layer module
- ◆ Low Voltage: one per RMB (80 total) servicing each 48 FEB + 80 distribution boards.

Straw Tube Chamber IO Board (304mm x 30mm): 3,520 total

Front End Board (175mm x 60mm): 3,520 total

Back End Board (200mm x 300mm): 80 total

STT GAS SYSTEM

- The active gas is Xe(70%)/CO₂(30%) mixture for the STT modules with radiators and Ar(70%)/CO₂(30%) for the STT modules with nuclear targets.
- Total active gas volume 26.7 m³ and should be flushed with approximately one volume change/hour;
- ♦ Gas distribution is a closed recirculation system to minimize Xe losses;
- + Exit gas from the straws is recovered, cleaned and recirculated;
- ◆ Gas tightness of straws ~ 1 mbar/min/bar to minimize Xe losses (standard ATLAS acceptance criteria);
- To protect straws from moisture CO₂ is flushed around the straws throughtout the outer envelope of the STT (53.4 m³);
- Forced flaw of $\sim 100 \text{ m}^3/\text{hour.}$

TRIGGER AND EVENT RATES

- The maximum drift time for a Xe/CO₂ gas mixture is 125 ns for a distance of 5mm (lower for Ar), as measured in testbeam.
- + The STT can resolve individual beam pulses (resolution \sim ns)
- + Expect a rate of 1.5 events/spill ($\sim 10 \ \mu s$) for events originated within STT volume.
- Possible a self-triggering scheme in which hits are stored in pipelines (can use FE ADC to operate in digital domain) waiting a later decision

 \implies Avoid trigger based upon geometrical acceptance (problem in NOMAD).

- Depending upon the background rate, it should be possible to read and timestamp everything within one spill and to take a decision later in the cycle.
- In addition, calorimetric trigger (complementary)