Fermilab **ENERGY** Office of Science

SBND TPC Status

Kostas Mavrokoridis -TPC Manager (k.mavrokoridis@liverpool.ac.uk) Directors' Progress Review of SBN 15-17 Dec 2015, Fermilab

Outline -Key TPC Components

🛟 Fermilab

- APA
 - APA frames
 - Geometry boards, mounting platforms
 - Wire mesh, wire support, E-diverter
 - APA assembly procedure and tooling
 - Interface to electronics; faraday cage
 - APA winding
- CPA

SBN

- CPA frames & panels
- HV Cup
- CPA suspension features

- Field Cage
 - Field cage panels
 - Roll-formed metallic profiles
 - Resistor divider board
 - Supporting beams
- HV Feedthrough
- TPC Integration
 - APA Interconnect and alignment
 - TPC suspension features
 - TPC assembly procedure and tooling

Preliminary Design Report (docdb ID 613)Review was held Sept 2015http://sbn-docdb.fnal.gov:8080/cgi-bin/RetrieveFile?docid=613&filename=sbnd-tpc-PDR-review.pdf&version=1

The SBND TPC Working Group

Collaboration between UK and USA Institutions, funded by NSF and STFC

Deliverables	Institution	
Four APA Frames (2UK&2US)	University of Sheffield	
Winding two APAs	University of Manchester	
Winding two APAs	Chicago, Syracuse and Yale	
CPAs	University of Liverpool	
HV Feedthrough	UCL and Yale	
Field Cage	BNL and Yale	
QA/APA cold tests	Lancaster University	
Integration, Assembly, and Installation	Chicago, BNL and Fermilab	
축 Fermilat		

3 12/14/15 Kostas Mavrokoridis (University of Liverpool) | SBND TPC Status | Directors' Review

SBN

The SBND TPC Working Group

The WBS Managers

40SBN/2	SBND Construction	WBS Managers	WBS deputies
40SBN/2.3	TPC Construction	Kostas <u>Mavrokoridis</u>	-
40SBN/2.3.1	TPC Preliminary Design	Bo Yu	-
40SBN/2.3.2	TPC Final Design	Bo Yu&Peter Sutcliffe	-
40SBN/2.3.3	APA Frame Construction - (UK)	Trevor Gamble & Nicola McConkey	-
40SBN/2.3.4	APA Geometry Boards Production - (US)	Bo Yu	Serhan Tufanli
40SBN/2.3.5	APA Construction - (UK)	Stefan Soldner-Rembold	Jarek Nowak
40SBN/2.3.6	APA Construction - (US)	Mitch Soderberg	-
40SBN/2.3.7	CPA Construction - (UK)	Peter Sutcliffe & David Payne	-
40SBN/2.3.8	HV Supply and Feed Through Construction - (US-UK)	Anna <u>Holin</u> & Bonnie Fleming	Serhan Tufanli
40SBN/2.3.9	Field Cage Construction - (US)	Bo Yu	Serhan Tufanli
40SBN/2.3.10	TPC Connection Frame Construction - (US)	Rich Northrop &Dave Schmitz &Bo Yu	-
40SBN/2.3.11	TPC Assembly Preparations - (US)	Rich Northrop &Dave Schmitz &Bo Yu	-

SBN

‡ Fermilab

TPC Requirements

- □ The TPC volume is large enough to achieve the physics goals of the experiment.
- □ The 3 mm wire pitch is chosen, as in the MicroBooNE and ICARUS detectors, to enable electron/photon separation to be achieved with identical efficiency.
- □ Limit variation in the wire sag to < 0.5 mm such that it does not significantly impact the position and energy resolution of the detector.
- □ The APAs are constructed in a manner that guarantees no wires will break during the operational life of the experiment.
- □ The electric field must not exceed 30 kV/cm inside the liquid, and not exceed 5 kV/cm in the argon gas to prevent HV breakdown.
- □ Minimize dead space in the active volume: place the cathode in the center of the TPC.
- □ The wire plane and HV cathode designs must be compatible with the photon detection system designs being considered for the experiment.

TPC Parameters

Parameter	Value
TPC active volume	5m (L) x 4m (H) x 4m (W), 112 metric ton active LAr mass
Number of TPC cells	2 drift volumes, 2m drift length in each
Anode Plane Assembly (APA)	2.5m x 4m active area, with cold electronics mounted on 2 sides.
Wire properties	150µm diameter, CuBe
Wire planes	3 planes on either side of an APA U & V at ±60° to vertical, Y vertical
Cathode bias	-100 kV @ 500V/cm drift field
Number of Wires	2816 channels/APA. 11264 wires total in TPC.
Wire tension	0.5 kg at room temperature

APA Frame

University of Sheffield & Chicago

Leveling plate

For 3 mm wire plane separation need better than ± 2 mm flatness, plate adjustable to ± 0.5 mm

Fabricated from 150 x 100 x 5mm 304 Stainless Steel rectangular hollow sections (RHS)

lad

- Bare frame weight = 480 kg
- ± 2 mm flat welded frame **SBN**

9

FEA: Max X displacement 0.85 mm

APA Frame

SBN

Prototyping levelling plates -deformation check at Sheffield

APA Frame

SBN

‡ Fermilab

APA Construction

APA leveling plates to achieve flat surface for the geometry boards (± 0.5 mm adjustment)

All geometry boards are modeled in 3D Layout of the Y_top

Geometry Board Complete

Total Estimate for all boards: ~80k\$

APA Construction – Electron Deflector

Electron deflector to recover the "dead" region (15mm) between the two interconnected APAs

SBN

To be tested in 35t
Preliminary studies with the Liverpool camera readout TPC

APA Winding

Two winding Facilities -

Yale, USA (Syracuse group)

Daresbury, UK (Manchester group)

UK Daresbury Space

UK Daresbury space ready to be used

APA Winding

SBN

Winding Procedure UK: Semi automated

- Frame is supported on a turntable which rotates to three working angles.
 - Working space ~6x6 m²
 - Full access for operator(s)
- Wiring head traverses on cross beam, which itself travels on fixed side rails.
- Wires are strung one at a time:
 - Ease of design/development
 - Quality control is wire by wire
 - Minimal working area
 - Scalable to any size frame
- Procedure:
 - 1. Solder wire at one side.
 - 2. Draw wire over guides to other side.
 - 3. Tension.
 - 4. Solder on other side.
 - 5. Cut wire.
- Finishing:
 - Glue over soldered joints and board edges to fix against possible creep
- Automated option:
 - Computer-controlled stepper motors ensure precise positioning. (otherwise manually)

Turntable framework and bridge design is complete

APA Winding Vale The New Wright Laboratory

Facilities

- 85,200 sf of lab and office space include
- PI laboratories
- Specialized laboratories
- Prototyping, teaching, fabrication shops

APA Winding

The New Wright Laboratory

nding Procedure US: Manual

APA Winding

Winding Procedure US: Manual

Prototype expected delivery

Cost prototype ~40k USD Cost for full machine ~50k USD

1. Starting position

2. The 1st fold brings the wire outside the APA perpendicular to the side
3. The 2nd fold brings the wires down along the edge geometry boards where they are then soldered **Comparison of Comparison of Comparis**

SBN

CPA

HV supply & Feedthrough

Yale and UCL groups

100 kV FT, Spring loaded tip based on 35ton design

Heinzinger PNChp 150000 – 1 neg High Precision – HighVoltage – Power Supply

Material cost is 67k \$

Work led by BNL and Yale

Field Cage

PCB design based on 35t

Cost ~250k USD

Roll-formed metallic profiles design

A pre-assembled module: 32 bars @ 6cm pitch to cover 2m drift. There is no electrical connection between adjacent field cage modules. Each module has its own resistive divider chain.

Profile and cap locking scheme Resistive divider and surge suppressor chain

Awaiting performance of 35t and Roll-formed field cage prototype test at CERN SBN

TPC Integration & Installation

Connected using two custom connection fixtures, allowing uniform gap and ensure alignment of U/V wires across two frames

SBN

‡ Fermilab

🛟 Fermilab

TPC Integration & Installation

TPC assembly in the DAB tent

Work led by Chicago, BNL and Fermilab

‡ Fermilab

TPC Schedule

All TPC components to be delivered to Fermilab by March 2017