

MicroBooNE/ LArTF SBN NEAR DETECTOR

PMT System (SBND)

SBN FAR DETECTOR

MiniBooNE DETECTOR

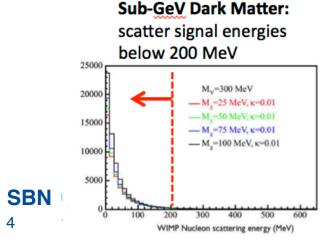
Richard Van de Water (LANL)
Director's Progress Review of SBN
15-17 December 2015

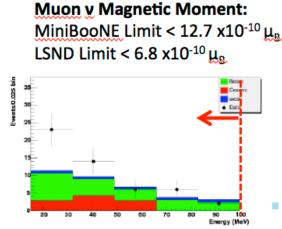
Outline

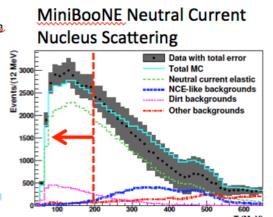
- System Overview
- Technical Design
- Resources
- Basis of Estimate (for DOE costs)
- Schedule and Cost Summary
- Status of design
- ES&H and QA
- Summary

SBND Photon Detection System (PDS) Goals

- SBND needs to achieve its main oscillation physics goals, and if possible, pursue other physics searches.
- An important part of the SBND mission is R&D for future LAr neutrino experiments.
- Large LAr detectors operating on the surface have unique challenges.
 - copious cosmic ray muons, showers, and neutrons.
 - MiniBooNE tackled this with an integrated cosmic ray veto and ~1 nsec event reconstruction.

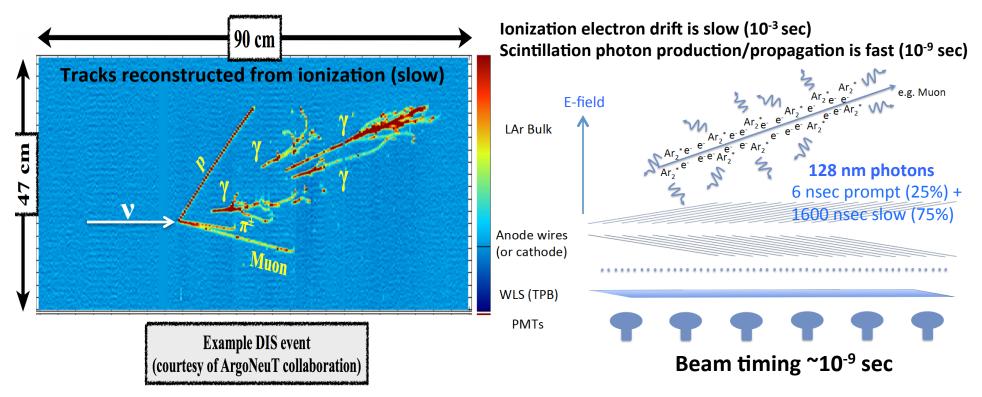



Enhanced SBND Physics Leveraging Scintillation Light


- Good PDS timing resolution will improve dirt/cosmic background rejection decreasing oscillation systematics
 - Enable lower analysis energy thresholds, i.e. E_{vis} (oscillations) > 100 MeV, which improves oscillation sensitivity.
- Good timing will improve analysis of low energy (< 200 MeV) physics that are dominated by dirt/cosmic backgrounds:
 - Low mass dark matter search
 - v_u magnetic moment
 - Neutral Current Elastic cross sections

Enhanced SBND physics due to its proximity to the source

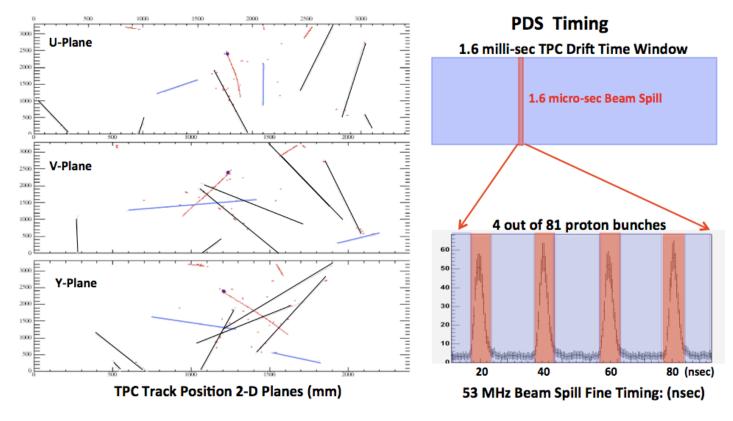
Cross Sections:



ilab

Liquid Argon Time Projection Chamber Capabilities

- Liquid Argon TPC detectors provide precision tracking, but are extremely **SLOW** with 10⁻³ second drift compared to 10⁻⁶ (10⁻⁹ RF) second beam time, allowing for copious external backgrounds, especially in surface LAr detectors.
- Detection of photons from scintillation light is relatively FAST (~10-9 second) allowing potential efficient tagging/rejection of external backgrounds.



Reducing External backgrounds with a Photon Detection System (PDS)

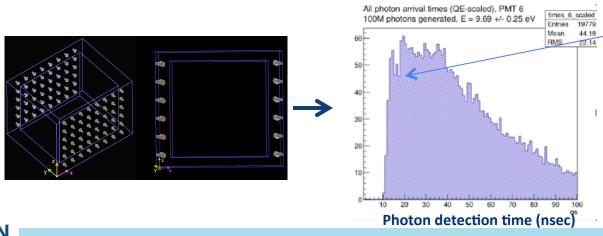
With good PDS/TCP track matching, and ~nanosecond timing resolution, reject of out of time backgrounds (black, blue) from neutrinos that are in-time with the beam (red) at the 2x10⁻⁴ level.

- Coupled with CRT, expected significant oscillation sensitivity improvement >100 MeV.
- External neutron backgrounds rejection with PDS.

Performance Parameters

 Time resolution performance requirement for the light collection system depends on the physics you want to use it for:

Require	tag events as being "in-spill" (energy threshold?)	few-100ns resolution		
	tag Michel electron decays through timing	order 100ns resolution (also requirement on light yield)		
	tag muons as 'entering' or 'exiting' (by measuring sign(ttpc - tcrt))	~5ns resolution (also requirement on CRT timing)		
	tag kaon production through timing? $(t_{K+} = 12ns, t_{K0} = 51ns)$	~3-5ns resolution? (impossible given scint. light structure?)		
	tag events as being "in-bucket" for maximum external background rejection	1-2ns resolution		
Goal	dark matter searches (additional science objective)	1-2ns resolution		

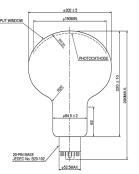

- Maximum external background rejection and enhanced physics requirements requires ~1-2 nsec timing performance.
- This also gives best spatial reconstruction resolution for TPC track matching.

The SBND Photon Detection System:

- A "primary PDS" based on 60 PMTs mounted behind each APA wire frame, for a total of 120 PMTs.
- PMTs are a proven technology for scintillation light detection in LAr giving a high level of confidence for reaching our physics goals.
 - Possibility to install DUNE style light guide bar system along side PMT system (backup slide). Allows for cross comparisons.
 - Wavelength shifting reflectors to increase amount of detected light are being considered.
- Simulation studies ongoing to determine TPC track matching efficiency, timing resolution, angular/position resolution, etc.

LAr Scintillation Light Simulations (SBND detector)

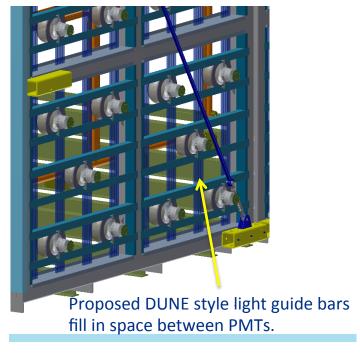
- Best event timing requires maximum photocathode coverage and PMT timing response to extract prompt light.
- More PMT's improves triggering threshold stability and dynamic range.

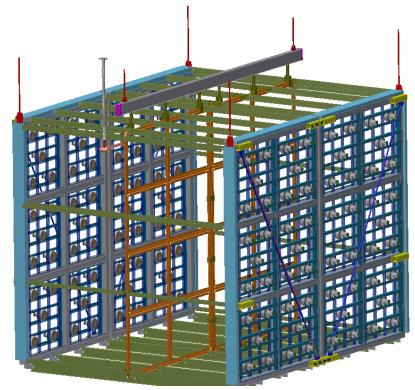


PDS Technical Status

SBND &

PMTs


- Decided on the Hamamatsu R5912 Cryogenic PMT.
- Robust and proven cryogenic PMT
 - Same choice as ICARUS uB, miniCLEAN.
 - 10 stage 10⁷ gain.
 - 1.5 nsec Gaussian timing resolution for single photo-electron.
 - PMT base will be mini-CLEAN design (Photo-cathode at ground).
 - Tetraphenyl butadiene TPB wavelength shifting (128 nm -> 425 nm peak) film coated directly on PMT glass.
- Total of 120 8" R5912 PMTs will achieve up to ~15 photoelectrons/MeV at 2m from PMT plane.
- Negotiating with Hamamatsu with order to be placed in the new year.
- Discussions with ICARUS to perform TPB evaporative coating and testing of PMTs at CERN.



PDS Technical Status

- Support structure and PMT mounting
 - Jan Boissevain (LANL engineer) has started work on support structure design, fully integrated with FNAL CAD/setp file models.
 - PMT support structure will bolt onto TPC frame. Integration into TPC needs to take account of TPB light sensitivity.
 - Dry weight per APA 124 kg; Buoyancy weight 50 kg.
 - Cable plant and cold feed thru needs to be designed.
 - PMT support structure will be designed to accept DUNE style light guide bars.

Adding center PMT increases total to 120 PMT's

ermilab

Technical Status

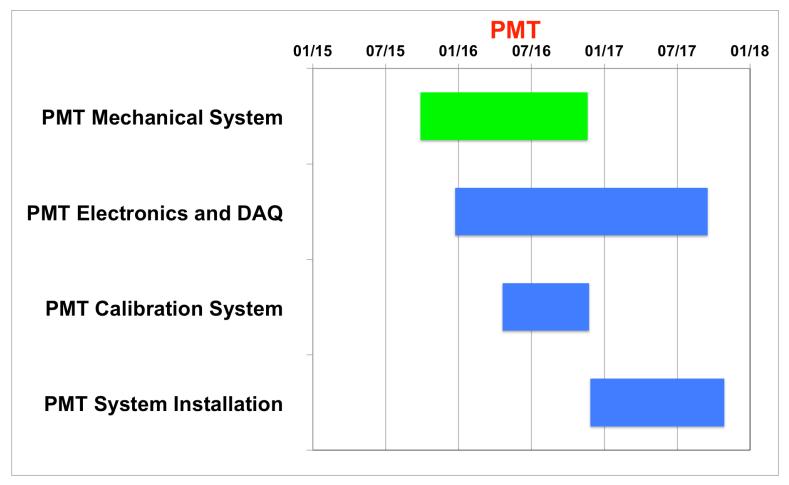
Electronics

- Options: CAEN, ANL, Nevis, others...
- Desirable to use common system between SBND and ICARUS.
- Fast digitization allows complete characterization of PMT pulse shape (~10-20 nsec width).
- CAEN has two models available with large memory option (~5 Ms/ channel => 0.01 sec):
 - 1725: 250 MHz and 14 bits, 16 channel/board, ~\$700/channel
 - 1730: 500 MHz and 14 bits, 16 channel/board, ~\$1000/channel
 - 14 bit ADC would provide 2⁵ charge bits for single PE and a dynamic range of around 512 PE.
 - Fiber optic readout (80 Mbit/s per link), 64 MHz external clock input/ sync, onboard triggering/filtering options, FPGA programming support.
- ANL design has similar features, but requires some up front engineering development (different ADC than current SiPM design).
- Begun work with DAQ group on interface/sync issues.

Resources

- PMT system fully funded by LANL LDRD.
 - \$1.1 million for PMT system hardware, support structure, cabling, feed-thru, electronics and DAQ.
 - 1.8 FTE and 1 PD for experimental work to design and build PMT system, develop DAQ, and reconstruction.
 - 1.0 FTE and 1 PD for theoretical work on neutrino LAr cross sections and sterile neutrino theory.
- L2 project manager R.G. Van de Water (LANL) and deputy Keith Rielage (LANL)
 - L3 positions being filled
- SBND photon detection working group provides physics and technical input/ideas, critical thought, simulation support, and decision making forum.

Basis of Estimate



- Cryogenic PMTs systems are not new.
 - LANL group has had extensive experience building PMT systems (LSND, SNO, MiniBooNE, MiniCLEAN)
 - Manufacture quotes for about 40% of the total cost.
 - Project contingency is 20%, with \$100k further reserve.
 - Biggest unknown is cold feed thru design and construction cost

		1		1
	Donation		M&S	Labor resource and %
WBS Title	Duration	Mec (t)	Contingency	effort or total hours for each labor resource
PMT system design, layout and integration	(days) 120	M&S (\$) \$10,000	(% and rule) 10%	0.1 FTE-E
PMT mounting design and modeling	90	\$10,000	5%	0.2 FTE-E
PMT mounting fabrication	180	\$100,000	30%	0.2 FTE-T
PMT cryostat feed through design and testing	180	\$30,000	100%	0.2 FTE-E
PMT cryostat feed through flange fabrication	90	\$100,000	30%	0.2 FTE-T
PMT base circuit and cable design, fabrication and testing	180	\$20,000	5%	0.4 FTE-T
HV power supply specification, procurement and testing	180	\$25,000	5%	0.1 FTE-T
PMT readout electronics design and fabrication	360	\$120,000	5% (quote)	0.25 FTE-E 0.5 FTE-T
DAQ System	270	\$50,000	20%	PostDoc
PMT specification and procurement	180	\$230,000	5% (quote)	0.1 FTE-T
PMT QA test design and fabrication	30	\$10,000	5%	Use ICARUS setup
TPB coating applicator design and fabrication	90	\$30,000	20%	0.1 FTE-T
PMT QA testing	180	\$20,000	30%	1.0 FTE-PD
PMT assembly and cabling	60	\$5,000	20%	1.0 FTE-PD/T
PMT cryostat feed through and cable installation	60	\$5,000	20%	1.0 FTE-PD/T
PMT installation test run at DAB	60	\$5,000	20%	1.0 FTE-PD/T
PMT mounting holder instalaltion at DAB	60	\$5,000	20%	1.0 FTE-PD/T
Readout electronics installation	60	\$5,000	20%	1.0 FTE-PD/T
PMT installation at SBND building	60	\$5,000	20%	1.0 FTE-PD/T
PMT QA test before cryostat closeup	60	\$5,000	20%	1.0 FTE-PD/T
Calibration System	180	\$30,000	30%	
Nearline Monitoring System	180	\$20,000	20%	1.0 FTE-PD/T
Total		\$830,000	\$165,000	

PMT System Preliminary Schedule/Cost: L3 Tasks (details in full schedule)

LANL LDRD funding began 10/15, three year duration.

Status of Design

Done:

SBND OF THE CO

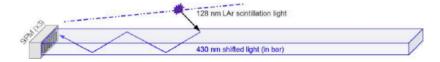
- Secured LANL-LDRD funding for a PDS.
- Collaboration decision made on type of PDS: PMTs
- ToDo's
 - Desire to install DUNE style light guide bars, reflectors are being considered (not part of this sub project).
 - Order 120 8" Hamamatsu R5912 PMTs (early 2016)
 - PMT base design (started)
 - Complete design of support structure, PMT fixtures, and interfacing (started).
 - Cold cable feed thru design (start early 2016).
 - PMT coating and testing at CERN (mid/late 2016)
 - Decision on which electronics to use (mid 2016)
 - Development of DAQ and calibration system (start late 2016)
 - PMT system simulations (ongoing).

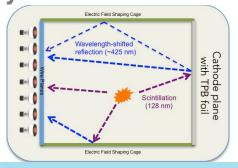
ES&H, QA

- ES&H considerations for this subsystem:
 - Will work with FNAL safety on PMT base and readout electronics electrical standards.
 - Support structure design using FNAL standards.
- Quality Assurance Program for this subsystem:
 - PMT's will be tested at the CERN WA104 test facility. This is the same testing being done for the ICARUS PMT's.
 - PMT tests include gain, timing, and dark current rates.

Summary

- Sufficient funding is available to design and build the primary photon detection system for SBND, which is 120 8" PMTs.
 - This is a proven and robust design.
 - Will easily achieve required goal of 100 nsec timing, and most likely get to 1-10 nsec timing needed for maximum background rejection. Studies ongoing to determine final timing resolution.
 - Large number of PMTs will produce stable triggering with large dynamic range required for online triggering.
- PMT subproject is ramping up (LDRD funding started Oct 2015).
 - Significant contingency and reserve funding.
 - Sufficient FTE for design, procurement, and construction.
 - Realistic schedule for installation in 2017.


BackUp Slides

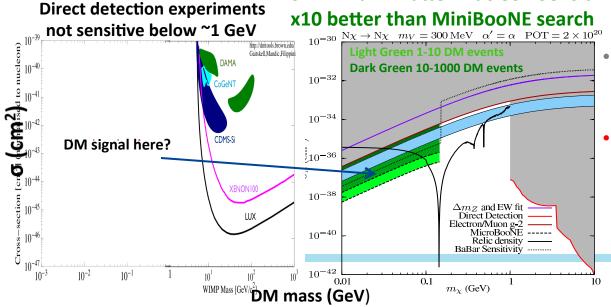


Backup Slide: Light guide bars and reflectors options

 Light guide bars are new PDS design which can cover large surface area for relatively low cost, however, requires large number of electronics channels

- Scales up baseline DUNE design, builds off DUNE R&D efforts (TallBo, 35 ton)
- TPB-coated light guide bars measuring 1 m x 1" x ¼" behind each APA
- Both ends of each bar read out by 3 SensL SiPMs (6 mm x 6 mm)
- Add wavelength shifting reflectors on cathode and side surfaces to increase light output, low cost, but not clear if they dilute the time response of the PMT system.

Sub-GeV Dark Matter Searches with SBND



Test U(1) Dark Sector Models which are motivated by arXiv:0906.5614 sub-GeV Dark Matter and the Muon g-2 anomaly arXiv:1211.2258

proton beam
$$\frac{\pi^{+} \rightarrow \mu^{+} \nu_{\mu}}{p + p(n) \longrightarrow V^{*} \longrightarrow \bar{\chi} \chi} \xrightarrow{\chi^{+} e^{-\gamma} \chi^{+} e^{-\gamma} \chi^{+$$

- Dark sector mediator (V) couples to photons from beam π^0 decay.
- Dark Matter (χ) scatters off detector nucleons or electrons.

SBND Dark Matter-Nucleon Sensitivity

- Probes Muon g-2 anomalous region and relic density solution (solid black line).
- SBND will have excellent signal sensitivity, but requires improved low energy background rejection (<200 MeV) with PDS.

