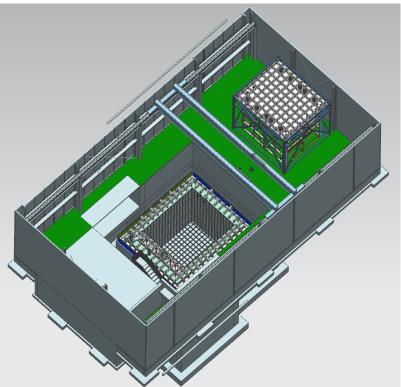


SBND Installation and Integration

Joe Howell Director's Progress Review of SBN 15-17 December 2015

Outline

- System Overview
- Interfaces
- Resources
- Basis of Estimate (for DOE costs)
- Cost and Schedule Summary
- ES&H and QA (Environment, Safety & Health and Quality Assurance)
- Response to TPC technical review recommendations
- Status of design



SBND installation and integration scope

The scope is the installation and integration of the TPC and Cosmic Ray Tagger at the Near Detector Building and the warm detector commissioning. The scope also includes the assembly of the TPC at DAB and transportation to the Near Detector Building

SBND installation and integration scope elements

- Detector installation planning
- Installation equipment design and procurement
- Design and procurement of TPC hanger supports
- Design and procurement of upper Cosmic Ray Tagger support structure
- Setup of Near Detector Assembly Facility at DAB
- Near Detector Assembly

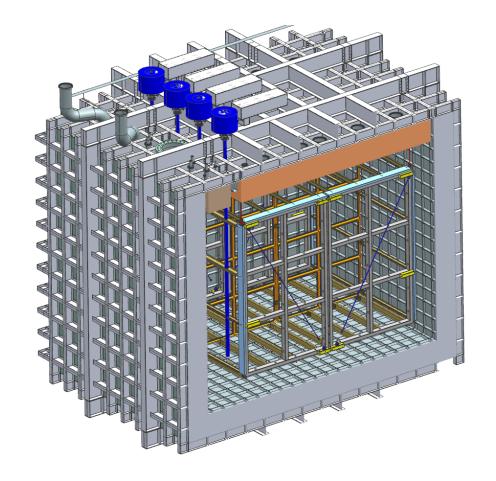
SBN

4

- Transportation of TPC from DAB to the Near Detector Bldg.
- Installation of TPC with Light Detectors into Cryostat
- Installation of the Cosmic-Ray tagger
- Warm detector checkout and commissioning

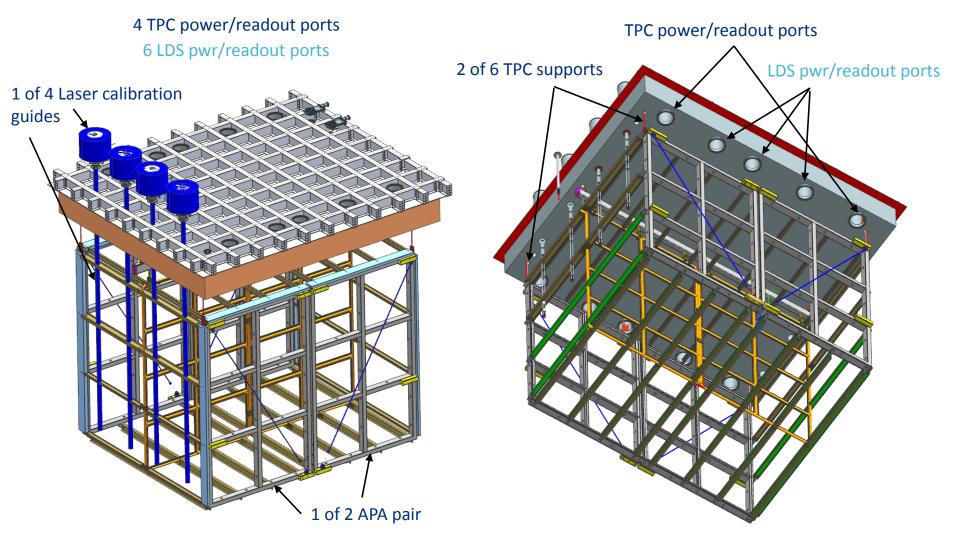
System Requirements

Installation and transportation scope	Provide the labor and equipment for the transportation from DAB and installation into the cryostat
Limits on TPC deflection during transportation and installation	3 mm deflection of CPA relative to APA when side Field Cage panels are connected. Larger (need to specify maximum) if side field cage panels are removed
TPC support design load	TPC and LDS load (4235 kg reference design, higher for SS tube FC) docdb 552
Acceleration loads during transport and installation	Using measured values from MicroBooNE for now
Survey of TPC elements	~0.2 mm for wire fiducials relative to APA frames YY mm APA frames relative to cryostat ZZ cryostat fiducials relative to detector building network (values under discussion)
LDS UV light protection	Protect any UV sensitive LDS elements during installation
Program ES&H requirements	See ES&H slide



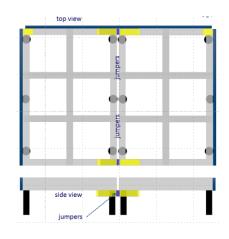
Scope - Near Detector Integration

- Cryostat
- TPC
- Light Detection System
- Laser Calibration System
- Camera System
- Cosmic Ray Tagger
- Program Grounding Plan

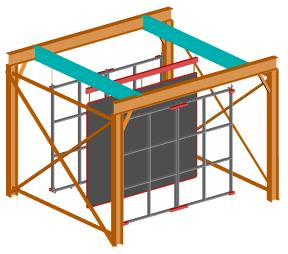

Cryogenics integration part of Infrastructure but the same designer is working on the Detector and Cryo-system

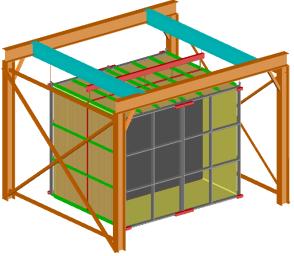
Integration with cryostat top

Cryostat Ports


Docdb 552

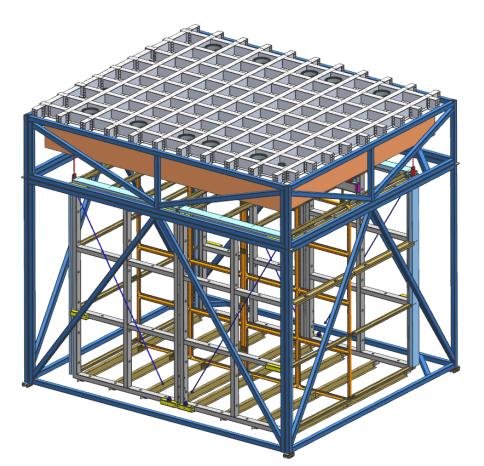
abel	Function	Description	Tube size	Flange size	height above top plate	Quantity	Stay clear size	Location	Location flexibility	Notes
mova	ble top plate									
	TPC support	port for TPC support hanger	4"	6" OD CF	needs more design development	6			may ne ott ny tew	support rod needs to structural connection to top plate structure
	TPC Signal/Power Feedthrough	Signal and power feedthrough for APA	12"	14" OD CF	keep minimnal for clearance above warm electronics		30 cm above and 30 cm radius for wam electronics and enclosure	directly above APAs near ends	≤ 10 cm transverse to beam direction; completely flexible in beam direction as long as TPC and LDS ports fit	
	LDS Signal/Power Feedthrough	Signal and power feedthrough for Light Detection System	12"	14" OD CF	needs more design development	6	currently show same size as TPC	directly above APAs	≤ 10 cm transverse to beam direction; completely flexible in beam direction as long as TPC and LDS ports fit	
	Laser ports	port for steering head of laser calibration system	6"	8" OD CF	clearance for laser drive head			edge of TPC behind	≤ 1 cm in the beam direction; ≤ 5 cm transverse to beam direction	two laser ports per drift To reconstruct the elect field without ambiguity one needs two straight tracks crossing within th drift region at the same time. (Igor)
	Detector monitoring	T sensors from inside cryostat	4"	6" OD CF	flexible	2	10 cm on each side	one on each side near APA edge	generally flexible but location should be in general area of upstream APA edges	for RTD's 1 port for each APA - feedthrough style like MicroBooNe (1 port fixed portion of plate for cryostat)
	Radiation source deployment	Port with gate valve to allow temporaty insertion of a radiactive source	6"	8" OD CF	flexible	2	clearance for a gate valve	each at a different	<pre>≤ 5 cm in the beam direction; ≤ 20 cm transverse to beam direction (on 1 Sept general location is preliminary)</pre>	Is there a minimue distance from the FC because of HV breakdow considerations
	Cameras	cameras used to look for HV breakdown and observe LAr filling		see notes					,	cameras mounted to TP will have feedthrough incorporated into LDS ports


TPC Assembly


Design and tooling in WBS 2.3 (TPC) U of Chicago, BNL Technical labor in WBS 2.8

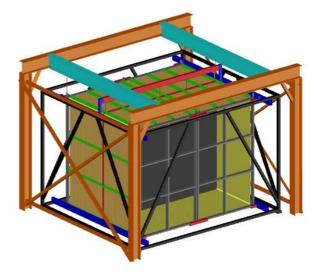
- 1. Join 2 APA side by side (while horizontal)
- 2. Install jumpers and
- 3. Rotate to vertical

- Hang first APA pair from beams between MicroBooNE monorails
- Hang intermediate cathode suspension beam and then two CPA sections
- 6. Hang second APA par

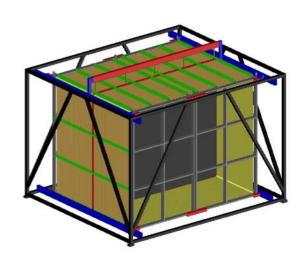


- 6. Attach field cage support beams
- Install field cage panels (except side field cages)
- 8. Install FE electronics
- 9. Install LDS assemblies

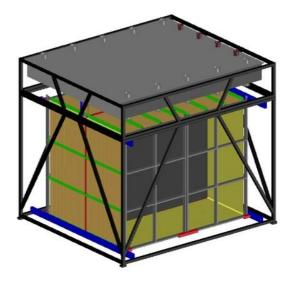
Scope – TPC support and transport frame


- Support TPC and cryostat top so the two can be connected at DAB in order to allow the electrical connections that will be inside the cryostat to be part of a readout system test
- Support TPC and cryostat top during transportation from DAB to near detector building
 - Rollers at the legs to allow the frame to be moved without a crane
 - Door height limits at DAB require the stand with TPC (with protective wrap) to be rolled out of building where it can be loaded with a mobile crane on to a truck

SBN


10

Transfer to Transportation Frame



- 1. Push 3-sided transport frame around the TPC
- 2. Install back side of frame
- 3. Connect to TPC to transport frame

- 4. Disconnect TPC from MicroBooNE monorails
- 5. Pull out of MicroBooNE tent

- 6. Mount feedthrough flanges and test seals & connections
- Lower cryostat top onto lower part of transport frame
- 8. Connection APAs/CPA to Cryostat top
- 9. Connect cold cables to feedthroughs and test

Scope – TPC transport – (similar to MicroBooNE)

SBN

Maximum measured acceleration loads during the MicroBooNe transport was 1.2 g (in longitudinal direction) and 1.4 g (in vertical direction), respectively. These maximums were reached during the disconnection of the saddles from the LArTPC vessel, prior to lifting it at LArTF. Over-the-road transport of massive detectors or beamline components with an air-ride trailer has been shown to be quite stable and safe. One handling operation produced the largest load. No indication of resonance conditions

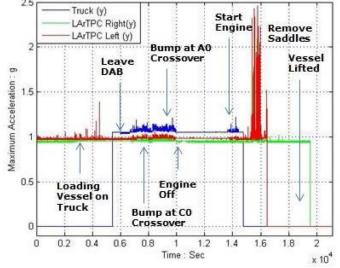
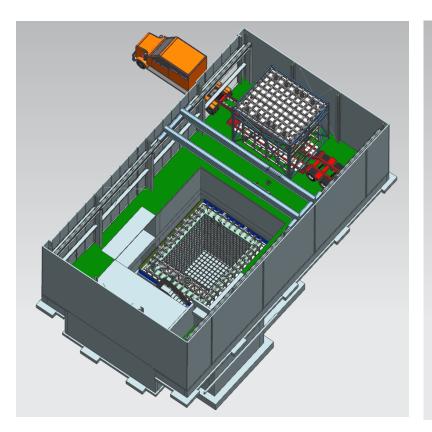
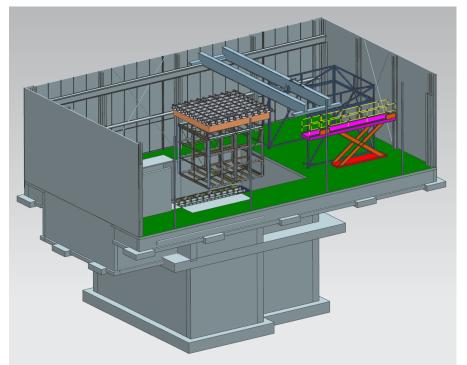
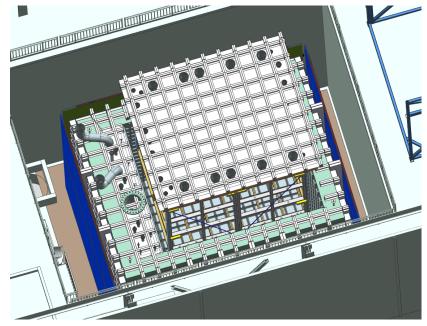



Figure 13: Vertical GP1 device acceleration loads during all three phases of transport.

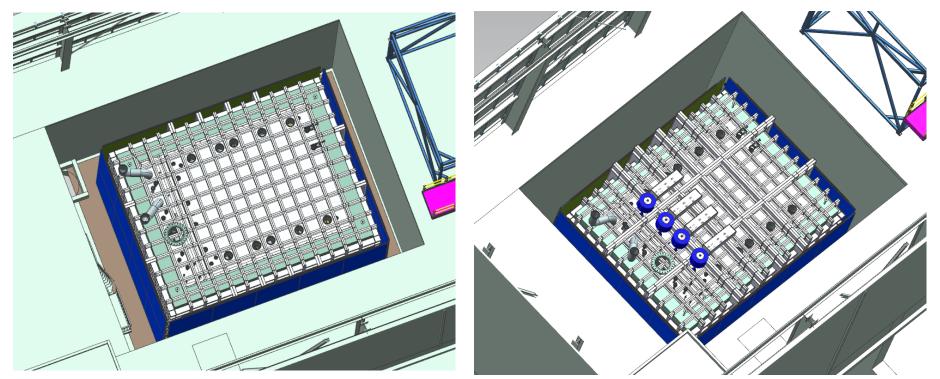
Delivery to Near Detector Building

Staging area 15.2 m x 9.1 (50 ft x 30 ft - restrictions)


Deliver TPC on transportation frame with protective wrap into building


- o Install LDS if not done at DAB
- o Install side field cage
- Test/Retest entire detector readout

Insertion into cryostat


- Brace sides of transportation frame and remove one end
- Use building crane to lift TPC with cryostat top from frame

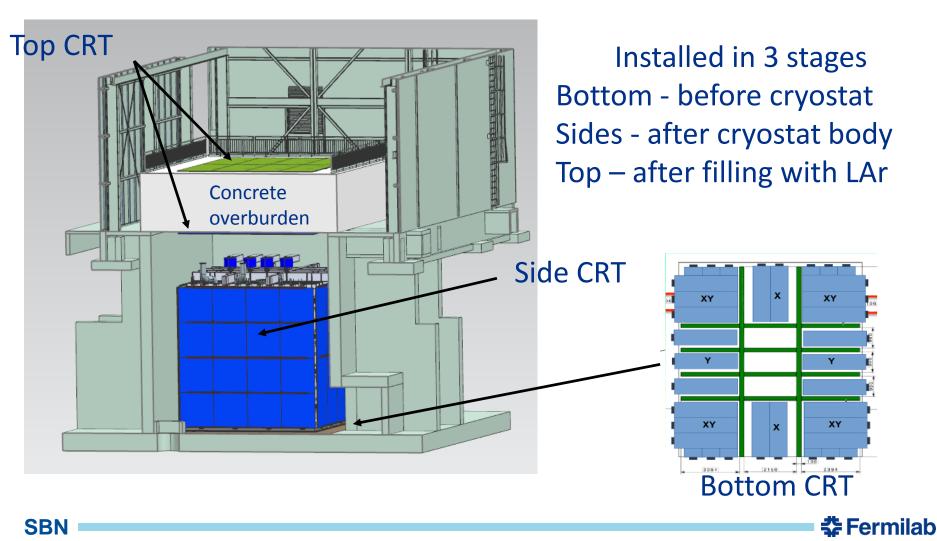
- Lower detector into cryostat with building crane
- Use laser pointer guides to avoid lateral movements of crane after insertion begins

After insertion into cryostat

- Add laser calibration steering assemblies
- \circ Add HV probe

SBN

- o Connect all warm cables
- Check detector readout


- Attach large beams
- o Install laser heads

Beams on cryostat top have removable sections for access to top seal weld zone. Timing of the weld operation TBD

CRT and shielding installation

16 12/16/2015 Joe Howell | SBND Installation and Integration

Interfaces

Near Detector Building	Overhead crane, door size, staging area, building power and ground
Cryostat top plate	Cryostat feedthrough ports, TPC supports connections and ports, Lifting features, overall height for transport clearance
ТРС	TPC support loads and attachment, transportation deflection and acceleration loading limits, survey requirements and fiducial features, assembly tooling and procedure guidance
Light Detection System	UV light exposure requirements, load on TPC supports, clearances for installation into cryostat, general handling requirements
Detector grounding plan	Linda Bagby's presentation on program grounding plan in docdb 589 and 684
Cosmic Ray Tagger	Module loads on supports, handling features/fixture, support connection points

Interfaces – Information management

- Feature specific documents ex. Cryostat ports list
- CAD file exchange
- Weekly meetings
 - Installation and integration design meeting
 - TPC meeting

SBN

Data captured in SBN docdb

					Docdb 5	52	-	
Label	Function	Description	Tube size	Flange size	height above top plate	Quantity	Stay clear size	Loca
emovab	le top plate							
т	PC support	port for TPC support hanger	4"	6" OD CF	needs more design development	é	5	
	PC Signal/Power eedthrough	Signal and power feedthrough for APA	12"	14" OD CF	keep minimnal for clearance above warm electronics		30 cm above and 30 cm radius for wam electronics and enclosure	directly ab near ends
	DS Signal/Power eedthrough	Signal and power feedthrough for Light Detection System	12"	14" OD CF	needs more design development	e	currently show same size as TPC	directly ab
L	așer ports	port for steering head of laser calibration system	6"	8" OD CF	clearance for laser drive head		40 cm diameter (current steeing head diameter is 330 mm but design changes may require a large diameter)	along dow edge of TP field cage
	· · · · · · · · · · · · · · · · · · ·	T sensors from inside cryostat	4"	6" OD CF	flexible	2	10 cm on each side	one on ea APA edge

Resources

SBN

Planning

Manager – Joe Howell

SBN Program EE – Linda Bagby

Engineering – Jim Kilmer, Bob Woods

Design Integration - Steve Hentschel

Fixture Design-Rick Reinert

Assembly (setup and all crane operations) and Installation

PPD Experiment Installation group – John Voirin Ldr. Survey and alignment

PPD Alignment – O'Sheg Oshinowo

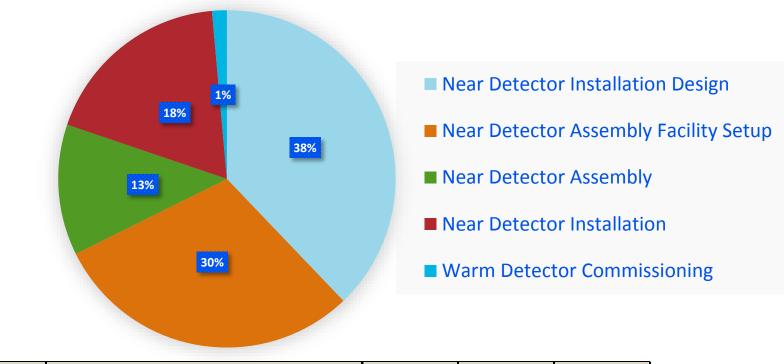
Collaboration – Scientist, Engineering and student participation

Basis of Estimate

- Design labor
 - Equipment and task list
 - Previous experience with similar tasks
- Installation Labor
 - Previous experience
 - Data mining from MicroBooNE and interviews with assembly and installation managers (Jen Raaf and John Voirin)
- Installation equipment M&S
 - Previous experience
 - Rules of thumb for welded assemblies
 - Catalog prices

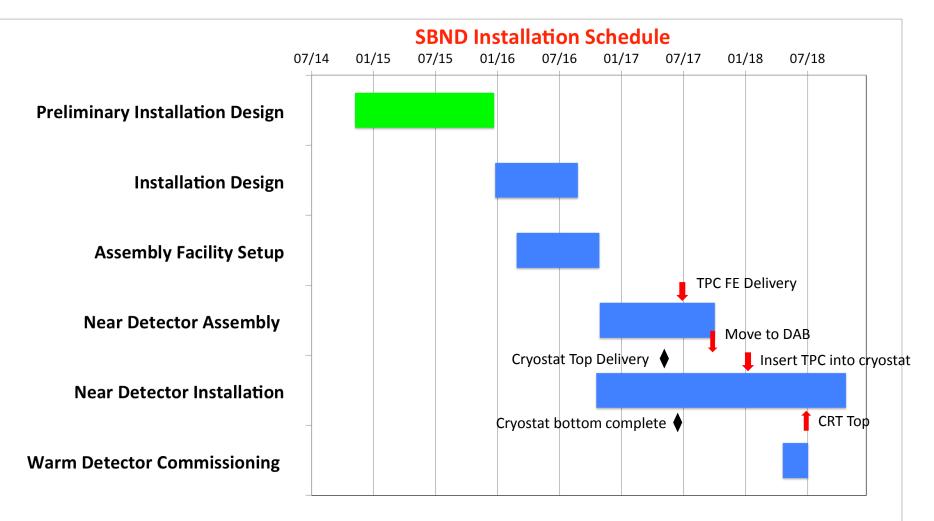
SRN

20


WBS 2.8 Base Cost					
Total	Labor	M&S			
1497 K\$	1106 k\$	391K\$			
	74%	26%			

	Labor Type	WBS Tasks	FTE-Year	
	Senior Mech. Engineer	Manager of 2.2 & 2.8	1.5	
ĺ	Mach Engineer	Installation design	0.85	
	Mech. Engineer	-2.2 & 2.8	0.65	
)	Mach Designer	Installation design -		
	Mech. Designer	2.2 & 2.8	1	
	Mech. Technician	Assembly and installation -		
	Mech. Technician	2.8	2.25	
	Alignment & survey	Assembly and installation -	0.46	
	Alignment & survey	2.8	0.40	
		Total (FTE-year)	6.06	

Cost Distribution



WBS	Task Name	All Labor (With OverHd)	All Materials (With OverHd)	Project Base Est Cost
1125		\$1,105,998	\$391,699	\$1,497,697
40SBN/2.8.1	Near Detector Installation Design	\$567,018	\$0	\$567,018
40SBN/2.8.2	Near Detector Assembly Facility Setup	\$130,886	\$315,457	\$446,343
40SBN/2.8.3	Near Detector Assembly	\$177,519	\$10,395	\$187,913
40SBN/2.8.4	Near Detector Installation	\$209,451	\$65,847	\$275,299
40SBN/2.8.5	Warm Detector Commissioning	\$21,124	\$0	\$21,124

Schedule

SBN 22 12/16/2015 Joe Howell | SBND Installation and Integration

🛟 Fermilab

ES&H

FESHM (Fermilab ES&H manual)

- Below the hook lifting fixture standards
- Engineering notes for support structures
- Crane Operation Procedures
- Hazard Analysis for Installation Tasks
- Qualification for TPC support feedthrough for Cryostat Maximum Pressure

For work inside the cryostat (small portion of the installation task)

- Non-Permitted Confined Space
- Access & Egress Procedures
 - Personnel accountability (including sign-in and sign-out for cryostat entry)
 - Two person rule
 - Continuous communication
- Temporary Ventilation and Lighting for work inside cryostat
- Emergency Response Procedures
 - Rescue equipment
- Air quality monitoring

SBN

Fermilab Environment, Safety and Health Manual (FESHM) 5063 Confined Space - A space that: 1. Is large enough and so configured that an employee can bodily enter and perform assigned work; and 2. Has limited or restricted means for entry or exit; and 3. Is not designed for continuous employee occupancy

Non-Permit Confined Space - A confined space that does not contain or, with respect to atmospheric hazards, have the potential to contain any hazard capable of causing death or serious physical harm.

Quality Assurance

- Work planning and training
 - Written procedures.
 - Experienced team leaders
- Detector system groups will be involved with checkout before and after installation (including an engineering run at DAB)
- Installation tracking database (including part ID and installation location)
- Cable mapping and labels
- Lessons learned from MicroBooNE and 35T installation and operation will be applied.
- Operational readiness clearance approval process
- If an isolated system is required for the ground plan a monitor with alarm will be used to assure the integrity of the detector ground during installation.

Response to Review Recommendations 1 of 2

From Sept 28 TPC preliminary design review

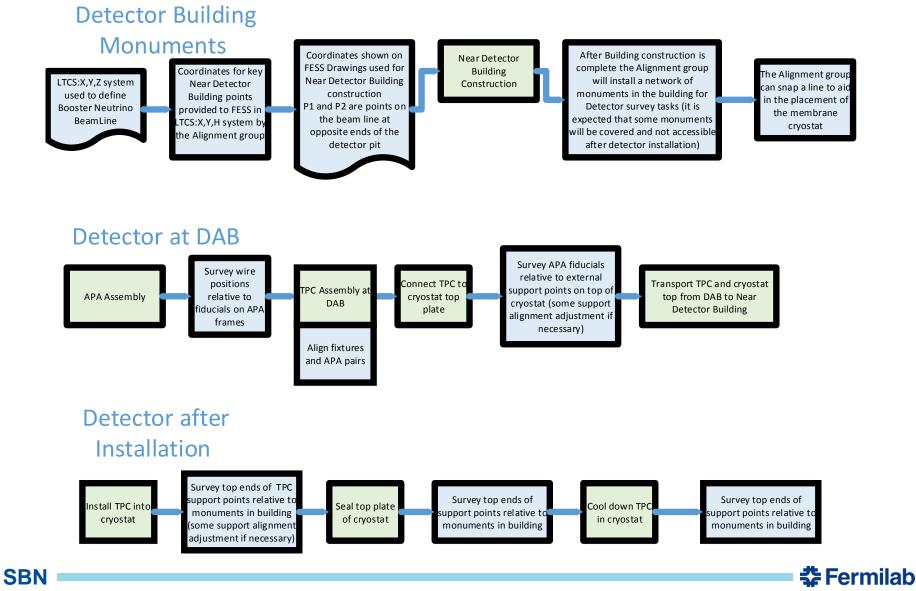
Recommendation	Response
Review the process of transferring the TPC from being supported directly by the transport frame to being supported by the cryostat lid. Make sure the two sets of supports don't interfere with each other and that no part of the TPC is ever unsupported.	Likely not explained well at the review. The transfer of support to the cryostat will be very positive so that the TPC can be lifted from the frame support without any chance of the TPC being unsupported in the transition
Determine how the TPC will be brought from the assembly building to the detector building and then unloaded and installed while maintaining adequate cleanliness.	The entire transportation frame will be wrapped with a protective cover during the move from DAB to the near detector building
Check the process of removing the TPC from the transport frame at the detector building to make sure that it can be done with a single crane (or that a second is available if needed).	One side of the transport frame will be removed after the sides of the frame are braced. The TPC can then be lifted by a single crane for insertion into the cryostat

Response to Review Recommendations 2 of 2

Recommendation	Response
Careful communication between light detection system and TPC is encouraged, particularly in final design stages for LDS, where interfaces for installation and assembly will be critical.	Members of the TPC team regularly attend the weekly SBND installation and integration meeting and the L2 installation manager attends the weekly TPC meeting. The LDS group is just starting to develop a mounting structure.
Set up meetings with FNAL survey/alignment group to identify which parts of detector will need as-found survey vs. alignment help during assembly and installation.	O'Sheg Oshinowo and Virgil Bocean of the survey and alignment department participated in an SBND installation meeting devoted to discussion of the survey and alignment tasks. Most of the tasks are as- found survey. Regular communication with O'Sheg and this will continue.
Develop plans for attaching the cryostat top outside of the D-Zero Assembly building.	At the time of the review the communication with CERN engineers on the cryostat top had just started. Since then a design of the cryostat top has been developed at CERN which will allow the cryostat top to be attached at DAB. The cryostat top can be attached at the Near Detector Building but that would involve some major schedule and effort penalties.
SBN	‡ Fermilab

Status of Design

- Finalizing cryostat top features for near detector
- Updating integration model with Cryostat structure from CERN and Cosmic Ray Tagger Modules
- Will add Light Detection System as information is available
- Transportation frame design
 - Basic frame design done and analyzed
 - Adding features to aid detector assembly
- TPC support design initiated
- CRT upper layer support initiated
- Miscellaneous fixture list created but design not started
- Future Reviews
 - TPC transportation final design review (Spring 2016)
 - TPC assembly readiness review
 - CRT installation readiness review
 - TPC installation readiness review


Backup Slides

SBN2812/16/2015Joe Howell | SBND Installation and Integration

System Scope - Survey

29

Basis of Estimate Form and Rules

Short Baseline Neutrino Project			SBN-docDB Number: 759				
BASIS of	ESTIMATE FORM	M Da	Date of Estimate: 3/5/2015				
	(BoE)		Prepared by: Ting Miao				
WBS Number: 2.8	trol Account (CT	C):	CAM: Joe H	lowell			
WBS Title: Installatio	n Coordination						
	ition: This WBS elemen				sks for the detector hall electronics and DAQ system		
Cost Type:	Cost Estimate Metho	d:					
	Engineering Estimate		<u>x</u> Prior Purchase or Experience <u>Catalog Price</u> Source: Source:				
<u>x</u> M&S <u>x</u> Labor	Vendor Quote or Vendor S		Other (Please describe) :				
Supporting Document	ts:						
Task Duration:							
Task M&S Cost (FY15)	: \$277,000		Labor (Reso ,002 hours		k hours or % for duration of task):		
Task M&S Contingency (% and the contingency rule applied): 40% and Rule M5		le applied): Task					
Assumptions:		I					

M&S Contingency Category

M4	Preliminary	20%-40%	Items that can be readily estimated from a reasonably detailed but not completed design; items adapted from existing designs but with moderate modifications, which have documented costs from past projects. A recent vendor survey (e.g., budgetary quote, vendor RFI response) based on a preliminary design belongs here.
M5	Conceptual	40%-60%	Items with a documented conceptual level of design; items adapted from existing designs but with extensive modifications, which have documented costs from past projects

- See SBN-doc-186 for project key assumptions
- Costs are in FY2015 dollars and do not include indirects.
- Durations are in working days.
- 85% efficiency assumed for labor hours. 1 FTE = 1768 hours for an average year
- Add your assumptions here for the BOE

Task Table

SBN

WBS	WBS TASK DESCRIPTION	M&S RESOURCES (FY15\$)	LABOR RESOURCES	DURATION (DAYS)	Hours	M&S contingency (%)	Labor Contingency (%)
2.8.1	Near Detector Installation Design			343			
2.8.1.1	Overall layout of near detector in detector hall		FNPD MECH DESIGNER(50%), FNPD_MECH_DRAFTER(50%)	48	192	40%	40%
2.8.1.2	Design of TPC support inside cryostat		FNPD_MECH_DESIGN_EN[50%], FNPD_MECH_DESIGNER[50%], FNPD_MECH_DRAFTER[100%]	48	576	40%	40%
2.8.1.3	Design of TPC support during assembly and installation		FNPD MECH DESIGN EN[100%], FNPD_MECH_DESIGNER[100%], FNPD_MECH_DRAFTER[100%]	41	656	40%	40%
2.8.1.4	Design of light detector installation support during assembly and installation		FNPD_MECH_DESIGN_EN[50%], FNPD_MECH_DESIGNER[[50%]	39	312	40%	40%

Labor Contingency Category

L4	Preliminary	25%-40%	Based on direct experience with similar work. Development of activities, resource requirements, and schedule constraints are defined at a preliminary (beyond conceptual) design level. Technical requirements are achievable and with some precedent.
L5	Conceptual	40%-60%	Based on expert judgment using some experience as a reference. Development of activities, resource requirements, and schedule constraints are defined at a conceptual level. Technical requirements are moderately challenging.

Basis of Estimate Data

🛟 Fermilab

Su	mmary Task	Name:	Installation Coordination (SBN-ND-IC)							
Summary WBS: 40SBN/2.8										
Summary Unique ID: 113										
	mary BOE N									
Juli		umber.								
				Duration in			Fixed Cost	All Labor	All Materials	Project Base
WBS	UID	ID	Task Name	Days		Finish Date	M&S		(With OverHd)	
40SBN/2.8.1	010		TUSK NUTLE	Duys	Start Date	Timon Date		\$1,105,998	\$391,699	\$1,497,697
103011/2.0.1	114	725	Near Detector Installation Design (SBN-ND-IC)(ID)	166	11/05/15	07/06/16	\$0	\$567,018	\$0	\$567,018
40SBN/2.8.1.1	115	726	Overall Layout of Near Detector in Detector Hall (FNAL - Labor) (SBN-ND-IC)(ID)	49	11/05/15	01/21/16	\$0	\$40,252	\$0	\$40,252
40SBN/2.8.1.2	1101	727	Overall Layout of Near Detector in Detector Hall (FNAL - M&S) (SBN-ND-IC)(ID)	49	11/05/15	01/21/16	\$0	\$0	\$0	\$0
40SBN/2.8.1.3	1112	728	Design of TPC Support Inside Cryostat (FNAL - Labor) (SBN-ND-IC)(ID)	42	11/05/15	01/11/16	\$0	\$73,511	\$0	\$73,511
40SBN/2.8.1.4	1113	729	Design of TPC Support Inside Cryostat (FNAL - M&S) (SBN-ND-IC)(ID)	42	11/05/15	01/11/16	\$0	\$0	\$0	\$0
40SBN/2.8.1.5	1114	730	Design of TPC Support During Assembly and Installation (FNAL - Labor) (SBN-ND-IC)(ID)	65	11/05/15	02/12/16	\$0	\$117,549	\$0	\$117,549
40SBN/2.8.1.6	1115	731	Design of TPC Support During Assembly and Installation (FNAL - M&S) (SBN-ND-IC)(ID)	42	11/05/15	01/11/16	\$0	\$0	\$0	\$0
40SBN/2.8.1.7	1116	732	Design of Light Detector Installation Support During Assembly and Installation (FNAL - Labor) (SBN-ND-IC)(ID	41	01/12/16	03/09/16	\$0	\$42,989	\$0	\$42,989
40SBN/2.8.1.8	1117	733	Design of Light Detector Installation Support During Assembly and Installation (FNAL - M&S) (SBN-ND-IC)(ID)	41	01/12/16	03/09/16	\$0	\$0	\$0	\$0
40SBN/2.8.1.9	1118	734	Design of TPC Assembly Tent Modification (FNAL - Labor) (SBN-ND-IC)(ID)	39	11/05/15	01/06/16	\$0	\$81,784	\$0	\$81,784
40SBN/2.8.1.10	1119	735	Design of TPC Assembly Tent Modification (FNAL - M&S) (SBN-ND-IC)(ID)	39	11/05/15	01/06/16	\$0	\$0	\$0	\$0
40SBN/2.8.1.11	1120	736	Design of ND Transportation and Installation Tooling (FNAL - Labor) (SBN-ND-IC)(ID)	65	03/10/16	06/09/16	\$0	\$113,768	\$0	\$113,768
40SBN/2.8.1.12	1121	737	Design of ND Transportation and Installation Tooling (FNAL - M&S) (SBN-ND-IC)(ID)	65	03/10/16	06/09/16	\$0	\$0	\$0	\$0
40SBN/2.8.1.13	1122	738	Design of Cosmic-Ray Shielding Installation (FNAL - Labor) (SBN-ND-IC)(ID)	43	03/10/16	05/09/16	\$0	\$45,086	\$0	\$45,086
40SBN/2.8.1.14	1123	739	Design of Cosmic-Ray Shielding Installation (FNAL - M&S) (SBN-ND-IC)(ID)	43	03/10/16	05/09/16	\$0	\$0	\$ 0	\$0
40SBN/2.8.1.15	1124	740	Design Readout Cable Tray Support and Layout (FNAL - Labor) (SBN-ND-IC)(ID)	43	03/10/16	05/09/16	\$0	\$37,631	\$0	\$37,631
40SBN/2.8.1.16	1125	741	Design Readout Cable Tray Support and Layout (FNAL - M&S) (SBN-ND-IC)(ID)	43	03/10/16	05/09/16	\$0	\$0	\$0	\$0
40SBN/2.8.1.17	1126	742	Fermilab Engineering Design Review of ND Assembly and Installation (FNAL - Labor) (SBN-ND-IC)(ID)	40	05/10/16	07/06/16	\$0	\$7,224	\$ 0	\$7,224
40SBN/2.8.1.18	1127	743	Fermilab Engineering Design Review of ND Assembly and Installation (FNAL - M&S) (SBN-ND-IC)(ID)	40	05/10/16	07/06/16	\$0	\$0	\$0	\$0
40SBN/2.8.1.19	1128	744	Fermilab Safety Review of ND Assembly and Installation (FNAL - Labor) (SBN-ND-IC)(ID)	40	05/10/16	07/06/16	\$0	\$7,224	\$0	\$7,224
40SBN/2.8.1.20	1129	745	Fermilab Safety Review of ND Assembly and Installation (FNAL - M&S) (SBN-ND-IC)(ID)	40	05/10/16	07/06/16	\$0	\$0	\$0	\$0

- Updates to the cost data in process to reflect the present state of the design
- Costs have been fairly stable with minor changes

