Measurements of the atmospheric neutrino by Super-Kamiokande: energy spectrum, geomagnetic effects, and solar modulation

Kimihiro Okumura Institute for Cosmic Ray Research, The university of Tokyo December 21th, 2015

Based on arXiv:1510.08127

Atmospheric Neutrinos

- Mostly produced from pion and K decay below TeV
- Rigidity cutoff below several GeV due to geomagnetic effect
- Accuracy of flux calculation has been improved because of better simulation and more precise CR and hadron cross section meas.

Motivation of This Analysis

- $\cdot\,$ Accurate flux prediction is necessary as signal (oscillation analysis), and background (proton decay, DM, astrophysical ν)
 - Previous measurement by Frejus in 1995
 - · Recent detection of astrophysical neutrino by IceCube

Comparison with recent improved flux calculations in various aspects:

- · Energy spectrum
- · Geomagnetic effect
- Solar modulation effect

Super-K Detector

39.3 m

- Water Cherenkov imaging detector
- 1000 m underground in Kamioka mine
- 50 kton volume (fiducial 22.5 kton)
- 11129 20" PMTs in inner detector (ID) for Cherenkov ring imaging
- 1885 8" PMTs for outer detector (OD)

Phase	Period	# of PMTs	
SK-I	1996.4 ~ 2001.7	11146 (40%)	
SK-II	2002.10 ~ 2005.10	5182 (20%)	
SK-III	2006.7 ~ 2008.8		
SK-IV	2008.9 ~	11129 (40%)	

Flux Measurement in Super-K

- Neutrino oscillation has been studied with calculated neutrino flux value and error
- This analysis: neutrino flux is measured considering oscillation using PDG parameters
- v and \bar{v} are difficult to be separated in SuperK; v means $v + \bar{v}$ in this presentation

Energy Spectrum Analysis

Data Sample, Neutrino Energy

ν_{e} sample

- Three event types (FC, PC, UPµ)
- FC events separated to e-like and µ-like by PID
- Also divided by event topology (e.g. single/ multi-ring, stopping/ through)
- Different event sample has different energy response
- ve (vµ) sample covers up to 100 GeV (10 TeV)

Data Sample, Neutrino Energy

- Signal: correct flavor CC events. BG: wrong flavor CC and NC
- Expectation with HKKM11 flux, NEUT, PDG2014 osc. parameters
- High purity (>73 %); NC reduction applied in e-like sample

Flux Unfolding

- Iterated Bayesean method(*) was adopted to obtain energy spectrum
 - model independent, simple, fast, theoretically robust
- Response matrix obtained from MC events
 - · BG subtraction is considered
- Unfold # of events in neutrino energy bin
 - normalization, estimated from MC, is applied to convert to flux value

(*) G. D'Agostini, NIM A 362, 487 (1995)

Unfolding Test with MC

- Test unfolding method using modified MC data with different norm. and spectrum index
- reasonably good performance
- Incompleteness is considered in systematic error

Unfolded Energy Spectrum

Dotted line: HKKM11 w/o oscillation

Solid line: HKKM w/ oscillation

Error bar includes both statistical and systematic uncertainties

Measured energy spectrum agrees with the oscillated HKKM11 flux within estimated uncertainties

Systematic Uncertainty

- Utilize almost same systematic error used in oscillation analysis (except for flux related)
- For error propagation to flux value, Toy MC method is adopted
- Toy MC data are calculated by (3.10) with random Gaussian g_k and error coefficient f_{jk}
- Unfold 2000 sets of Toy MC data, and calculated variance and correlation
- About 20% error estimated in total; cross section error dominant

$$\tilde{M}_{j}(\mathbf{g}) = M_{MC,j} \times \begin{pmatrix} 1 + \sum_{k}^{N_{sys}} \checkmark \\ 1 + \sum_{k}^{N_{sys}} f_{jk}g_{k} \end{pmatrix}$$
(3.10)
nominal MC random Gauss. 12

Comparison With Flux Models

Test agreement with several flux models by χ^2 value including error correlation

Not strongly inconsistent

p-value: 0.53, 0.32, 0.13 for HKKM11, FLUKA, Bartol, respectively

$$\chi^{2} = \sum_{i}^{N} \sum_{j}^{N} \left(\Phi_{i} - \Phi_{MC,i} \right)^{T} C_{ij}^{-1} \left(\Phi_{j} - \Phi_{MC,j} \right) \quad (3.12)$$

Fit with Variable Normalization and Spectral Index

$$\Phi'_{MC,i} = (1 + \Delta \alpha) \left(\frac{\bar{E}_i}{1 \text{ GeV}}\right)^{\Delta \gamma} \Phi_{MC,i}$$

Fit data and models with variable normalization ($\Delta \alpha$) and spectral index ($\Delta \gamma$) parameters

Agrees within 1 σ except form FLUKA ν_{μ} spectrum (2.4 σ)

Comparison to Other Experiments

- Our measured data provide significantly improved below 100 GeV
- Extended to lower energies down to ~100 MeV
- Overlap in high energy with
 AMANDA and IceCube
 regions

Azimuthal Spectrum Analysis

Geomagnetic Effect

- Rigidity cutoff due to geomagnetic field depends on position and direction at Earth's surface
- Well-known effects on cosmic ray flux, such as "east-west effect" dipole asymmetry
- Can test for such asymmetries by using neutrino

Azimuthal Distributions (True)

Sample: fully-contained single-ring events

True neutrino direction and reconst. energy

Asymmetry becomes larger for lower energies and near horizontal direction

Azimuthal Distributions (Reconst.)

Reconst.: scattered lepton direction

Large scattering in sub-GeV energy

Asymmetry effect smear out in E<0.4 GeV due to larger scattering of lepton

Asymmetry still visible in E>0.4 GeV

Azimuthal Distributions (Reconst.)

- Reconst.: scattered lepton direction
- Large scattering in sub-GeV energy
- Asymmetry effect smear out in E<0.4 GeV due to larger scattering of lepton
- Asymmetry still visible in E>0.4 GeV

Energy and Zenith Dependence

- Test for in each energy and zenith angle with asymmetry
- Neast (Nwest) are number of east (west) going events
- Agrees with expectation within statistical uncertainties
- HKKM11 calculation models geomagnetic effect well

East-West Asymmetry

- Select sub-sample by $|\cos\theta| < 0.6$ and 0.4 < Erec < 1.33 GeV to optimize significance of asymmetry
- Clear asymmetries are seen and significance level is $6.0\sigma~(8.0\sigma)$ for $\mu-like$ and e-like

$$A_{\mu} = 0.108 \pm 0.014(\text{stat}) \pm 0.004(\text{syst})$$

$$A_e = 0.153 \pm 0.015(\text{stat}) \pm 0.004(\text{syst})$$

Zenith Dependence of

- Actually the geomagnetic structure is more complicated
- Check zenith dependence of asymmetry by fitting azimuth distribution in each zenith bin by $k_2 \ x \ sin(\phi+B) + k_1$
- Dependence is seen with 2.2σ significance, and consistent between data and MC prediction

Solar Modulation Analysis

Solar Activity and Neutron Monitors

- CR flux is known to be anti-correlated with solar activity since solar wind scatters out CRs
- Test to see if neutrino flux is similarly correlated.
- SuperK data covers more than one and half solar cycles
- Use neutron monitor (NM) at Earth's surface as estimator of solar activity and modulation of CR flux

Modulation Effect in Flux Prediction

- In HKKM flux model, solar effect of flux prediction is implemented as a function of energy, neutrino direction and NM count
- Effect is larger for upward direction since polar regions, where solar effect is larger, are below horizon

Correlation Parameter

- To estimate correlation between neutrino and NM, α parameter is introduced (=0: no correlation, =1:expected correlation)
- Estimate by fitting data and prediction with varying $\boldsymbol{\alpha}$

Fitting Result

- Single-ring sub-GeV events (Evis<1.33GeV) are used for anlysis
- sample are divided into SK phase, e-like / μ -like, upward/downward
- Best fit: $\alpha = 0.62 + -0.58$. significance: 1.06 σ

red solid: best fit grey dashed: predicted grey solid: no correlation

Fitting Result

- Also apply fitting for sub-sample (each SK data, e-like / µ-like upward / downward)
- No SK-III result since observation time is too short to cover cycle
- Prefer no correlation for e-like, but not statistically significant
- Not inconsistent with overall result

Study of Forbrush Events

- For very high solar activity (NM < 330,000 hr⁻¹), so called "Forbrush period", no prediction is available, but expect decrease of neutrino events
- 7.1 days of "Forbrush period" data has analyzed, and found 20 events observed
- 32.80 +- 0.17 events expected in case of no correlation
- p-value to observe 20 or less: 0.017
- 98.3% (2.38 σ) rejection of no-correlation hypothesis

Start time	End time	Hour
15 Jul. 2000, 18:00	17 Jul. 2000, 21:00	50
11 Apr. 2001, 23:00	13 Apr. 2001, 14:00	38
29 Oct. 2003, 11:00	01 Nov. 2003, 00:00	61
01 Nov. 2003, 00:00	04 Nov. 2003, 13:00	67
19 Jan. 2005, 00:00	19 Jan. 2005, 13:00	13
Total		229

Period of NM>330,000 hr⁻¹ during SK I-IV

Summary (1)

- A comprehensive study on the atmospheric neutrino flux in the energy region from sub-GeV to TeV using SuperK was performed
 - ν_{e} and ν_{μ} energy spectra are measured with higher accuracy from 100 MeV up to 10 TeV, and consistent with flux models.
- Azimuthal spectrum of data and MC agrees well confirming implementation of geomagnetic field in flux calculation
 - · Geomagnetic effect in azimuthal distribution is seen at 6σ (8 σ) for ν_{μ} (ν_{e}).
 - \cdot An indication that the angle of the dipole asymmetry shifts depending on the zenith angle was found at the 2.2 σ level

Summary (2)

- Expected correlation between neutrino flux and solar activity was studied using sub-GeV sample
 - · Predicted effect is found to be relatively small, and an indication is seen at 1.1 σ level
 - $\cdot\,$ A decrease of neutrino flux was seen at 2.4 $\sigma\,$ level during particularly intense solar activity period

Backup