SCOUTING FOR NEW PHYSICS (USING CHARGED LEPTONS)

JURE ZUPAN U. OF CINCINNATI

CLFV, Charlottesville, VA, June 20 2016

WHY NEW PHYSICS?

- many of the questions in particle physics may require new physics
- NP can be at very different scales
 - weak scale (WIMPS, weak scale SUSY...)
 - GUT scale (right handed neutrinos, extra gauge bosons,...)

WHICH SCALE?

- for the Higgs mass we had unitarity bounds, $m_h \leq 1 \text{TeV}$
 - no such precise statement about the next scale
- naturalness/hierarchy problem an important guidance
 - but not bullet proof
- cLFV probes of new physics
 - can probe high scales
 - if new particles are discovered, complementary information to high p_T searches

• the naturalness problem

- large *M*_{*Pl*} weak scale hierarchy
- what sequesters m_h from M_{Pl} ?
- the problem with naturalness

5

• the naturalness problem

- large *M*_{*Pl*} weak scale hierarchy
- what sequesters m_h from M_{Pl} ?
- the problem with naturalness

J. Zupan Prospecting for New Physics...

- the naturalness problem
 - large *M*_{Pl} weak scale hierarchy
 - what sequesters m_h from M_{Pl} ?
- the problem with naturalness

- the naturalness problem
 - large *M*_{*Pl*} weak scale hierarchy
 - what sequesters m_h from M_{Pl} ?
- the problem with naturalness

WHY CHARGED LEPTONS?

- theoretically simpler than hadrons
- can make very precise measurements

SENSITIVITY

- cLFV very high reach in NP scale
 - depends on the chiral/Lorentz structure of NP operators
 - several low eng. measrm.nts \Rightarrow nontrivial info. about NP

WHY SO SENSITIVE?

- the flavor structure in the SM is special
 - gauge invariance \Rightarrow lepton universality in couplings to Z, γ
 - GIM cancellation leads to very suppressed FCNCs in the vSM
- LFV established in neutrino oscillations ⇒ cLFV generated at least at loop level
 - due to GIM mechanism vanishingly small

$$Br(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i} U_{\mu i}^{*} U_{ei} \frac{m_{\nu_{i}}^{2}}{m_{W}^{2}} \right|^{2} \sim 10^{-54}$$

$$PMNS \text{ unitary, } U_{\mu i}^{*} U_{ei} = 0$$

$$\Rightarrow \text{ the piece indep. of } m_{\nu} \text{ cancels}$$

$$W_{\mu i} = U_{ei} \text{ to spectarized New Physics...}} \qquad 10$$

$$CLFV, \text{ June 20 2016}$$

CHARGED LEPTONS VS. **QUARKS**

- compare with quarks
 - GIM mechanism less effective
 - not a zero theory ("SM background" free) search

$$\operatorname{Br}(b \to s\gamma) \simeq \frac{6\alpha}{\pi} \left| \frac{V_{ts}^* V_{tb}}{V_{cb}} f(m_t/m_W, \alpha_S) \right|^2 \to_{\operatorname{NNLO QCD}} (3.36 \pm 0.23) \times 10^{-4}$$
Asatrian et al., 1503.01789

- for cFLV as soon as signal found it means NP
 - i.e. NP beyond vSM (=SM+ dim5 op. for neutrino masses)

$$\operatorname{Br}(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i} U_{\mu i}^{*} U_{ei} \frac{m_{\nu_{i}}^{2}}{m_{W}^{2}} \right|^{2} \sim 10^{-54}$$
Prospecting for New Physics... 11 CLFV, Jun

J. Zupan Prospecting for New Physics... V_{tb} T_{ts}^*

CHARGED LEPTONS AND NEUTRINOS

 if neutrinos Majorana, their masses from dim 5 Weinberg operator

$$C_{ij}\frac{(HL_i)(HL_j)}{\Lambda}$$

- requires new particles that couple to leptons
 - in general new sources of flavor violation beyond PMNS
 - can enhance cFLV to observable levels

SEE SAW MODELS

 3 tree level see-saw models to generate Majorana neutrino masses

DISTINGUISHING SEE-SAW MODELS

all three see-saw models lead to the same Weinberg operator
 (HL.)(HL.)

$$C_{ij} \frac{(\Pi L_i)(\Pi L_j)}{\Lambda}$$

- impossible to distinguish the models from neutrino oscillation data alone
- need extra input
 - production of extra states at the LHC if scale low enough
 - from cLFV processes also for high scales, if Yukawas large enough
- note: different combinations of FV couplings enter the cFLV processes and the Weinberg operator

Chu, Dhen, Hambye, 1107.1589; Alonso, Dhen, Gavela, Hambye, 1209.2679;

- using (approximate) symmetries possible to have large cLFV and small neutrino masses
- for quasi-degenerate N_i to a good extend the product of Yukawas cancel in ratios of cLFV processes

15

$$\frac{R^N_{\mu \to e}}{\Gamma(\mu \to e\gamma)} = \Big(\frac{b^N + b'^N \log[m_N^2/m_W^2]}{c \ + c' \ \log[m_N^2/m_W^2]}\Big)^2$$

$$\frac{\Gamma(\mu \to e \gamma)}{\Gamma(\mu \to e e e)} = \Big(\frac{c + c' \log[m_N^2/m_W^2]}{d + d' \log[m_N^2/m_W^2]}\Big)^2$$

• can probe scale of m_N from $\mu \rightarrow e$ conversion

J. Zupan Prospecting for New Physics...

SINGLING OUT THE RIGHT NEW PHYSICS MODEL

• more generally, the pattern of observed cLFV processes can point to which NP

	-						
ratio	LHT	MSSM (dipole)	MSSM (Higgs)	SM4			
$\frac{\text{Br}(\mu^- \rightarrow e^- e^+ e^-)}{\text{Br}(\mu \rightarrow e\gamma)}$	0.021	$\sim 6\cdot 10^{-3}$	$\sim 6\cdot 10^{-3}$	0.062.2			
$rac{{\operatorname{Br}}(au^- ightarrow e^-e^+e^-)}{{\operatorname{Br}}(au ightarrow e\gamma)}$	0.040.4	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$	$0.07 \dots 2.2$			
$\frac{\mathrm{Br}(\tau^- \rightarrow \mu^- \mu^+ \mu^-)}{\mathrm{Br}(\tau \rightarrow \mu \gamma)}$	$0.04\ldots 0.4$	$\sim 2\cdot 10^{-3}$	0.060.1	$0.06 \dots 2.2$			
$rac{\mathrm{Br}(au^- ightarrow e^- \mu^+ \mu^-)}{\mathrm{Br}(au ightarrow e \gamma)}$	0.040.3	$\sim 2\cdot 10^{-3}$	0.020.04	$0.03 \dots 1.3$			
$rac{{ m Br}(au^- ightarrow \mu^-e^+e^-)}{{ m Br}(au ightarrow \mu\gamma)}$	0.040.3	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$	$0.04 \dots 1.4$			
$\tfrac{\mathrm{Br}(\tau^-{\rightarrow}e^-e^+e^-)}{\mathrm{Br}(\tau^-{\rightarrow}e^-\mu^+\mu^-)}$	0.82	~ 5	0.3 0.5	$1.5 \dots 2.3$			
$\tfrac{\mathrm{Br}(\tau^-\!\rightarrow\!\mu^-\mu^+\mu^-)}{\mathrm{Br}(\tau^-\!\rightarrow\!\mu^-e^+e^-)}$	0.71.6	~ 0.2	510	$1.4 \dots 1.7$			
$rac{\mathrm{R}(\mu\mathrm{Ti}{ ightarrow}e\mathrm{Ti})}{\mathrm{Br}(\mu{ ightarrow}e\gamma)}$	$10^{-3}\dots 10^2$	$\sim 5\cdot 10^{-3}$	$0.08 \dots 0.15$	$10^{-12}\dots 26$			
Buras, Duling, Feldmann, Heidsieck, Promberger, 1006.535							
ZupanProspecting for New Physics16CLFV, June 20 2016							

EXAMINING THE HIGGS

 another case in point : flavor properties of the Higgs

HIGGS

- two main questions about the Higgs
 - responsible for electroweak symmetry breaking?
 - from couplings to Z, W ⇒ predominant source of EWSB
 - does it give the dominant contrib. to quark and lepton masses?
 - here precision low eng. measurements with charged leptons very important

HIGGS = NONTRIVIAL FLAVOR STRUCTURE

- generation of masses in the SM through the Higgs mechanism
- implies Higgs has hierarchical couplings to fermions
- in the SM $y_f = \sqrt{2}m_f/v$
- can it be modified by NP?
- how well have we tested this?

TESTING THE FLAVOR OF THE HIGGS

 $h \rightarrow J/\psi \gamma$

 Γ_{total}^{ATLAS}

 $0.100 - \Gamma_{total}^{CMS}$

μ

y_f

0.010

0.001

Nir, 1605.00433

- how well have we tested the flavor of the Higgs? $y_f^{SM} = \sqrt{2}m_f/v$

Perez, Soreq, Stamou, Tobioka, 1503.00290

Vh recast

τ

global analysis

5

10

50

- several questions
 - proportionality? $y_{ii} \propto m_i$
 - factor of proportionality? $y_{ii}/m_i = \sqrt{2}/v$
 - diagonality? $y_{ij} = 0, \quad i \neq j$
 - reality? (CP conserving?) $\arg(y_{ij}) = 0$

HOW LARGE?

- two important questions
 - how large are Y_{ij} assuming EFT?
 - how large can Y_{ij} be in reasonable models?

CPV AND **FV** HIGGS COUPLINGS TO SM FERMIONS

• if SM an EFT, the Yukawas get corrected by higher dim. ops

$$\mathcal{L}_{SM} = -\left[\lambda_{ij}(\bar{f}_L^i f_R^j)H + h.c.\right]$$

$$\mathcal{L}_{SM} = -\frac{\lambda_{ij}'}{\Lambda^2}(\bar{f}_L^i f_R^j)H(H^{\dagger}H) + h.c. + \cdots$$

$$\mathcal{L}_{ij} = -\frac{\lambda_{ij}'}{\Lambda^2}(\bar{f}_L^i f_R^j)H(H^{\dagger}H) + h.c. + \cdots$$

$$\mathcal{L}_{ij} = -\frac{\lambda_{ij}'}{\Lambda^2}(\bar{f}_L^i f_R^j)H(H^{\dagger}H) + h.c. + \cdots$$

$$\mathcal{L}_{ij} = -\frac{\lambda_{ij}'}{\Lambda^2}(\bar{f}_L^i f_R^j)H(H^{\dagger}H) + h.c. + \cdots$$

decouples mass terms from yukawas

$$\mathcal{L}_Y = -m_i \bar{f}_L^i f_R^i - Y_{ij} (\bar{f}_L^i f_R^j) h + h.c. + \cdots,$$

- can lead to flavor violating Higgs decays
- can lead to CPV Higgs decays
- different models lead to different patterns of flavor diagonal and flavor violating Yukawas

SUMMARY OF MODELS

 an example: higgs couplings to 2nd&3rd gen. charged leptons

adapted from Dery, Efrati, Hochberg, Nir, 1302.3229 and extended; see also Bishara, Brod, Uttayarat, JZ, 1504.04022

Model	$\hat{\mu}_{ au au}$	$(\hat{\mu}_{\mu\mu}/\hat{\mu}_{ au au})/(m_{\mu}^2/m_{ au}^2)$	$\hat{\mu}_{\mu au}/\hat{\mu}_{ au au}$
\mathbf{SM}	1	1	0
NFC	$(V_{h\ell}^*v/v_\ell)^2$	1	0
MSSM	$(\sin \alpha / \cos \beta)^2$	1	0
MFV	$1+2av^2/\Lambda^2$	$1-4bm_{ au}^2/\Lambda^2$	0
\mathbf{FN}	$1 + \mathcal{O}(v^2/\Lambda^2)$	$1 + \mathcal{O}(v^2/\Lambda^2)$	$\mathcal{O}(U_{23} ^2 v^4/\Lambda^4)$
GL	9	25/9	${\cal O}(\hat{\mu}_{\mu\mu}/\hat{\mu}_{ au au})$
$\mathrm{RS}~(i)$	$1 + \mathcal{O}(\bar{Y}^2 v^2 / m_{KK}^2)$	$1 + \mathcal{O}(\bar{Y}^2 v^2 / m_{KK}^2)$	$\mathcal{O}(ar{Y}^2 v^2/m_{KK}^2)\sqrt{m_{ au}/m_{\mu}}$
RS(ii)	$1 + \mathcal{O}(\bar{Y}^2 v^2 / m_{KK}^2)$	$1 + \mathcal{O}(\bar{Y}^2 v^2 / m_{KK}^2)$	$\mathcal{O}(\bar{Y}^2 v^2 / m_{KK}^2)$
PGB (1 rep.)	$1 - v^2/f^2$	1	0

EXPERIMENTAL CONSTRAINTS

- what are present experimental constraints?
- right now can address
 - are diagonal Yukawas hierarchical?
 - are they CP violating?
 - are there FV Yukawas?
- the notation

$$\mathcal{L} \supset -rac{y_f}{\sqrt{2}} \left(\kappa_f \, ar{f} f + i ilde{\kappa}_f \, ar{f} \gamma_5 f
ight) h
ight)$$

focus on charged leptons

J. Zupan Prospecting for New Physics...

CLFV, June 20 2016

HIERARCHICAL YUKAWAS?

proportionality for 3rd generation?

 $y_{ii} \propto m_i$

- top quark yukawa most precise indirectly through loops
- Y_b and Y_τ could still be equal
- hierarchical among generations?
 - i.e., are 1st and 2nd generation Yukawas smaller than 3rd gen.?
 - only established for leptons

$$Y_e, Y_\mu \ll Y_\tau$$

25

J. Zupan Prospecting for New Physics...

CLFV, June 20 2016

CPV ELECTRON YUKAWA?

• $\tilde{\kappa}_e \neq 0$ induces electron EDM

Altmannshofer, Brod, Schmaltz, 1503.04830

• dominant contributions at 2-loop

26

• experimental bound ACME coll., 1310.7534

$$\left|\frac{d_e}{e}\right|_{\rm exp} < 8.7 \times 10^{-29} \ {\rm cm} \ @ 90\% \ {\rm C.L.} \,,$$

or
$$c_0 = i \Rightarrow M > 1000 \ TeV$$

$$y_{eeh} = y_e + \frac{3c_0}{2}\frac{v^2}{M^2} = \frac{\sqrt{2}m_e}{v} + c_0\frac{v^2}{M^2}.$$

• compare with

CMS-HIG-13-007 Br $(h \to e^+e^-) < 0.0019$ @ 95% C.L.

J. Zupan Prospecting for New Physics...

CLFV, June 20 2016

 $\sqrt{|\kappa_e|^2 + |\tilde{\kappa}_e|^2} < 611$

 $|\tilde{\kappa}_e| < 1.7 \times 10^{-2}$

CPV COUPLING TO τ

- impressive improvement in el. EDM is projected
 - 3 orders of magnitude
- in the plot no direct CPV measnt. at the LHC is assumed

• O(0.2) measrmnt. on $\tilde{\kappa}_{\tau}$ maybe possible (at LHC 3 ab⁻¹)

 $h \rightarrow \tau \mu$

Harnik, Kopp, JZ, 1209.1397

 $h \rightarrow \tau e, h \rightarrow \mu e$

Harnik, Kopp, JZ, 1209.1397

FLAVOR VIOLATING HIGGS DECAYS?

ATLAS, 1508.03372, 1604.07730 CMS-HIG-14-005

CMS [ATLAS] at 8 TeV observes hint of a signal at 2.4 [1]σ

 $BR(H \to \mu \tau) = (0.84^{+0.39}_{-0.37}) \% [(0.53 \pm 0.51) \%]$

• first 13 TeV analysis (CMS)

talk by María Cepeda at Higgs Tasting, May 2016, Benasque, Spain

$$BR(H \to \mu \tau) = (-0.76^{+0.81}_{-0.84}) \%$$

- does not exclude 8TeV
- a hint of a signal?

 $\tau \rightarrow \mu \pi \pi$

- hadronic tau decays $\tau \rightarrow \mu \pi + \pi \tau \rightarrow \mu \pi 0 \pi 0$
 - sensitive to both $Y_{\tau\mu'\mu\tau}$ and light quark yukawas $Y_{u,d,s}$
 - $Y_{u,d,s}$ poorly bounded ~ $O(Y_b)$
- for $Y_{u,d,s}$ at their SM values then

$$\begin{split} Br(\tau \to \mu \pi^+ \pi^-) < 1.6 \times 10^{-11}, Br(\tau \to \mu \pi^0 \pi^0) < 4.6 \times 10^{-12} \\ Br(\tau \to e \pi^+ \pi^-) < 2.3 \times 10^{-10}, Br(\tau \to e \pi^0 \pi^0) < 6.9 \times 10^{-11} \end{split}$$

• for $Y_{u,d,s}$ at their present upper bounds

 $Br(\tau \to \mu \pi^+ \pi^-) < 3.0 \times 10^{-8}, Br(\tau \to \mu \pi^0 \pi^0) < 1.5 \times 10^{-8}$ $Br(\tau \to e\pi^+ \pi^-) < 4.3 \times 10^{-7}, Br(\tau \to e\pi^0 \pi^0) < 2.1 \times 10^{-7}$

- Br(τ→μπ+π-) below present exp. limit, if discovered would (among other things) imply upper limit on Y_{u.d}
- similarly pseudoscalar Higgses can be bounded from $\tau \rightarrow \mu \pi(\eta, \eta'), \tau \rightarrow e \pi(\eta, \eta')$

31

- can saturate present experimental limits
- J. Zupan Prospecting for New Physics...

reinterpreting Celis, Cirigliano, Passemar, 1309.3564;

see also Petrov, Zhuridov, 1308.6561

CLFV, June 20 2016

CORRELATED BOUNDS

- *µ→eγ* and *µ→e* conversion constrain also the products of offdiagonal tau Yukawas
 - setting $Y_{\mu e}$ and $Y_{e\mu}$ to zero one has

$$\mathcal{B}(\mu \to e\gamma) \simeq \mathcal{B}_0^{\mu \to e\gamma} \left(|y_{\mu\tau} y_{\tau e}|^2 + |y_{\tau\mu} y_{e\tau}|^2 \right) , \qquad \mathcal{B}_0^{\mu \to e\gamma} = 185 .$$

$$\mathcal{B}(\mu \to e)_{\mathrm{Au}} = \mathcal{B}_0^{\mu e} \left(|y_{e\tau} y_{\mu\tau}|^2 + |y_{\tau e} y_{\tau\mu}|^2 \right), \qquad \mathcal{B}_0^{\mu e} = 4.67 \times 10^{-4},$$

• one then has a constraint on FV Higgs decay Br's

Dorsner, Fajfer, Greljo, Kamenik, Kosnik, Nisandzic, 1502.07784

$$\mathcal{B}(h \to \tau \mu) \times \mathcal{B}(h \to \tau e) = 7.95 \times 10^{-10} \left[\frac{\mathcal{B}(\mu \to e\gamma)}{10^{-13}}\right] + 3.15 \times 10^{-4} \left[\frac{\mathcal{B}(\mu \to e)_{\mathrm{Au}}}{10^{-13}}\right]$$

• \Rightarrow if $Br(h \rightarrow \tau \mu)$ is at the CMS central value, then $Br(h \rightarrow \tau e) < 25\%$

32

• improving $\mu \rightarrow e$ conversion can have a big effect

J. Zupan Prospecting for New Physics...

LARGE FV HIGGS DECAYS?

- Can one have large flavor violating Higgs decays in reasonable NP models?
- What is so special about type III 2HDM?

LARGE FV

Altmannshofer, Gori, Kagan, Silvestrini, JZ, 1507.07927

- a generic obstacle to large $h \rightarrow \tau \mu$ is the bound on $\tau \rightarrow \mu \gamma$
 - improvement on $Br(\tau \rightarrow \mu \gamma)$ can have a big impact
- same diagrams that generate fermion masses (higgs yukawas) also give $\tau \rightarrow \mu \gamma$

LARGE FV

Altmannshofer, Gori, Kagan, Silvestrini, JZ, 1507.07927

- a viable set of models
 - decouple fermion mass generation from $\tau \rightarrow \mu \gamma$
 - possible if new source of EWSB
 - for instance if our higgs only responsible for tau mass
 - e.g. in 2HDM

 $M^{l} = \begin{pmatrix} X & X & X & \phi' \\ X & X & X & \phi' \\ X & X & \chi & \phi \text{ and } \phi' \\ X & X & \phi \text{ and } \phi' \end{pmatrix}$

but could also be other sources of mass (TC,..)

PHENOMENOLOGICAL IMPLICATIONS

- $B_s \rightarrow \mu \mu$ can be modified by O(1)
- sizable $B_s \rightarrow \tau \mu$, $B \rightarrow K \tau \mu$, $B \rightarrow K^* \tau \mu$
- anomalies could be seen in B_s mixing, $\tau \rightarrow \mu \gamma$, $b \rightarrow s \gamma$
- leptonic heavy Higgs (H) decays to μμ dominate over ττ
 - opposite to Type-II 2HDMs
 - lower bound on $H \rightarrow \tau \mu$

Efrati, Kamenik, Nir, work in progress

750 GEV

- other NP states can have nontrivial flavor interactions
 10 Kamenik, Safdi
- e.g. 750 GeV di-photon
- right now preference for couplings to heavy quarks of gluons
- flavor violating decays of *S* severely constrained

750 GEV

• other NP states can have nontrivial flavor

in taka	Goertz, Kamenik, Katz, Nardecchia, 1512.08500			
interac	Bound on $Y_{f,f'}$	Observable	$\Gamma(S \to f f')/M$.06566 _{3σ}
• • • 75	$ { m Im}(Y_{ee}) \lesssim 6 imes 10^{-8}$	d_e	$\lesssim 1 imes 10^{-16}$	`/m ~ 0.06
• e.g. 75	$ { m Im}(Y_{dd}) \lesssim 2 imes 10^{-4}$	$d_N, d_{ m Hg}$	$\lesssim 5 imes 10^{-9}$	
. 1 .	$ { m Im}(Y_{uu}) \lesssim 3 imes 10^{-4}$	$d_N, d_{ m Hg}$	$\lesssim 1 imes 10^{-8}$	
• right r	$ { m Im}(Y_{cc}) \lesssim 0.3$	$d_N, d_{ m Hg}$	$\lesssim 0.01$	2σ
for col	$ Y_{e\mu} , Y_{\mu e} \lesssim 1 imes 10^{-5}$	$\mathcal{B}(\mu ightarrow e \gamma)$	$\lesssim 4 imes 10^{-12}$	
101 COL	$ Y_{e au} , Y_{ au e} \lesssim 0.05$	$\mathcal{B}(au o e\gamma)$	$\lesssim 1 imes 10^{-4}$	10
quarks	$ Y_{\mu au} , Y_{ au\mu} \lesssim 0.06$	$\mathcal{B}(au o \mu \gamma)$	$\lesssim 1 imes 10^{-4}$	
1	$\sqrt{\text{Re}[(Y_{sd})^2]}, \sqrt{\text{Re}[(Y_{ds})^2]} < 1.0 \times 10^{-4}$	Δm_K	$<1.2\times10^{-9}$	7 8
• flavor	$\sqrt{\text{Im}[(Y_{sd})^2]}, \sqrt{\text{Im}[(Y_{ds})^2]} < 7.2 \times 10^{-6}$	ϵ_K	$< 6.2 \times 10^{-12}$	/ 0
	$ (Y_{cu}) , (Y_{uc}) < 3.0 \times 10^{-4}$	x_D	$< 1.1 \times 10^{-8}$	
of <i>S</i> se	$ (Y_{bd}) , (Y_{db}) < 6.4 \times 10^{-4}$	Δm_d	$< 4.9 \times 10^{-8}$	
	$ (Y_{bs}) , (Y_{sb}) < 5.7 \times 10^{-3}$	Δm_s	$< 3.9 imes 10^{-6}$	

• there is complementarity between cLFV and high *p*_T searches for New Physics

• they measure orthogonal properties

- cLFV signals could come from unexpected NP corners
- example: relaxion mechanism to make EW scale technically natural through cosmological evolution
 - some concrete realizations require extra Z₂ odd charged leptons
 - if any mixing with SM leptons \Rightarrow cLFV

Gupta et al., 1509.00047

- cLFV can probe high scale
- examples mini-split SUSY
- O(1-10TeV) gauginos at LHC or future collider; PeV sfermions from low energy precision probes

Altmannshofer, Harnik, JZ, 1308.3653

• and will improve dramatically in the future

see also McKeen, Pospelov, Ritz, 1303.1172

Altmannshofer, Harnik, JZ, 1308.3653

CONCLUSIONS

- cLFV searches are an indispensable part of particle physicist's toolkit
- shown examples where cLFV probe seesaw models, Higgs Yukawas, PeV SUSY, 750 GeV scalar..
 - the discovery may well be in an unexpected corner of NP model space

BACKUP SLIDES

FOR LIGHT QUARK YUKAWA COUPLINGS

- several indirect probes of 1st and 2nd generation Higgs yukawas
 - using charm tagging for h→cc̄ inclusive Perez, Soreq, Stamou, Tobioka, 1503.00290 decays
 - exclusive decays: $h \rightarrow \Upsilon \gamma (y_b)$, $h \rightarrow J/\psi \gamma (y_c), h \rightarrow \phi \gamma (y_s)$ Bodwin, Petriello, Stoynev, Velasco, 1306.5770 Konig, Neubert, 1505.03870 Kagan, Perez, Petriello, Soreq, Stoynev, JZ, 1406.1722 • potentially isotopic shift measurements

44

Delaunay, Ozeri, Perez, Soreq, 1601.05087

J. Zupan Prospecting for New Physics...

CLFV, June 20 2016

HIGGS FLAVOR NON-UNIVERSALITY

MEASUREMENTS

MUON YUKAWA

- similarly, $\tilde{\kappa}_{\mu} \neq 0$ induces muon EDM
 - dominant contributions at 2-loop

• experimental bound Muon (g-2) Collaboration, 0811.1207

$$|d_{\mu}| < 1.9 \times 10^{-19} \ e \cdot cm \ (95\% \ C.L.).$$
 $|\tilde{\kappa}_{\mu}| < 1$

47

• compare with CMS-HIG-13-007; ATLAS 1406.7663

$$Br(h \to \mu^+ \mu^-) < 1.5 \times 10^{-3}$$

$$\sqrt{|\kappa_{\mu}|^2 + |\tilde{\kappa}_{\mu}|^2} < 7.0$$

J. Zupan Prospecting for New Physics...

CLFV, June 20 2016

 $.8 \times 10^{5}$

thanks to J. Brod