

Search for Charged Lepton Flavor Violation at CMS

Daniel Troendle

On behalf of the CMS Collaboration

University of Hamburg

22.06.2016, CLFV2016, Charlottesville

- Lepton Flavor Number (L) is not conserved →Neutrino Oscillation!
- Charged-Lepton-Flavor violation (CLFV): no SM contribution, hence clear signature for New Physics!

- Lepton Flavor Number (L) is not conserved →Neutrino Oscillation!
- Charged-Lepton-Flavor violation (CLFV): no SM contribution, hence clear signature for New Physics!

- Lepton Flavor Number (L) is not conserved → Neutrino Oscillation!
- Charged-Lepton-Flavor violation (CLFV): no SM contribution, hence clear signature for New Physics (NP)!
- Examples for NP contribution: Higgs

- Lepton Flavor Number (L) is not conserved \rightarrow Neutrino **Oscillation!**
- Charged-Lepton-Flavor violation (CLFV): no SM contribution, hence clear signature for New Physics **(NP)**!
- Examples for NP contribution: Higgs, SUSY,

- Lepton Flavor Number (L) is not conserved → Neutrino Oscillation!
- Charged-Lepton-Flavor violation (CLFV): no SM contribution, hence clear signature for New Physics (NP)!
- Examples for NP contribution: Higgs , SUSY, Heavy Neutrinos, Leptoquarks, Z', ...

Daniel Troendle, Uni Hamburg, troendle@cern.ch

CMS Detector

SILICON TRACKER Pixels (100 x 150 µm²) ~1m² ~66M channels Microstrips (80-180µm) ~200m² ~9.6M channels

> CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76k scintillating PbWO₄ crystals

PRESHOWER Silicon strips ~16m² ~137k channels

SUPERCONDUCTING SOLENOID Niobium-titanium coil carrying ~18000 A

Total weight Overall diameter Overall length Magnetic field

Pixels

ECAL

HCAL

Solenoid

Muons

Steel Yoke

~13000 tonnes

STEEL RETURN YOKE

Tracker

: 14000 tonnes : 15.0 m : 28.7 m : 3.8 T HADRON CALORIMETER (HCAL)

Brass + plastic scintillator ~7k channels CALORIMETER Steel + quartz fibres ~2k channels

FORWARD

MUON CHAMBERS

Barrel: 250 Drift Tube & 480 Resistive Plate Chambers Endcaps: 473 Cathode Strip & 432 Resistive Plate Chambers

Recorded Data

CMS Integrated Luminosity, pp

Results shown in the following are based on the data taking at 7, 8 and 13 TeV center-of-mass energy!

Search for $Z \rightarrow \mu e$ decays

19.7 fb⁻¹(8 10⁶ Preliminary Events / 5.00 GeV **Bkg uncertainty** Data 10⁵ Signal, B(Z \rightarrow eµ)=1×10⁻⁶ Ζ→ττ tt, tW, tW Diboson, Z→ ee/µµ 10⁴ **Misidentified leptons** 10³ 10² **Event Selection:** 10 Two tight leptons (e,μ) with opposite sign Jet-Veto: suppresses ttbar Data/Bkg. 3.0 Low transverse Mass: suppresses WW Misidentified leptons estimated from data 160 180 200 20 n m^μ_T (GeV)

11

Search for CLFV Higgs decays

In general two Higgs-Doublet models (2HDMs):

- <u>CFLV Higgs coupling are possible!</u>
- Typically one need to introduce an additional symmetry to suppress flavor changing neutral currents (FCNC)...
- LHC-RunII: exploit the full yukawamatrix, not "only" the diagonal entries!

Harnik, Kopp, Zupan, arXiv:1209.1397

Search for CLFV Higgs decays

Daniel Troendle, Uni Hamburg, troendle@cern.ch

Daniel Troendle, Uni Hamburg, troendle@cern.ch

Search for H→eτ

- 2 channels: leptonic tau (μ) and hadronic tau decays
- GGF and VBF production channels: 0, 1 and 2-Jet categories
- Kinematic cuts to enhance S/B ratio

Search for $H \rightarrow \mu \tau$

- 2 channels: leptonic tau (e) and hadronic tau decays
- GGF and VBF production considered: 0,1 and 2-Jet categories
- Kinematic cuts to enhance S/B ratio

Search for $H \rightarrow \mu \tau$ @ 13TeV!

- Repetition of 8TeV $H \rightarrow \mu \tau$ analysis: no change of strategy and kinematic cuts
- Slight excess of 8TeV analysis could not be confirmed so far, but also not excluded!
- Updated B(H $\rightarrow\mu\tau$) Limit: B(H $\rightarrow\mu\tau$)<1.2% observed (1.62% expected)

18

LFV Higgs Summary

Expect major update by end of the year!

Extension to higher masses (H,A $\rightarrow\mu\tau$,e τ) is on the list to do!

(L)RPV-SUSY Heavy Resonances, Heavy neutrinos,...

R Parity Violating (RPV) SUSY

R-Parity: $R = (-1)^{3B+L+25}$

Conversation of R-Parity:

- $R_{SM} = +1$ and $R_{SUSY} = -1$
- **Proton stable**

. . .

• Lightest SUSY Particle is stable

Search for RPV SUSY

R-Parity: $R = (-1)^{3B+L+2S}$

Baryon-Number (B) and Lepton-Number (L) are violated!If only L or B is violated, then the proton would be still stable!

 $\tilde{\chi}_1^0$

Conversation of R-Parity:

- $R_{SM} = +1$ and $R_{SUSY} = -1$
- **Proton stable!**
- Lightest SUSY Particle is stable

nd $R_{SUSY}^{=-1}$ P_1

 P_2

Main difference to R-parity conserving SUSY: lower MET expectation!

Focus on L-RPV in the following:. For others, please check http://cms-results.web.cern.ch/cms-results/public-results/

Daniel Troendle, Uni Hamburg, troendle@cern.ch

Search for RPV SUSY in 4l final state

Search Strategy:

- 4 tight leptons (e,µ)
- Split M₁ and M₂ in on-Z and off-Z regions

(M₁₍₂₎: invariant mass of first (second) opposite sign same flavor pair)

Daniel Troendle, Uni Hamburg, troendle@cern.ch

CMS-PAS-SUS-13-010

Search for RPV stop quarks

Search Strategy:

- 3+ tight leptons (e,μ,τ_{had})
- S_T :scalar sum of all transverse momenta
- Signal regions 1-4:at least one
 b-tagged jets and no Zcandidate
 - Signal regions 5-8: a Z-Candidate or no b-tagged jet

SR	NL	Ντ	$0 < S_{\rm T} < 300$		$300 < S_{\rm T} < 600$		$600 < S_{\rm T} < 1000$		$1000 < S_{\rm T} < 1500$		$S_{\rm T} > 1500$	
			obs	exp	obs	exp	obs	exp	obs	exp	obs	exp
SR1	3	0	116	123 ± 50	130	127 ± 54	13	18.9 ± 6.7	1	1.43 ± 0.51	0	0.208 ± 0.096
SR2	3	≥ 1	710	698 ± 287	746	837 ± 423	83	97 ± 48	3	6.9 ± 3.9	0	0.73 ± 0.49
SR3	4	0	0	0.186 ± 0.074	1	0.43 ± 0.22	0	0.19 ± 0.12	0	0.037 ± 0.039	0	0.000 ± 0.021
SR4	4	≥ 1	1	0.89 ± 0.42	0	1.31 ± 0.48	0	0.39 ± 0.19	0	0.019 ± 0.026	0	0.000 ± 0.021
SR5	3	0			·		165	174 ± 53	16	21.4 ± 8.4	5	2.18 ± 0.99
SR6	3	≥ 1			·		276	249 ± 80	17	19.9 ± 6.8	0	1.84 ± 0.83
SR7	4	0			·		5	8.2 ± 2.6	2	0.96 ± 0.37	0	0.113 ± 0.056
SR8	4	≥ 1			8. 	(). 	2	3.8 ± 1.3	0	0.34 ± 0.16	0	0.040 ± 0.033

Daniel Troendle, Uni Hamburg, troendle@cern.ch

Phys. Rev. Lett. 111 (2013) 221801

Search for RPV stop quarks

SR	NL	N_{T}	$0 < S_{\rm T} < 300$		$300 < S_{\rm T} < 600$		$600 < S_{\rm T} < 1000$		$1000 < S_{\rm T} < 1500$		$S_{\rm T} > 1500$	
			obs	exp	obs	exp	obs	exp	obs	exp	obs	exp
SR1	3	0	116	123 ± 50	130	127 ± 54	13	18.9 ± 6.7	1	1.43 ± 0.51	0	0.208 ± 0.096
SR2	3	≥ 1	710	698 ± 287	746	837 ± 423	83	97 ± 48	3	6.9 ± 3.9	0	0.73 ± 0.49
SR3	4	0	0	0.186 ± 0.074	1	0.43 ± 0.22	0	0.19 ± 0.12	0	0.037 ± 0.039	0	0.000 ± 0.021
SR4	4	≥ 1	1	0.89 ± 0.42	0	1.31 ± 0.48	0	0.39 ± 0.19	0	0.019 ± 0.026	0	0.000 ± 0.021
SR5	3	0					165	174 ± 53	16	21.4 ± 8.4	5	2.18 ± 0.99
SR6	3	≥ 1			·		276	249 ± 80	17	19.9 ± 6.8	0	1.84 ± 0.83
SR7	4	0		_			5	8.2 ± 2.6	2	0.96 ± 0.37	0	0.113 ± 0.056
SR8	4	≥ 1					2	3.8 ± 1.3	0	0.34 ± 0.16	0	0.040 ± 0.033

Daniel Troendle, Uni Hamburg, troendle@cern.ch

Phys. Rev. Lett. 111 (2013) 221801

Search for RPV stop quarks

Search for RPV SUSY in dilepton channels

Search Strategy:

- 2 tight leptons (e,μ)
- 2 Jets (not b-tagged)
- Split event according to M_{slepton} (lljj) and M_{neutralino}(ljj)

Search for RPV SUSY in dilepton

Daniel Troendle, Uni Hamburg, troendle@cern.ch

Search for high mass resonances in the eµ final states at 13 TeV

Resonant sneutrino decays (RPV-SUSY) or non-resonant Quantum-Black-Holes (QBH) could decay into eµ pairs (+others models).

Search for high mass resonances in the eµ final states at 13 TeV

CMS-PAS-EXO-16-001

 W^{+}

a

Search for Heavy Majorana Neutrinos

Search Strategy:

- Two tight leptons with same sign($e^{\pm}e^{\pm}, \mu^{\pm}\mu^{\pm}, e^{\pm}\mu^{\pm}$)
- Mass dependent cust:
 - Low mass m_N < 90 GeV: MET<30 GeV, m (lljj)<200 GeV, m(jj)<120 GeV
 - High mass $m_N > 90$ GeV: MET<35 GeV, m (jj)= $m_W \pm 30$ GeV

Daniel Troendle, Uni Hamburg, troendle@cern.ch

Search for Heavy Majorana Neutrinos

Conclusion

- Strong portfolio of CLFV searches in CMS
- New Physics models on CLFV tested up to multi-TeV scale already
- LHC Run-II: expect more interesting updates by the end of the year!

http://cms-results.web.cern.ch/cms-results/public-results/publications/