Flavor violation in multi-Higgs-doublet models

Julian Heeck

2nd International Conference on Charged Lepton Flavor Violation

June 20, 2016

Based on work with Andreas Crivellin, Giancarlo D'Ambrosio, Peter Stoffer, Martin Holthausen, Werner Rodejohann, and Yusuke Shimizu.

Standard Model of particle physics

Beautiful and simple:

Standard Model of particle physics

Fine print:

- Gauge group $SU(3)_{color} \times SU(2)_{isospin} \times U(1)_{hypercharge}$ $\Rightarrow 8 + 3 + 1$ spin-1 bosons with field strength $F_{\mu\nu}$;
- Three copies of spin- $\frac{1}{2}$ Weyl fields (families/generations) in rep.

$$\Psi_{1,2,3} \sim \underbrace{(\textbf{3},\textbf{2},+\frac{1}{6}) \oplus (\textbf{3},\textbf{1},+\frac{2}{3}) \oplus (\textbf{3},\textbf{1},-\frac{1}{3})}_{\text{quarks}} \oplus \underbrace{(\textbf{1},\textbf{2},-\frac{1}{2}) \oplus (\textbf{1},\textbf{1},-1)}_{\text{leptons}};$$

- One complex spin-0 field $\phi \sim (\mathbf{1}, \mathbf{2}, +\frac{1}{2})$ which breaks $SU(2) \times U(1) \rightarrow U(1)_{\text{EM}}$ via $\langle \phi \rangle \simeq 250 \text{ GeV}$;
- About 18 free parameters, all measured as of 2013 ($m_{\text{BEH}} \simeq 125 \,\text{GeV!}$).

Conserved lepton charges in SM

SM: one scalar doublet $\Phi = \begin{pmatrix} G^+ \\ (v + h + iG)/\sqrt{2} \end{pmatrix}$. Leptons:

$$\mathcal{L} \supset i\overline{L}_{\alpha,L} \not\!\!{D} L_{\alpha,L} + i\overline{\ell}_{\alpha,R} \not\!\!{D} \ell_{\alpha,R} - \left(\mathsf{Y}^{\boldsymbol{\ell}}_{\alpha\beta} \overline{L}_{\alpha,L} \Phi \ell_{\beta,R} + \mathrm{h.c.} \right).$$

Singular value decomposition: $Y^{\ell} = V_L \text{diag}(y_e, y_{\mu}, y_{\tau}) V_R^{\dagger}$. Rotate lepton fields into mass basis $(m_{\alpha} = y_{\alpha}v/\sqrt{2})$:

$$\mathcal{L} \rightarrow i\overline{L}_{\alpha,L} \not \!\!\!\! D L_{\alpha,L} + i\overline{\ell}_{\alpha,R} \not \!\!\! D \ell_{\alpha,R} - \left(\sum_{\alpha = e,\mu,\tau} y_{\alpha} \overline{L}_{\alpha,L} \Phi \ell_{\alpha,R} + \text{h.c.} \right)$$

- \Rightarrow No flavor-changing couplings.
- \Rightarrow Global $U(1)_{L_e} imes U(1)_{L_{\mu}} imes U(1)_{L_{ au}}$ symmetry.

Conserved quark charges in SM

Quarks:

$$\mathcal{L} \supset i\overline{Q}_{\alpha,L} \not D Q_{\alpha,L} + i\overline{d}_{\alpha,R} \not D d_{\alpha,R} + i\overline{u}_{\alpha,R} \not D u_{\alpha,R} - \left(Y^{d}_{\alpha\beta} \overline{Q}_{\alpha,L} \Phi d_{\beta,R} + Y^{u}_{\alpha\beta} \overline{Q}_{\alpha,L} i\sigma_{2} \Phi^{*} u_{\beta,R} + \text{h.c.} \right)$$

SVD: $Y^d = V_L^d \operatorname{diag}(y_d, y_s, y_b) V_R^{\dagger}$ and $Y^u = V_L^u \operatorname{diag}(y_u, y_c, y_t) \tilde{V}_R^{\dagger}$. Unless $V_L^d = V_L^u$: off-diagonal couplings! (Move to W_{μ}^{\pm} interactions.)

⇒ Flavor-changing couplings $\propto (V_L^{d,\dagger}V_L^u)_{\alpha\beta} \equiv (V_{CKM})_{\alpha\beta}$. ⇒ Only global $U(1)_B$.

Conserved quark charges in SM

Quarks:

$$\mathcal{L} \supset i\overline{Q}_{\alpha,L} \not D Q_{\alpha,L} + i\overline{d}_{\alpha,R} \not D d_{\alpha,R} + i\overline{u}_{\alpha,R} \not D u_{\alpha,R} - \left(Y^{d}_{\alpha\beta} \overline{Q}_{\alpha,L} \Phi d_{\beta,R} + Y^{u}_{\alpha\beta} \overline{Q}_{\alpha,L} i\sigma_2 \Phi^* u_{\beta,R} + \text{h.c.} \right)$$

SVD: $Y^d = V_L^d \operatorname{diag}(y_d, y_s, y_b) V_R^{\dagger}$ and $Y^u = V_L^u \operatorname{diag}(y_u, y_c, y_t) \tilde{V}_R^{\dagger}$. Unless $V_L^d = V_L^u$: off-diagonal couplings! (Move to W_{μ}^{\pm} interactions.)

⇒ Flavor-changing couplings $\propto (V_L^{d,\dagger} V_L^u)_{\alpha\beta} \equiv (V_{CKM})_{\alpha\beta}$. ⇒ Only global $U(1)_B$.

Global symmetry in SM:

$$\begin{array}{l} U(1)_B \times U(1)_{L_e} \times U(1)_{L_{\mu}} \times U(1)_{L_{\tau}} \\ = \underbrace{U(1)_{B+L}}_{\text{anomalous}} \times U(1)_{B-L} \times U(1)_{L_e-L_{\mu}} \times U(1)_{L_{\mu}-L_{\tau}} \,. \end{array}$$

 $\Delta B=$ 3, $\Delta L_e=$ 1, $\Delta L_{\mu}=$ 1, $\Delta L_{ au}=$ 1, but heavily suppressed.¹

¹G. t Hooft, 1976.

Flavor changing effects in SM

Couplings of Brout–Englert–Higgs boson *h* to fermions:

$$-\mathcal{L} = \sum_{f=e,\mu,\tau,d,s,b,u,c,t} h\left(\frac{m_f}{v}\right) \overline{f} f.$$

Flavor violation in SM only for quarks via CKM matrix (charged currents), lepton flavor is conserved.

Even non-zero neutrino masses typically only induce *tiny* LFV. E.g. light Dirac neutrinos:

$$rac{\Gamma(\ell_lpha o \ell_eta \gamma)}{\Gamma(\ell_lpha o \ell_eta
u_lpha \overline{
u}_eta)} \simeq rac{3lpha_{\mathsf{EM}}}{32\pi} \left| \sum_{j=2,3} U_{lpha j} rac{\Delta m_{j1}^2}{M_W^2} U_{jeta}^\dagger
ight|^2 < 5 imes 10^{-53} \, .$$

LFV = new physics!

Two-Higgs-Doublet Model (2HDM)

Simple extension of SM: add one more scalar doublet.²

- Arises often in BSM, e.g. SUSY, axion models.
- New physical scalars: H, A, H^+ .
- $\rho = M_W^2/M_Z^2 \cos^2 \theta_W = 1$ at tree level; $\langle \Phi_1 \rangle / \langle \Phi_2 \rangle = \tan \beta$.
- Brings additional CP violation (useful for baryogenesis).
- Generally induces flavor-changing processes (both quarks and leptons), e.g.

$$\ell_{\alpha} \to \ell_{\beta} \gamma , \qquad h \to \ell_{\alpha} \overline{\ell}_{\beta} ,^{3} \qquad Z \to \ell_{\alpha} \overline{\ell}_{\beta} .$$

• Limits up to $m_{A,H} > 10^3 - 10^5 \text{ TeV}$ for $\mathcal{O}(1) \ e\mu$ or ds couplings.

 ²Lee, 1973; extensive review of 2HDM in Branco et al, arXiv:1106.0034.
 ³Davidson, Grenier, 2010; Blankenburg, Ellis, Isidori; Harnik, Kopp, Zupan, 2012.

Two-Higgs-Doublet Model (2HDM)

Simple extension of SM: add one more scalar doublet.²

- Arises often in BSM, e.g. SUSY, axion models.
- New physical scalars: H, A, H^+ .
- $\rho = M_W^2/M_Z^2 \cos^2 \theta_W = 1$ at tree level; $\langle \Phi_1 \rangle / \langle \Phi_2 \rangle = \tan \beta$.
- Brings additional CP violation (useful for baryogenesis).
- Generally induces flavor-changing processes (both quarks and leptons), e.g.

$$\ell_{\alpha} \to \ell_{\beta} \gamma , \qquad h \to \ell_{\alpha} \overline{\ell}_{\beta} ,^{3} \qquad Z \to \ell_{\alpha} \overline{\ell}_{\beta} .$$

• Limits up to $m_{A,H} > 10^3 - 10^5 \text{ TeV}$ for $\mathcal{O}(1) \ e\mu$ or ds couplings.

Why flavor-changing?

²Lee, 1973; extensive review of 2HDM in Branco et al, arXiv:1106.0034.
 ³Davidson, Grenier, 2010; Blankenburg, Ellis, Isidori; Harnik, Kopp, Zupan, 2012.

LFV in 2HDM

Yukawa couplings for 2HDM:

$$\mathcal{L} \supset i\overline{L}_{\alpha,L} \not\!\!D L_{\alpha,L} + i\overline{\ell}_{\alpha,R} \not\!\!D \ell_{\alpha,R} - \left(\mathbf{Y}_{\alpha\beta}^{\ell,1} \overline{L}_{\alpha,L} \Phi_1 \ell_{\beta,R} + \mathbf{Y}_{\alpha\beta}^{\ell,2} \overline{L}_{\alpha,L} \Phi_2 \ell_{\beta,R} + \text{h.c.} \right)$$

Not possible to diagonalize both Y^1 and $Y^2 \Rightarrow LFV!$

⁴Pich & Tuzón, 2009; Ferreira, Lavoura, Silva, 2010.
⁵Paschos, 1977, Weinberg & Glashow, 1977.

LFV in 2HDM

Yukawa couplings for 2HDM:

$$\mathcal{L} \supset i\overline{L}_{\alpha,L} \not\!\!D L_{\alpha,L} + i\overline{\ell}_{\alpha,R} \not\!\!D \ell_{\alpha,R} - \left(\mathbf{Y}_{\alpha\beta}^{\ell,1} \overline{L}_{\alpha,L} \Phi_1 \ell_{\beta,R} + \mathbf{Y}_{\alpha\beta}^{\ell,2} \overline{L}_{\alpha,L} \Phi_2 \ell_{\beta,R} + \mathsf{h.c.} \right)$$

Not possible to diagonalize both Y^1 and $Y^2 \Rightarrow LFV!$

Unless:

•
$$Y_{\alpha\beta}^{\ell,1} = 0$$
 or $Y_{\alpha\beta}^{\ell,2} = 0$.
• $Y_{\alpha\beta}^{\ell,1} = c \times Y_{\alpha\beta}^{\ell,2}$ (more general *alignment*, RGE unstable).⁴
Formally:⁵

No tree-level FCNC if fermions of the same electric charge get mass from just *one* scalar doublet.

Impose \mathbb{Z}_2 symmetry: $\Phi_{1,2} \to \pm \Phi_{1,2}$, $\ell_R \to -\ell_R$ gives $Y^{\ell,1}_{\alpha\beta} = 0 \neq Y^{\ell,2}_{\alpha\beta}$.

⁵Paschos, 1977, Weinberg & Glashow, 1977.

⁴Pich & Tuzón, 2009; Ferreira, Lavoura, Silva, 2010.

2HDM without tree-level scalar-mediated FCNC via $\mathbb{Z}_2{:}^6$

type	Φ_1	Φ ₂	Q_L, L_L	u _R	d_R	ℓ_R
	+	-	+	—	—	-
II (MSSM like)	+	-	+	_	+	+
X (lepton specific)	+	-	+	_	-	+
Y (flipped)	+	_	+	_	+	_

- (More choices if we add ν_R , e.g. neutrinophilic 2HDM.⁷)
- (If type-I Φ_1 has no VEV: Inert Doublet Model for dark matter.⁸)
- (\mathbb{Z}_2 can be promoted to $U(1)_{H}$.⁹)
- Most general 2HDM (without \mathbb{Z}_2 , with FCNC): type III.

- ⁸Deshpande, Ma, 1978.
- ⁹Ko, Omura, Yu, 2012, 2013, 2014.

⁶Barger, Hewett, Phillips, 1990; Aoki, Kanemura, Tsumura, Yagyu, 2009.

⁷Ma, 2001, Wang, Wang, Yang, 2006, Gabriel, Nandi, 2007, Davidson, Logan, 2009.

2HDM potential

Scalar potential for 2HDM,
$$\Phi_j = \begin{pmatrix} \phi_j^+ \\ (v_j + \rho_j + i\eta_j)/\sqrt{2} \end{pmatrix}$$
:
 $V = \sum_{j=1,2} \left[m_{jj}^2 \Phi_j^{\dagger} \Phi_j + \frac{1}{2} \lambda_j (\Phi_j^{\dagger} \Phi_j)^2 \right]$

$$-\left[m_{12}^{2}\Phi_{1}^{\dagger}\Phi_{2}+\mathsf{h.c.}\right]+\lambda_{3}\left(\Phi_{1}^{\dagger}\Phi_{1}\right)\left(\Phi_{2}^{\dagger}\Phi_{2}\right)+\lambda_{4}\left(\Phi_{1}^{\dagger}\Phi_{2}\right)\left(\Phi_{2}^{\dagger}\Phi_{1}\right)\\+\left[\frac{1}{2}\lambda_{5}\left(\Phi_{1}^{\dagger}\Phi_{2}\right)^{2}+\lambda_{6}\left(\Phi_{1}^{\dagger}\Phi_{1}\right)\left(\Phi_{1}^{\dagger}\Phi_{2}\right)+\lambda_{7}\left(\Phi_{2}^{\dagger}\Phi_{2}\right)\left(\Phi_{1}^{\dagger}\Phi_{2}\right)+\mathsf{h.c.}\right]$$

In \mathbb{Z}_2 models:

- $\lambda_6 = \lambda_7 = 0$
- $m_{12}^2 \neq 0$: softly broken \mathbb{Z}_2 to avoid domain wall problem.
- If CP conserved:

$$\begin{split} h &= \sin \alpha \rho_1 - \cos \alpha \rho_2 , & A &= \sin \beta \eta_1 - \cos \beta \eta_2 , \\ H &= -\cos \alpha \rho_1 - \sin \alpha \rho_2 , & H^+ &= \sin \beta \phi_1^+ - \cos \beta \phi_2^+ . \end{split}$$

Yukawa couplings,¹⁰ no FCNC by construction:

$$\mathcal{L} = -\sum_{f=u,d,\ell} \left(\frac{m_f}{v} \xi_h^f \overline{f} f h + \frac{m_f}{v} \xi_H^f \overline{f} f H - i \frac{m_f}{v} \xi_A^f \overline{f} \gamma_5 f A \right) - \left\{ \frac{\sqrt{2} V_{ud}}{v} \overline{u} \left(m_u \xi_A^u \mathsf{P}_L + m_d \xi_A^d \mathsf{P}_R \right) d H^+ + \frac{\sqrt{2} m_\ell \xi_A^\ell}{v} \overline{\nu_L} \ell_R H^+ + \text{h.c.} \right\}$$

type	ξ_h^{μ}	ξ_h^d	ξ_h^{ℓ}	ξ_{H}^{u}	ξ_{H}^{d}	ξ_{H}^{ℓ}	ξ^{u}_{A}	ξ^d_A	ξ^{ℓ}_{A}
Ι	c_{α}/s_{β}	c_{α}/s_{β}	c_{α}/s_{β}	s_{α}/s_{β}	s_{α}/s_{β}	s_{α}/s_{β}	$\cot \beta$	$-\cot\beta$	$-\cot\beta$
11	c_{α}/s_{β}	$-s_{\alpha}/c_{\beta}$	$-s_{\alpha}/c_{\beta}$	s_{α}/s_{β}	c_{α}/c_{β}	c_{α}/c_{β}	$\cot \beta$	tan eta	tan eta
Х	c_{α}/s_{β}	c_{α}/s_{β}	$-s_{\alpha}/c_{\beta}$	s_{α}/s_{β}	s_{α}/s_{β}	c_{α}/c_{β}	$\cot \beta$	$-\cot\beta$	tan eta
Y	c_{α}/s_{β}	$-s_{\alpha}/c_{\beta}$	c_{α}/s_{β}	s_{α}/s_{β}	c_{α}/c_{β}	s_{α}/s_{β}	$\cot \beta$	aneta	$-\cot\beta$

Experimental limits on tan β , $\cos(\alpha - \beta)$, M_{A,H,H^+} .

¹⁰Aoki, Kanemura, Tsumura, Yagyu, 2009.

Constraints from *h* couplings

Define $m_h = 125 \text{ GeV}$; *h* has SM couplings for $\cos(\alpha - \beta) \rightarrow 0.^{11}$

Dorsch, Huber, Mimasu, No, arXiv:1601.04545.

¹¹Or for $m_{A,H,H^+} \gg m_h$, see Haber, 1994, Gunion, Haber, 2002, Haber et al.... Julian Heeck (ULB) Flavor violation in multi-Higgs-doublet models

Constraints from direct searches

Alignment limit $\cos(\alpha - \beta) = 0$.

Craig, D'Eramo, Draper, Thomas, Zhang, arXiv:1504.04630.

Constraints from direct searches

Alignment limit $\cos(\alpha - \beta) = 0$.

Craig, D'Eramo, Draper, Thomas, Zhang, arXiv:1504.04630.

2HDM with flavor violation

General type-III 2HDM:

- No symmetry distinguishing Φ_1 and $\Phi_2 \Rightarrow \tan \beta$ unphysical.¹²
- Rotate to Georgi basis, only $\Phi_1 = \begin{pmatrix} G^+ \\ (v + h_1 + iG)/\sqrt{2} \end{pmatrix}$ has VEV.¹³
- SM-like Φ_1 still mixes with Φ_2 with angle $\alpha_H \cong \beta \alpha$.
- Φ_2 has arbitrary (off-diagonal) couplings ρ to fermions. Yukawa couplings (CP conserving case):¹⁴

$$\overline{f} P_R f' h : \frac{m_f}{v} \sin(\alpha_H) \delta_{ff'} + \cos(\alpha_H) \rho_{ff'},$$

$$\overline{f} P_R f' H : \frac{m_f}{v} \cos(\alpha_H) \delta_{ff'} - \sin(\alpha_H) \rho_{ff'},$$

$$\overline{f} P_R f' A : \pm i \rho_{ff'}.$$

Simply pick ρ to explain e.g. $h \rightarrow \mu \tau$ & g - 2. Talk by Kazuhiro Tobe.

¹²Davidson, Haber, 2005; Haber, O'Neil, 2006.

¹³Georgi, Nanopoulos, 1979.

¹⁴Davidson, Grenier, 2010.

2HDM with flavor violation

General type-III 2HDM:

- No symmetry distinguishing Φ_1 and $\Phi_2 \Rightarrow \tan \beta$ unphysical.¹²
- Rotate to Georgi basis, only $\Phi_1 = \begin{pmatrix} G^+ \\ (v + h_1 + iG)/\sqrt{2} \end{pmatrix}$ has VEV.¹³
- SM-like Φ_1 still mixes with Φ_2 with angle $\alpha_H \cong \beta \alpha$.
- Φ_2 has arbitrary (off-diagonal) couplings ρ to fermions. Yukawa couplings (CP conserving case):¹⁴

$$\overline{f} P_R f' h : \frac{m_f}{v} \sin(\alpha_H) \delta_{ff'} + \cos(\alpha_H) \rho_{ff'},$$

$$\overline{f} P_R f' H : \frac{m_f}{v} \cos(\alpha_H) \delta_{ff'} - \sin(\alpha_H) \rho_{ff'},$$

$$\overline{f} P_R f' A : \pm i \rho_{ff'}.$$

Any guesses for ρ ?

¹²Davidson, Haber, 2005; Haber, O'Neil, 2006.
¹³Georgi, Nanopoulos, 1979.
¹⁴Davidson, Grenier, 2010.

Cheng–Sher Ansatz

Popular Ansatz:¹⁵ hierarchical $\rho_{ij} = \sqrt{m_i m_j} / v \times \mathcal{O}(1)$.

- Automatically suppresses first-gen. couplings.
- m_{A,H,H^+} down to $\mathcal{O}(200 \,\mathrm{GeV})$ allowed.
- Only leptons: can give large $\tau \to \mu \gamma$ or $h \to \mu \tau$ (but not g 2).¹⁶
- Large $H, A \rightarrow \mu \tau$.¹⁷

¹⁵Cheng, Sher, 1987.

¹⁶Davidson, Grenier, 2010; Kopp, Nardecchia, 2014; Aristizabal Sierra, Vicente, 2014.
 ¹⁷Sher, Thrasher, arXiv:1601.03973.

Different Ansatz for ρ :

- Start with familiar 2HDM of type I/II/X/Y.
- Add (off-diagonal) perturbations.

Example 1: type I + pert. from flavor symmetry to explain $h \rightarrow \mu \tau$.¹⁸

¹⁸J.H., M. Holthausen, W. Rodejohann, Y. Shimizu, NPB (2015), arXiv:1412.3671.
 ¹⁹Campos, Hernández, Päs, Schumacher, PRD 2015.

Different Ansatz for ρ :

- $\bullet\,$ Start with familiar 2HDM of type I/II/X/Y.
- Add (off-diagonal) perturbations.

Example 1: type I + pert. from flavor symmetry to explain $h \rightarrow \mu \tau$.¹⁸

Lepton flavor violation \Leftrightarrow connection to flavor symmetries?

 ¹⁸J.H., M. Holthausen, W. Rodejohann, Y. Shimizu, NPB (2015), arXiv:1412.3671.
 ¹⁹Campos, Hernández, Päs, Schumacher, PRD 2015.

Different Ansatz for ρ :

- $\bullet\,$ Start with familiar 2HDM of type I/II/X/Y.
- Add (off-diagonal) perturbations.

Example 1: type I + pert. from flavor symmetry to explain $h \rightarrow \mu \tau$.¹⁸

Lepton flavor violation \Leftrightarrow connection to flavor symmetries?

- Non-abelian symmetries A_4 or S_4^{19} have at least 3HDM.
- Predict $BR(h \rightarrow \mu \tau) \sim BR(h \rightarrow e \tau)$.
- CMS-PAS-HIG-14-040: $BR(h \to e\tau) < 0.69\%$ at 95%CL.

 ¹⁸J.H., M. Holthausen, W. Rodejohann, Y. Shimizu, NPB (2015), arXiv:1412.3671.
 ¹⁹Campos, Hernández, Päs, Schumacher, PRD 2015.

Different Ansatz for ρ :

- $\bullet\,$ Start with familiar 2HDM of type I/II/X/Y.
- Add (off-diagonal) perturbations.

Example 1: type I + pert. from flavor symmetry to explain $h \rightarrow \mu \tau$.¹⁸

Lepton flavor violation \Leftrightarrow connection to flavor symmetries?

- Non-abelian symmetries A_4 or S_4^{19} have at least 3HDM.
- Predict $BR(h \rightarrow \mu \tau) \sim BR(h \rightarrow e \tau)$.
- CMS-PAS-HIG-14-040: $BR(h \to e\tau) < 0.69\%$ at 95%CL.

Here: take abelian symmetry.

• Lepton numbers in $h \to \bar{\mu} \tau, \mu \bar{\tau}$:

$$\Delta L_e = 0 = \Delta (L_\mu + L_\tau), \text{ but } \Delta (L_\mu - L_\tau) = \pm 2$$

 ¹⁸J.H., M. Holthausen, W. Rodejohann, Y. Shimizu, NPB (2015), arXiv:1412.3671.
 ¹⁹Campos, Hernández, Päs, Schumacher, PRD 2015.

Gauged $U(1)_{L_{\mu}-L_{\tau}}$ flavor symmetry

 $L_{\mu}-L_{ au}$ well known symmetry:

• Current
$$j'_{\alpha} = \bar{\mu}\gamma_{\alpha}\mu - \bar{\tau}\gamma_{\alpha}\tau + \bar{\nu}_{\mu}\gamma_{\alpha}P_{L}\nu_{\mu} - \bar{\nu}_{\tau}\gamma_{\alpha}P_{L}\nu_{\tau}.$$

- Anomaly free in SM.²⁰
- Light Z' could resolve $(g-2)_{\mu}$ anomaly.²¹
- Good zeroth order approximation to neutrino mixing with quasi-degenerate masses $(m_{1,2,3} \simeq 1 \text{ eV} \text{ and } \beta = \pi/2)$:

$$egin{aligned} \mathcal{M}_{
u} &= U_{
m PMNS} \, ext{diag}(m_1, m_2, m_3) U_{
m PMNS}^{\mathcal{T}} \ &\simeq egin{pmatrix} 0.96 & -0.20 & -0.22 \ \cdot & 0.11 & -0.97 \ \cdot & \cdot & -0.07 \end{pmatrix} ext{eV} \sim egin{pmatrix} imes & 0 & 0 \ 0 & 0 & imes \ 0 & imes & 0 \end{pmatrix} \leftarrow egin{pmatrix} L_{\mu} - L_{ au} \ & 0 \end{pmatrix} \end{aligned}$$

•
$$L_{\mu} - L_{\tau}$$
 gives $\theta_{23} = \pi/4$ and $\theta_{13} = 0.^{22}$

²⁰He, Joshi, Lew, Volkas, PRD 1991; Foot, MPLA 1991.

²¹Baek et al, PRD 2001; Altmannshofer et al, PRL 2014; Baek, 1510.02168.

²²Binetruy, Lavignac, Petcov, Ramond, NPB 1997; Bell, Volkas, PRD 2001; Choubey, Rodejohann, EPJC 2005.

$L_{\mu} - L_{\tau}$ in a 2HDM

- 2HDM: $\Phi_1 \sim -2$, $\Phi_2 \sim 0$ under $U(1)_{L_{\mu}-L_{\tau}}$.²³
- Plus scalar singlet ${\sf S}\sim 1$ and three $u_R\sim (0,1,-1)$ for seesaw.
- $S \rightarrow \langle S \rangle$ generates $\Delta \mathcal{M}_R$ for valid PMNS, $M_{Z'}/g' = \langle S \rangle$, and $S^2 \Phi_2^{\dagger} \Phi_1 \rightarrow m_{12}^2 \Phi_2^{\dagger} \Phi_1$. \Rightarrow small VEV $\langle \Phi_1 \rangle$ induced! (\leftarrow large tan β region.)

• Lepton Yukawa couplings:²⁴

$$m{Y}_{\ell_2} = ext{diag}(m{y}_{m{e}},m{y}_{\mu},m{y}_{ au})\,, \qquad \qquad m{Y}_{\ell_1} = egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & \xi_{ au\mu} & 0 \end{pmatrix}.$$

 \Rightarrow Gauge symmetry sets all other LFV couplings zero!

Coupling $h\mu\tau$ now generated by scalar mixing and lepton mixing.

²³J.H., Rodejohann, PRD 2011, see Dutta, Joshipura, Vijaykumar, PRD 1994, for $L_e - L_{\mu,\tau}$. ²⁴J.H., Holthausen, Rodejohann, Shimizu, NPB (2015), 1412.3671.

Charged lepton masses

• Diagonalization of M_e requires small $\mu_R - \tau_R$ rotation

$$s_R \equiv \sin heta_R \simeq rac{v}{m_ au} rac{\xi_{ au\mu}}{\sqrt{2}} \cos eta \, .$$

• SM-like scalar h couples

$$y^{h} \simeq \underbrace{\operatorname{diag}(m_{e}, m_{\mu}, m_{\tau}) \frac{c_{\alpha}}{v s_{\beta}}}_{\text{type-1 2HDM}} - s_{R} \frac{m_{\tau}}{v} \frac{\cos(\alpha - \beta)}{c_{\beta} s_{\beta}} \begin{pmatrix} 0 & & \\ & 0 & 0 \\ & & c_{R} & s_{R} \end{pmatrix}.$$

•
$$Z'$$
 couples to (e, μ, τ) via

$$egin{pmatrix} 0 & & \ & 1 & \ & & -1 \end{pmatrix} P_L + egin{pmatrix} 0 & & & \ & \cos 2 heta_R & \sin 2 heta_R \ & & \sin 2 heta_R & -\cos 2 heta_R \end{pmatrix} P_R,$$

leads to $\tau \to 3\mu$; need $\theta_R \lesssim 4 \times 10^{-3} (M_{Z'}/g'/1\,{\rm TeV})^2$.

Only LFV in μ - τ sector, quarks and electrons save!

$h \rightarrow \mu \tau$

• CMS 2.4 σ excess in $h \rightarrow \mu \tau$ for

$$egin{aligned} |y^h_{ au\mu}| &= rac{m_ au}{v} |rac{\cos(lpha-eta)}{c_eta s_eta} c_R s_R| \ &\stackrel{!}{\simeq} 3 imes 10^{-3} \,. \end{aligned}$$

- $c_{eta} \sim s_R \ll 1$ and $\xi_{\tau\mu} c_{\alpha-eta} \simeq 0.004$.
- (slightly) modified $h \rightarrow \tau \tau$.
- Otherwise just type-I 2HDM.
- Expect $\tau \rightarrow 3\mu$ (see later).

 $h
ightarrow \mu au$ resolved.

solid:	aneta= 3,	$\cos(\alpha - \beta) = -0.3,$
dashed:	aneta=10,	$\cos(\alpha - \beta) = -0.2,$
dotted:	aneta= 20,	$\cos(\alpha - \beta) = -0.2.$

J.H., Holthausen, Rodejohann, Shimizu, 1412.3671.

Lepton flavor violation with light bosons

As an aside:²⁵

- Same $L_{\mu}-L_{ au}$ model, make $g'\ll 1\Rightarrow$ Light Z'.
- $Z'\mu\mu$ coupling constrained by Neutrino Trident Production.²⁶
- $Z'\mu\tau$ coupling gives two-body $\tau \to \mu Z'$, followed by $Z' \to \nu \nu$.²⁷
- ARGUS (1995): $Br(\tau \to \mu Z') < 5 \times 10^{-3}$ from $5 \times 10^5 \tau s$.

J.H., Phys. Lett. B (2016), arXiv:1602.03810.
 ²⁶Altmannshofer, Gori, Pospelov, Yavin, PRL 2014.
 ²⁷Foot, He, Lew, Volkas, 1994; McDonald, McKellar, 2006.

Different Ansatz for ρ :

- Start with familiar 2HDM of type I/II/X/Y.
- Add (off-diagonal) perturbations.

Example 1: type I + pert. from flavor symmetry to explain $h \rightarrow \mu \tau$.

Example 2: type I + pert. from flavor symmetry to explain R(K) etc.²⁸

²⁸J.H., A. Crivellin, G. D'Ambrosio, Phys. Rev. Lett. (2015) [arXiv:1501.00993];
 J.H., A. Crivellin, G. D'Ambrosio, Phys. Rev. D (2015), [arXiv:1503.03477].

Current flavor anomalies: $b \rightarrow s$

- Rare flavor changing decays $B \to K \bar{\ell} \ell$ at loop level in SM.
- Branching ratios of order 10^{-7} .

•
$$B = \overline{B}^0$$
 for $q = d$.
• $B = B^-$ for $q = u$.
• $B = \overline{B}_s^0$ for $q = s$ (and $K \to \phi$)

• LHCb [1406.6482]: 2.6σ lepton non-universality:

$$R(K) \equiv \frac{B^+ \to K^+ \mu \mu}{B^+ \to K^+ ee} = 0.745^{+0.090}_{-0.074} \pm 0.036,$$

SM prediction $R(K) = 1 \pm O(10^{-4})$ [Bobeth, Hiller, Piranishvili, 0709.4174]. (Comes from smaller $\mu\mu$ rate.) • LHCb [1406.6482]: 2.6σ lepton non-universality:

$$R(K) \equiv \frac{B^+ \to K^+ \mu \mu}{B^+ \to K^+ ee} = 0.745^{+0.090}_{-0.074} \pm 0.036,$$

SM prediction $R(K) = 1 \pm O(10^{-4})$ [Bobeth, Hiller, Piranishvili, 0709.4174]. (Comes from smaller $\mu\mu$ rate.)

• LHCb [1506.08777]: 3.5 σ too small differential branching fraction

$$B_s^0 o \phi \mu^+ \mu^- o K^+ K^- \mu^+ \mu^-$$

confirming 1/fb analysis [1305.2168].

• LHCb [LHCb-CONF-2015-002]: 3.7 σ deviation in angular observable P'_5 of

 $B^0 \to K^* \mu \mu \to K^+ \pi^- \mu \mu \,,$

confirming 1/fb analysis [1308.1707].

Global fit for $b \rightarrow s$

Global fit²⁹ with effective Hamiltonian

$$\mathcal{H}_{\rm eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha_{\rm EM}}{4\pi} \left(\sum_{j=9,10} C_j^{\ell\ell} O_j^{\ell\ell} + C_j^{\prime\ell\ell} O_j^{\prime\ell\ell} \right) + \text{h.c.},$$

with

$$\begin{split} O_9^{\ell\ell} &= \left[\bar{s} \gamma^{\mu} P_L b \right] \left[\bar{\ell} \gamma_{\mu} \ell \right], \quad O_{10}^{\ell\ell} &= \left[\bar{s} \gamma^{\mu} P_L b \right] \left[\bar{\ell} \gamma_{\mu} \gamma^5 \ell \right], \\ O_9^{\prime \ell\ell} &= \left[\bar{s} \gamma^{\mu} P_R b \right] \left[\bar{\ell} \gamma_{\mu} \ell \right], \quad O_{10}^{\prime \ell\ell} &= \left[\bar{s} \gamma^{\mu} P_R b \right] \left[\bar{\ell} \gamma_{\mu} \gamma^5 \ell \right], \end{split}$$

²⁹Descotes-Genon, Hofer, Matias, Virto, 1510.04239. Similar results by Hurth, Mahmoudi, Neshatpour, 1410.4545; Altmannshofer, Straub, 1503.06199, 1411.3161; ...

Global fit for $b \rightarrow s$

Global fit²⁹ with effective Hamiltonian

$$\mathcal{H}_{\rm eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha_{\rm EM}}{4\pi} \left(\sum_{j=9,10} C_j^{\ell\ell} O_j^{\ell\ell} + C_j^{\prime\ell\ell} O_j^{\prime\ell\ell} \right) + \text{h.c.}$$

with

$$\begin{aligned} \mathcal{O}_{9}^{\ell\ell} &= \left[\bar{s} \gamma^{\mu} \mathcal{P}_{L} b \right] \left[\bar{\ell} \gamma_{\mu} \ell \right], \quad \mathcal{O}_{10}^{\ell\ell} &= \left[\bar{s} \gamma^{\mu} \mathcal{P}_{L} b \right] \left[\bar{\ell} \gamma_{\mu} \gamma^{5} \ell \right], \\ \mathcal{O}_{9}^{\prime \ell \ell} &= \left[\bar{s} \gamma^{\mu} \mathcal{P}_{R} b \right] \left[\bar{\ell} \gamma_{\mu} \ell \right], \quad \mathcal{O}_{10}^{\prime \ell \ell} &= \left[\bar{s} \gamma^{\mu} \mathcal{P}_{R} b \right] \left[\bar{\ell} \gamma_{\mu} \gamma^{5} \ell \right], \end{aligned}$$

to all $B \to X \mu^+ \mu^-$, $B \to X \gamma$, and R(K):

4.9 σ : $(C_9^{\rm NP})^{\mu\mu} = -1.14 \pm 0.20 \ (\simeq -25\% C_9^{\rm SM})$.

Need $(\bar{s}\gamma_{\alpha}P_{L}b)(\bar{\mu}\gamma^{\alpha}\mu)/(35 \text{ TeV})^{2}$, but no e^{-} .

²⁹Descotes-Genon, Hofer, Matias, Virto, 1510.04239. Similar results by Hurth, Mahmoudi, Neshatpour, 1410.4545; Altmannshofer, Straub, 1503.06199, 1411.3161; . . .

Z' coupled to bs

For 4.9 σ improvement, need $(\bar{s}\gamma_{\alpha}P_{L}b)(\bar{\mu}\gamma^{\alpha}\mu)/(35 \,\mathrm{TeV})^{2}$.

 \Rightarrow Z' coupled to $\overline{\mu}\gamma^{\alpha}\mu$ and $\overline{s}\gamma_{\alpha}P_{L}b.^{30}$

³⁰Altmannshofer, Straub, 1503.06199, 1411.3161; Gauld, Goertz, Haisch, 1308.1959, 1310.1082; Buras, Girrbach et al., 1309.2466, 1311.6729; Aristizabal Sierra et al., 1503.06077; Crivellin et al., 1504.07928; Celis, Serôdio et al., 1505.03079.

Z' coupled to bs

For 4.9 σ improvement, need $(\bar{s}\gamma_{\alpha}P_{L}b)(\bar{\mu}\gamma^{\alpha}\mu)/(35 \,\mathrm{TeV})^{2}$.

$$\Rightarrow Z' \text{ coupled to } \overline{\mu}\gamma^{\alpha}\mu \text{ and } \overline{s}\gamma_{\alpha}P_{L}b.^{30}$$

Extend $L_{\mu} - L_{\tau}$ to $U(1)_{Q'}$:

$$\mathcal{Q}'=(\mathcal{L}_{\mu}-\mathcal{L}_{ au})-a(\mathcal{B}_1+\mathcal{B}_2-2\mathcal{B}_3)$$
 with $a\in\mathbb{Q}$.

with three scalar doublets $\Phi_1 \sim -a$, $\Phi_2 \sim 0$, $\Phi_3 \sim 2$ and some singlets.

$$Y_{d_2} = \begin{pmatrix} y_{11}^d & y_{12}^d \\ y_{21}^d & y_{22}^d \\ & & y_{33}^d \end{pmatrix}, \qquad Y_{d_1} = \begin{pmatrix} 0 & 0 & \xi_{db} \\ 0 & 0 & \xi_{sb} \\ 0 & 0 & 0 \end{pmatrix}.$$

- $L_{\mu} L_{\tau}$ in lepton sector. \checkmark
- Cabibbo angle & Kaon mixing constraints. 🗸
- Mixing of third quark generation by $\langle \Phi_1 \rangle$ induces Z'bs coupling. \checkmark

 $^{^{30}}$ Altmannshofer, Straub, 1503.06199, 1411.3161; Gauld, Goertz, Haisch, 1308.1959, 1310.1082; Buras, Girrbach et al., 1309.2466, 1311.6729; Aristizabal Sierra et al., 1503.06077; Crivellin et al., 1504.07928; Celis, Serôdio et al., 1505.03079.

Flavor violating quark couplings

Diagonalization of quark mass matrices (focus on down quarks):

$$-\bar{d}\left(\frac{\cos\alpha}{v\sin\beta}m_d^D - \frac{\cos(\alpha-\beta)}{\sqrt{2}\sin\beta}\tilde{\xi}^d\right)P_Rdh - \bar{d}\left(\frac{\sin\alpha}{v\sin\beta}m_d^D - \frac{\sin(\alpha-\beta)}{\sqrt{2}\sin\beta}\tilde{\xi}^d\right)P_RdH +i\bar{d}\left(\frac{m_d^D}{v\tan\beta} - \frac{1}{\sqrt{2}\sin\beta}\tilde{\xi}^d\right)P_RdA - \bar{u}\left(\frac{\sqrt{2}}{v\tan\beta}Vm_d^D - \frac{1}{\sin\beta}V\tilde{\xi}^d\right)P_RdH^+.$$

Type-I 2HDM plus perturbations specified by CKM:

$$ilde{\xi}^d \simeq V^\dagger Y_{d_1} \simeq rac{\sqrt{2}}{\coseta} rac{m_b}{v} egin{pmatrix} 0 & 0 & -V_{td}^* V_{tb} \ 0 & 0 & -V_{ts}^* V_{tb} \ 0 & 0 & 1 - |V_{tb}|^2 \end{pmatrix}.$$

Z' couplings:

$$\Gamma^{dL} \simeq a \begin{pmatrix} |V_{td}|^2 - \frac{1}{3} & V_{ts}V_{td}^* & V_{tb}V_{td}^* \\ V_{td}V_{ts}^* & |V_{ts}|^2 - \frac{1}{3} & V_{tb}V_{ts}^* \\ V_{td}V_{tb}^* & V_{ts}V_{tb}^* & |V_{tb}|^2 - \frac{1}{3} \end{pmatrix}, \quad \Gamma^{dR} \simeq a \begin{pmatrix} -\frac{1}{3} & 0 & 0 \\ 0 & -\frac{1}{3} & 0 \\ 0 & 0 & \frac{2}{3} \end{pmatrix}$$

b ightarrow s

- Dominant off-diagonal: Z'bs.
- Structure perfect for $b \rightarrow s$:

$$\begin{split} C_{9}^{\mu\mu} &\simeq -\left(\frac{a}{1/3}\right) \left(\frac{3\text{TeV}}{m_{Z'}/g'}\right)^{2}, \\ C_{9}^{ee} &= C_{9}^{\prime\ell\ell} = C_{10}^{\ell\ell} = C_{10}^{\prime\ell\ell} = 0 \,. \end{split}$$

• a < 1 to satisfy B_s mixing.

 $\Delta M_{12}/M_{12}^{\rm SM} \propto a^2 g'^2/m_{Z'}^2.$

 $b \rightarrow s$ anomalies resolved!

LHC constraints

Z' couples to first-gen. quarks \Rightarrow direct detection via $pp \rightarrow Z' \rightarrow \mu^+\mu^-$.

Look forward to new LHC run!

Third scalar doublet for $h \rightarrow \mu \tau$

Put in third scalar doublet $\Phi_3 \sim 2$ for $h \rightarrow \mu \tau \Rightarrow \tau \rightarrow 3\mu$:

At 2σ predict: BR $(\tau \rightarrow 3\mu) \gtrsim 9.3 \times 10^{-9} (10/\tan\beta)^2$.

Different Ansatz for ρ :

- Start with familiar 2HDM of type I/II/X/Y.
- Add (off-diagonal) perturbations.

Example 1: type I + pert. from flavor symmetry to explain $h \rightarrow \mu \tau$.

Example 2: type I + pert. from flavor symmetry to explain R(K) etc.

Example 3: type X + pert. to explain $R(D^{(*)})$, $h \rightarrow \mu \tau/g - 2.^{31}$

³¹J.H., A. Crivellin, P. Stoffer, Phys. Rev. Lett. (2016) [arXiv:1507.07567]. Julian Heeck (ULB) Flavor violation in multi-Higgs-doublet models

Current flavor anomalies: $b \rightarrow c$

• Lepton non-universality in B decays

 ${\it R}(D^{(*)}) \,\equiv\, rac{ar{B} o D^{(*)} au ar{
u}}{ar{B} o D^{(*)} \ell ar{
u}} \,.$

• Combination of BaBar, Belle, and LHCb

 $R(D)_{
m exp} = 0.388 \pm 0.047 \,,$ $R(D^*)_{
m exp} = 0.321 \pm 0.021 \,,$

compared to SM prediction (e.g. [Fajfer, Kamenik, Nišandžić, 1203.2654])

$$R(D)_{\rm SM} = 0.297 \pm 0.017$$
,
 $R(D^*)_{\rm SM} = 0.252 \pm 0.003$.

 \Rightarrow 3.9 σ combined (HFAG).

• Confirms earlier results by BaBar & Belle.

Wilson coefficients for $b \rightarrow c$

- Possible new physics explanation of *B* → D^(*)τν by charged Higgs.
- Relevant effective Hamiltonian

$$\begin{split} \mathcal{H}_{\rm eff} &= C_{\rm SM}^{qb}\,O_{\rm SM}^{qb} + C_R^{qb}\,O_R^{qb} + C_L^{qb}\,O_L^{qb}\,,\\ O_{\rm SM}^{cb} &= \bar{c}\gamma_\mu P_L b\,\bar{\tau}\gamma_\mu P_L \nu_\tau\,, \quad O_{L,R}^{cb} &= \bar{c}P_{L,R} b\,\bar{\tau}P_L \nu_\tau\,. \end{split}$$

• Need e.g.
$$C_R^{cb}=0$$
 and $C_L^{cb}\simeq -1.2\,|C_{
m SM}^{cb}|.$

$$\frac{R(D^*)}{R(D^*)_{\rm SM}} = 1 + 0.12 \,\Re \left[\frac{C_R^{cb} - C_L^{cb}}{C_{\rm SM}^{cb}} \right] + 0.05 \left| \frac{C_R^{cb} - C_L^{cb}}{C_{\rm SM}^{cb}} \right|^2 . - 2 \frac{1}{-2} \frac{1$$

- ($B \rightarrow \tau \nu$ depends on *ub* couplings.)
 - Can not explain R(D) and R(D*) in type-II [Fajfer, Kamenik, Nišandžić, Zupan, 1206.1872; Crivellin, Greub, Kokulu, 1206.2634, 1303.5877] or type I/X/Y 2HDM [recent: Enomoto, Watanabe, 1511.05066].
 - Need general type III, or modified type X (also resolving muon's magnetic moment anomaly) [J.H., Crivellin, Stoffer, 1507.07567].

 C_R^{cb}/C_{SM}^{cb}

RID

RO

 $0 C_{l}^{cb}/C_{SM}^{cb}$

-1

Modified type-X 2HDM

• Lepton-specific 2HDM (type X):

$$\mathcal{L}_{Y} = -\overline{Q}_{L}Y^{u}\tilde{\Phi}_{2}u_{R} - \overline{Q}_{L}Y^{d}\Phi_{2}d_{R} - \overline{L}_{L}Y^{\ell}\Phi_{1}e_{R} + \text{h.c.}$$

• Add breaking terms for more freedom (type $X \rightarrow$ type III):

$$\Delta \mathcal{L}_{Y} = -\overline{Q}_{L}\xi^{u}\tilde{\Phi}_{1}u_{R} - \overline{Q}_{L}\xi^{d}\Phi_{1}d_{R} - \overline{L}_{L}\xi^{\ell}\Phi_{2}e_{R} + \text{h.c.}$$

• For large $\tan \beta$ ($\varepsilon^{\ell} \equiv L_{L}^{\dagger} \xi^{\ell} L_{R}$ etc.):

$$\begin{split} \Gamma^{hLR}_{q_i q_j} &\simeq -\frac{1}{\sqrt{2}} \left(\frac{m_{q_i}}{v} \delta_{ij} \cos \alpha - \varepsilon^q_{ij} \sin \alpha \right), \qquad \Gamma^{HLR}_{q_i q_j} &\simeq -\frac{1}{\sqrt{2}} \left(\frac{m_{q_i}}{v} \delta_{ij} \sin \alpha + \varepsilon^q_{ij} \cos \alpha \right), \\ \Gamma^{H^+ LR}_{u_i d_j} &\simeq V_{ij'} \varepsilon^d_{j'j}, \qquad \qquad \Gamma^{H^+ RL}_{u_i d_j} &\simeq -\varepsilon^{u*}_{j'i} V_{j'j}, \\ \Gamma^{hLR}_{\ell_f \ell_i} &\simeq \frac{\sin \alpha \tan \beta}{\sqrt{2}} \left(\frac{m_{\ell_i}}{v} \delta_{fi} - \varepsilon^\ell_{fi} \right), \qquad \qquad \Gamma^{HLR}_{\ell_f \ell_i} &\simeq -\frac{\cos \alpha \tan \beta}{\sqrt{2}} \left(\frac{m_{\ell_i}}{v} \delta_{fi} - \varepsilon^\ell_{fi} \right), \\ \Gamma^{ALR}_{\ell_f \ell_i} &\simeq -i \frac{\tan \beta}{\sqrt{2}} \left(\frac{m_{\ell_i}}{v} \delta_{fi} - \varepsilon^\ell_{fi} \right), \qquad \qquad \Gamma^{H^+ LR}_{\nu_f \ell_i} &\simeq \tan \beta \left(\frac{m_{\ell_i}}{v} \delta_{fi} - \varepsilon^\ell_{fi} \right). \end{split}$$

• $\varepsilon_{33}^\ell > m_\tau / v$ flips sign of coupling.

• To generate $b \to c$ and $h \to \mu \tau$, use structure $\varepsilon^d = 0$,

$$\varepsilon^{u} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \times & \times \end{pmatrix}, \quad \varepsilon^{\ell} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \times & \times \end{pmatrix}.$$

If H (or A) are light, this induces t → Hc, followed by H → ττ.

Why light *H* or *A*?

- Grandmother of anomalies: magnetic moment of muon $(g 2)_{\mu}$, at $\sim 3\sigma$. \Rightarrow see talk by Joe Price.
- Light A in type-X 2HDM can resolve $(g 2)_{\mu}$ using Barr–Zee diagram.³²

³²Broggio, Chun, Passera, Patel, Vempati, 1409.3199; Wang, Han, 1412.4874; Chun, Kang, Takeuchi, Tsai, 1507.08067; Chun, Kim, 1605.06298.

$$\tau \to \ell \nu \nu$$

- Problem: Leads to wrong $\tau \rightarrow \ell \nu \nu$ rates! [Krawczyk, Temes, hep-ph/0410248; Abe, Sato, Yagyu, 1504.07059]
- Define

$$\Delta_\ell \equiv rac{{
m BR}(au o \ell \overline{
u}
u)_{
m exp}}{{
m BR}(au o \ell \overline{
u}
u)_{
m SM}} - 1$$

then Δ_{μ} is 2.4 σ above SM expectation.

• Relevant for Michel parameter η :

$$z \equiv \frac{v^2}{m_{H^+}^2} \Gamma^{LR\,H^+}_{\nu_\tau\,\tau} \Gamma^{LR\,H^+\,\star}_{\nu_\mu\,\mu}$$

- For type-X: δg negative and z positive.
- Negative z possible for $\varepsilon_{33}^{\ell} > m_{\tau}/v!$

Flip τ coupling of A and $H \Rightarrow$ light H resolves $(g - 2)_{\mu}$ and H^+ solves $\tau \rightarrow \mu\nu\nu$.

$$h
ightarrow \mu au$$
 vs. $(g-2)_{\mu}$

- Light *H* resolves $(g 2)_{\mu}$, *H*⁺ explains $R(D^{(*)})$ and $\tau \to \mu\nu\nu$.
- Using ε_{32}^{ℓ} , can we also get $h \to \mu \tau$?

$$h
ightarrow \mu au$$
 vs. $(g-2)_{\mu}$

• Light *H* resolves
$$(g - 2)_{\mu}$$
, *H*⁺ explains $R(D^{(*)})$ and $\tau \to \mu\nu\nu$.

• Using
$$arepsilon_{32}^\ell$$
, can we also get $h o \mu au?$

- No, large $\tau \to \mu \gamma$.
- Same Barr–Zee diagrams for (g − 2)_μ and τ → μγ.
- (Finetuning might be possible in general 2HDM. See talk by Kazuhiro Tobe.)

Can explain either $(g - 2)_{\mu}$ or $h \rightarrow \mu \tau$ together with $R(D^{(*)})$ (and $\tau \rightarrow \mu \nu \nu$) in our 2HDM.

General nHDM perfect environment for flavor:

- Flavor non-universality & violation.
- Potentially large $h \to \ell_i \bar{\ell}_j \& \ell_i \to \ell_j \gamma$.
- Light A/H could solve $(g-2)_{\mu}$.
- H^+ could solve $R(D^{(*)})$.

Controlled flavor violation via U(1)':

- Z' could solve $b \rightarrow s$ anomalies.
- Light Z' could induce $\ell_i \to \ell_j Z'$.

Wait for new data physics.

Backup

New physics vs. QCD in $b \rightarrow s$

Check C_9 in $B \to K^* \mu^+ \mu^-$ as function of $\mu\mu$ mass q^2 :

- New physics \rightarrow flat.
- Hadronic effect \rightarrow not flat.

Inconclusive as of yet.

If it's QCD (non-factorizable charm loop), it's much larger than expected!

$L_{\mu}-L_{ au}$ at LHC

Even without Z' couplings to quarks:

$$pp
ightarrow \mu \mu Z'
ightarrow 4 \mu$$
 .

Ma, Roy, Roy, PLB 2002.

del Aguila, Chala, Santiago, Yamamoto, JHEP 2015 [1411.7394]. Harigaya, Igari, Nojiri, Takeuchi, Tobe, JHEP 2014 [1311.0870].

Currently weaker than limits from neutrino trident production

$$u_{\mu}N \rightarrow \nu_{\mu}N\mu^{+}\mu^{-}$$

(← thin dotted line). Altmannshofer, Gori, Pospelov, Yavin, PRL 2014.