





# **Sterile Neutrinos and cLFV**

# Ana M. Teixeira

## Laboratoire de Physique Corpusculaire, LPC - Clermont



# 2<sup>nd</sup> International Conference on Charged Lepton Flavor Violation



Charlottesville, 20 June 2016

## Plan

#### **Extending the SM with sterile fermions**

Motivation and theoretical framework

Phenomenological impact and observational constraints

#### Sterile neutrinos and cLFV

Radiative and 3 body decays; Nucleus-assisted processes

Rare processes at colliders

#### **Sterile neutrinos and cLFV: models of** $\nu$ **-mass generation**

cLFV at high-intensities and high-energies

#### Outlook

# **cLFV** and New Physics

Flavour violation in charged lepton sector: Physics beyond  $SM_{m_{\nu}}$  !

Are neutral and charged LFV related?

Does cLFV arise from  $\nu$ -mass mechanism? Or entirely different nature?

Two approaches to address these questions: Effective (model-independent) (well-motivated) New Physics models

LFV in models of New Physics

Flavour violating extensions of the SM: Little Higgs, extra dimensions, general SUSY, ... Models of neutrino mass generation: Low-scale seesaws, SUSY seesaw, ... Hints of an organising principle - LFV and symmetries: LR models, GUTs, ...

cLFV arising in SM "minimally" extended via sterile fermions !



▶ Hints on the mechanism of  $\nu$ -mass generation...?

# **Sterile fermion extensions of the SM**

#### Beyond the 3-neutrino paradigm

#### ▶ Sterile fermions: singlets under $SU(3)_c \times SU(2)_L \times U(1)_Y$

**Interactions with SM fields:** through **mixings** with **active neutrinos (via Higgs) No bound** on the **number** of sterile states, **no limit** on their **mass scale(s)** Present in several **theoretical models** accounting for  $\nu$  **masses and mixings** 

► Interest & phenomenological implications - strongly dependent on their mass! eV scale ↔ extra neutrinos suggested by short baseline ν oscillation anomalies (oscillation results not explained within 3 flavour oscillation)

keV scale ↔ warm dark matter candidates; explain pulsar velocities (kicks) (extensive bounds to be complied with...)

MeV - TeV scale  $\leftrightarrow$  experimental testability! (and BAU, DM,  $m_{\nu}$  generation...) (direct and indirect effects, both at the high-intensity and high-energy frontiers)

**Beyond**  $10^9$  GeV  $\leftrightarrow$  theoretical appeal: standard seesaw, BAU, GUTs

## **Beyond the 3-neutrino paradigm**

#### ▶ Sterile fermions: singlets under $SU(3)_c \times SU(2)_L \times U(1)_Y$

Interactions with SM fields: through mixings with active neutrinos (via Higgs) No bound on the number of sterile states, no limit on their mass scale(s) Present in several theoretical models accounting for  $\nu$  masses and mixings

► Interest & phenomenological implications - strongly dependent on their mass!
eV scale ↔ extra neutrinos suggested by short baseline ν oscillation anomalies (oscillation results not explained within 3 flavour oscillation)

keV scale ↔ warm dark matter candidates; explain pulsar velocities (kicks) (extensive bounds to be complied with...)

MeV - TeV scale  $\leftrightarrow$  experimental testability! (and BAU, DM,  $m_{\nu}$  generation...) (direct and indirect effects, both at the high-intensity and high-energy frontiers)

**Beyond**  $10^9$  GeV  $\leftrightarrow$  theoretical appeal: standard seesaw, BAU, GUTs

## **Beyond the 3-neutrino paradigm**

▶ Phenomenological impact: modified  $W^{\pm}$  charged currents and  $Z^0$ , H neutral currents If sufficiently light, sterile  $\nu$ s can be produced as final states

Already many constraints on the sterile masses and mixings!

#### Theoretical frameworks of $\nu_s$

 $\blacktriangleright$  Numerous SM extensions aiming at accounting for  $\nu$  masses and mixings

 $\rightarrow$  **Right-handed neutrinos** (low scale seesaws: type I,  $\nu$ MSM, ...)

$$\mathcal{L}_{\text{type I}} = -Y^{\ell} \, \bar{L}_L \, H \, e_R \, -Y^{\nu} \, \overline{\nu_R} \, \tilde{H} \, \nu_L \, -\frac{1}{2} \, \overline{\nu_R} \, M_N \, \nu_R^c \qquad \Rightarrow m_{\nu} \sim \frac{v^2 \, Y_{\nu}^2}{M_N}$$

 $\rightarrow$  Other neutral fermions ( $\nu_R$  + extra sterile states in Inverse Seesaw, ...)

$$\mathcal{L}_{\text{ISS}} = -Y^{\nu} \,\overline{\nu_R} \,\tilde{H} \,L - M_R \,\overline{\nu_R} \,X - \frac{1}{2} \mu_X \,\overline{X}^c \,X + \frac{1}{2} \mu_R \,\overline{\nu_R} \,\nu_R^c \qquad \Rightarrow m_{\nu} \sim \frac{v^2 \,Y_{\nu}^2}{M_R} \,\frac{\mu_X}{M_R}$$

 $\Rightarrow$  Neutrino oscillation data; leptogenesis; DM (?); very rich phenomenology

**Simplified** "toy models" for phenomenological analyses:  $SM + \nu_s$ 

"ad-hoc" construction (no specific assumption on mechanism of mass generation) encodes the effects of N additional sterile states in a single one

... Not to be confused with oscillation anomaly solution!...

#### "Toy model" for phenomenological analyses: SM + $\nu_s$

- ► Assumptions: 3 active neutrinos + 1 sterile state  $n_L = (\nu_{Le}, \nu_{L\mu}, \nu_{L\tau}, \nu_s^c)^T$ interaction basis  $\iff$  physical basis  $n_L = U_{4\times 4} \nu_i$  $U_{4\times 4}^T M U_{4\times 4} = \text{diag}(m_{\nu_1}, ..., m_{\nu_4})$  "Majorana mass":  $\mathcal{L}_{toy} \sim n_L^T C M n_L$
- ► Active-sterile mixing  $\mathbf{U}_{\alpha i}$ : rectangular matrix  $\leftarrow \mathbf{U} = U|_{3 \times 4}$ ► Left-handed lepton mixing  $\tilde{U}_{PMNS}$ :  $3 \times 3$  sub-block, non-unitary!  $U_{4 \times 4} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}$
- Physical parameters: 4 masses [3 light (mostly active) + 1 heavier (mostly sterile) states]
   6 mixing angles [θ<sub>12</sub>, θ<sub>23</sub>, θ<sub>13</sub>, & θ<sub>i4</sub>] and 6 phases [(3 Dirac and 3 Majorana)]

► Modified charged  $(W^{\pm})$  and neutral  $(Z^{0})$  current interactions:  $\mathcal{L}_{W^{\pm}} \sim -\frac{g_{w}}{\sqrt{2}} W_{\mu}^{-} \sum_{\alpha=e,\mu,\tau} \sum_{i=1}^{3+n_{S}} \mathbf{U}_{\alpha i} \bar{\ell}_{\alpha} \gamma^{\mu} P_{L} \nu_{i}$   $\mathcal{L}_{Z^{0}} \sim -\frac{g_{w}}{2\cos\theta_{w}} Z_{\mu} \sum_{i,j=1}^{3+n_{S}} \bar{\nu}_{i} \gamma^{\mu} \left[ P_{L} (\mathbf{U^{\dagger}U})_{ij} - P_{R} (\mathbf{U^{\dagger}U})_{ij}^{*} \right] \nu_{j}$ 

## Constraints on sterile fermions: masses and $\theta_{\alpha s}$

▶ Neutrino oscillation parameters:  $\tilde{U}_{PMNS}$  comply with observed mixings

Electroweak precision tests: invisible Z width; leptonic Z width; Weinberg angle...
[Del Aguila et al, '08; Atre et al, '09; ...

Antusch et al, '09-'14; Fernandez-Martinez et al, '16; ...]

▶ Searches at the LHC: invisible Higgs decays  $H \rightarrow \nu_L \nu_R$ ; direct searches, ...

[Dev et al, '12-'15; Bandyopadhyay et al, '12; Cely et al, '14; Arganda et al, '14-'15; Deppish et al, '15; ...]

► Peak searches in meson decays: monochromatic lines in  $\ell^{\pm}$  spectrum from  $X_M^{\pm} \rightarrow \ell^{\pm} \nu_s$ [Shrock, '80-'81; Atre et al, '09; Kusenko et al, '09; Lello et al,'13]

► Beam dump experiments:  $\nu_s$  decay products (light mesons,  $\ell^{\pm}$ ) from  $X_M^{\pm}$  decays [PS191, CHARM, NuTeV, ...]

## Constraints on sterile fermions: masses and $\theta_{\alpha s}$

Neutrinoless double beta decays - |m<sub>ee</sub>|: [EXO-200, KamLAND-Zen, GERDA,...] [Blenow et al, '10; Lopez-Pavon et al, '13; Abada et al, '14, ..., Giunti et al]

▶ Rare meson decays: Lepton Number Violating (LNV) e.g.  $K^+ \rightarrow \ell^+ \ell^+ \pi^-$ 

Lepton Universality Violating (LUV) e.g.  $R_{X_M}$ , R(D),  $R_{ au}$ 

[CLEO, Belle, BaBar, NA62, LHCb, BES III, ...] [Shrock, '81; Atre et al, '09; Abada et al, '13-'15, ...]

► Lepton Flavour Violation: 3 body decays among most stringent...

[Gronau et al, '85; Ilakovac & Pilaftsis, '95 - '14; Deppisch et al, '05; Dinh et al, '12; Alonso et al, '12; ...]

**Cosmology:** large scale structures, Lyman- $\alpha$ , BBN, CMB, X-ray, SN1987a, ...

[Smirnov et al, '06; Kusenko, '09; Gelmini, '10;

Donini et al, '14; Hernández et al, '15-'16; ...]

# **Sterile neutrinos and lepton properties**

# Impact for lepton properties

#### ► Leptonic CP violation: electric dipole moments



- ► Majorana (and Dirac) phases ⇒ lepton EDMs
- ▶ Non-vanishing contributions: at least two sterile  $\nu$

▶  $|d_e|/e \ge 10^{-30}$  cm for  $m_{\nu_{4,5}} \sim [100 \text{ GeV}, 100 \text{ TeV}]$ 

[Abada and Toma, '15]

- **Lepton number violation:**  $0\nu 2\beta$  decays
  - $\blacktriangleright$   $\nu_s$  can strongly impact predictions for  $|m_{ee}|$ 
    - ⇒ augmented ranges for effective mass (IO and NO)
  - ► Observation of  $0\nu 2\beta$  signal in future experiments

does not imply Inverted Ordering for light  $\nu$ s

[Abada, De Romeri and AMT, '14; ...; Giunti et al, '15  $\leftarrow$ 



## Impact for lepton properties

**Lepton Universality Violation in** K and  $\pi$  decays

$$R_P = \frac{\Gamma(P \to e\nu)}{\Gamma(P \to \mu\nu)}$$
 comparison with SM th predictions  $\Delta r_P = \frac{R_P^{exp}}{R_P^{SM}} - 1$ 

► Sizeable active-sterile mixing: corrections to  $W\ell\nu$  vertex!



- ► Sterile neutrino contributions:  $\Delta r_{K,\pi} \gtrsim \mathcal{O}(10^{-2})$  (in contrast with SUSY models) [Fonseca, Romao and AMT '12]
- ►  $\Delta r_{K,\pi} \sim \mathcal{O}(1) \Rightarrow$  one of the strongest constraints in SM +  $\nu_s$  models!
- ▶ Many other LFU violation observables (sensitive to  $\nu_s$ ?!)

[ Presentation by D. Guadagnoli ]

**Sterile neutrinos and cLFV: simple "toy models"** 

## $\nu_s$ and cLFV: radiative and 3 body decays

W

- ► Radiative decays:  $\ell_i \rightarrow \ell_j \gamma$ 
  - ► Consider  $\mu \rightarrow e\gamma$
  - For  $m_4 \gtrsim 10$  GeV sizable  $\nu_s$  contributions ... but precluded by other cLFV observables



▶ 3 body decays  $\ell_i \rightarrow 3\ell_j$  vs cLFV Z decays at FCC-ee



► Dominated by *Z* penguin contributions



- ► Allows to probe  $\mu \tau$  cLFV beyond SuperB reach
- ► Complementarity probes of v<sub>s</sub> cLFV at low- and high energies! (and in LNV...)

## cLFV in "muonic" atoms: $\mu - e$ conversion

▶ Muonic atoms: 1s bound state formed when  $\mu^-$  stopped in target

SM processes:  $\mu^- \to e^- \nu_\mu \bar{\nu}_e$  (decay in orbit);  $\mu^- + (A, Z) \to \nu_\mu + (A, Z - 1)$  (nuclear capture)

► cLFV  $\mu^- - e^-$  conversion:  $\mu^- + (A, Z) \rightarrow e^- + (A, Z)$ 

coherent conversion, increases with Z (maximal for  $30 \le Z \le 60$ )

Event signature: single mono-energetic electron

 $E_{\mu e}^{\mathsf{N}} = m_{\mu} - E_B(A, Z) - E_R(A, Z), \quad E_{\mu e}^{\mathsf{Al, Pb, Ti}} \approx \mathcal{O}(100 \text{ MeV})$ 

▶ **Backgrounds** ⇒ only **physics** (e.g.  $\mu$  decay in orbit); beam (purity), cosmic rays, ...

#### **Experimental status (present bounds and future prospects):**

| $CR(\mu-e,N)$ bound   | material | year |
|-----------------------|----------|------|
| $4.3 \times 10^{-12}$ | Ti       | 1993 |
| $4.6 \times 10^{-11}$ | Pb       | 1996 |
| $7 	imes 10^{-13}$    | Au       | 2006 |

| Experiment (material)     | future sensitivity    | year            |
|---------------------------|-----------------------|-----------------|
| Mu2e (AI)                 | $3 \times 10^{-17}$   | $\sim$ 2021     |
| COMET (AI) - Phase I (II) | $10^{-15} (10^{-17})$ | $\sim$ 2018(21) |
| PRISM/PRIME (Ti)          | $10^{-18}$            |                 |
| DeeMe (SiC)               | $10^{-14}$            |                 |

 $\boldsymbol{\mu}$ 

e

## cLFV in "muonic" atoms: Coulomb enhanced decays

▶ Muonic atom decay:  $\mu^- e^- \rightarrow e^- e^-$ 

Initial  $\mu^-$  and  $e^-$ : 1s state bound in Coulomb field of the muonic atom's nucleus

Coulomb interaction increases overlap between

 $\Psi_{\mu^{-}}$  and  $\Psi_{e^{-}}$  wave functions  $\Gamma(\mu^{-}e^{-} \rightarrow e^{-}e^{-}, N) \propto \sigma_{\mu e \rightarrow e e} v_{\text{rel}} \left[ (Z-1) \alpha m_{e} \right]^{3} / \pi$ 



[Koike et al. '10]

- ► Clean experimental signature: back-to-back electrons,  $E_{e^-} \approx m_{\mu}/2$ larger phase space than  $\mu \rightarrow 3e$
- Rate strongly enhanced in large Z atoms  $\Gamma/\Gamma_0 \gtrsim (Z-1)^3$  [Uesaka et al, '15-'16]

Consider experimental setups for Pb, U !?

#### Experimental status: New observable!

Hopefully included in Physics programmes of COMET & Mu2e (?)



#### cLFV in "muonic atoms" and sterile neutrinos

▶ cLFV muonic atom decay  $\mu^-e^- \rightarrow e^-e^-$  vs  $\mu - e$  conversion (Aluminium target)



"3+1" toy model [Abada, De Romeri and AMT, '15]

- ► Sizeable values for  $BR(\mu^-e^- \rightarrow e^-e^-)$  potentially within experimental reach! probe "heavy mass" regimes unaccessible for SHiP, FCC, LHC, ...
- ► For Aluminium,  $CR(\mu e)$  appears to have stronger experimental potential ... consider "heavy" targets to probe  $BR(\mu^-e^- \rightarrow e^-e^-)$

## cLFV in "muonic" atoms: Muonium

▶ Muonium: hydrogen-like Coulomb bound state  $(e^-\mu^+)$ ; free of hadronic interactions!

#### ► Mu – Mu conversion

Spontaneous conversion of a  $(e^-\mu^+)$  into  $(e^+\mu^-)$ 

Reflects a double lepton number violation:  $\Delta L_e = \Delta L_{\mu} = 2$ 



► Experimental status:  $P(Mu - \overline{Mu}) < 8.3 \times 10^{-11}$  [Willmann et al, 1999]

 $\mathcal{L}_{\text{eff}}^{\text{Mu}-\overline{\text{Mu}}} \sim G_{\text{M}\overline{\text{M}}} \left[ \bar{\mu}\gamma^{\alpha}(1-\gamma_{5})e \right] \left[ \bar{\mu}\gamma_{\alpha}(1-\gamma_{5})e \right] \quad \iff |\text{Re}(G_{\text{M}\overline{\text{M}}})| < 0.003 \times G_{F}$ Future prospects at FNAL ?

▶ cLFV Mu decay:  $Mu \rightarrow e^+e^-$ 

clear signal compared to SM decay  $Mu \rightarrow e^+ e^- \bar{\nu}_\mu \nu_e$  (no missing energy)

**Experimental status:** no clear roadmap (nor bounds)...

Hopefully included in Physics programme of COMET & Mu2e (?)

#### **Muonium and sterile neutrinos**

▶ cLFV Muonium processes:  $Mu - \overline{Mu}$  oscillation and  $Mu \rightarrow e^+e^-$  decay



"3+1" toy model [Abada, De Romeri and AMT, '15]

- ► Large values of  $G_{M\bar{M}}$  precluded due to conflict with  $CR(\mu e, Au)$  and  $BR(\mu \rightarrow 3e)$ Within reach of next generation of experiments? (e.g. FNAL)
- ▶ Maximally expected values  $Mu \rightarrow e^+e^- \sim \mathcal{O}(10^{-25})$  Within experimental reach ?

# ► cLFV and sterile fermions: mechanisms of *v*-mass generation

#### cLFV and $\nu_s$ : low scale seesaws

"Standard" fermionic seesaws:  $Y^{\nu} \sim \mathcal{O}(1) \Rightarrow M_{new} \approx 10^{13-15}$  GeV! Suppression of LFV rates due to the large mass of the mediators! Low scale seesaws: rich phenomenology (also at LHC), observable cLFV!

Well motivated frameworks: low-scale Type I Seesaw

**Inverse Seesaw realisations** 

 $\nu$  Minimal Standard Model, ...

... calling upon sterile fermions!

cLFV: low scale type I seesaw

→ SM + Right-handed neutrinos

$$\mathcal{L}_{\text{type I}} = -Y^{\ell} \, \bar{L}_L \, H \, e_R \, -Y^{\nu} \, \overline{\nu_R} \, \tilde{H} \, \nu_L \, -\frac{1}{2} \, \overline{\nu_R} \, M_R \, \nu_R^c$$

► Addition of **3 "heavy" Majorana RH** neutrinos to SM;  $MeV \leq M_R \leq 10^{few} TeV$ No *prejudice* on naturality or finetuning of  $Y^{\nu}$ ...

Spectrum and mixings: 6 physical states

$$\mathcal{M}_{\nu}^{6\times6} = \begin{pmatrix} 0 & vY^{\nu} \\ vY^{\nu T} & M_{R} \end{pmatrix} \qquad \mathcal{U}^{T} \mathcal{M}_{\nu}^{6\times6} \mathcal{U} = \operatorname{diag}(m_{i}) \qquad \frac{m_{\nu} \approx -v^{2}Y_{\nu}^{T} \frac{1}{M_{R}}Y_{\nu}}{m_{N} \simeq M_{R_{i}}}$$

 $\boldsymbol{U} = \begin{pmatrix} \boldsymbol{U}_{\boldsymbol{\nu}\boldsymbol{\nu}} & \boldsymbol{U}_{\boldsymbol{\nu}\boldsymbol{N}} \\ \boldsymbol{U}_{N\boldsymbol{\nu}} & \boldsymbol{U}_{NN} \end{pmatrix} \quad \boldsymbol{U}_{\boldsymbol{\nu}\boldsymbol{\nu}} \approx (1-\varepsilon) \boldsymbol{U}_{\mathsf{PMNS}} \quad \text{Non-unitary leptonic mixing } \tilde{\boldsymbol{U}}_{\mathsf{PMNS}}!$ 

- ► Heavy states do not decouple ⇒ modified neutral and charged leptonic currents
- Rich phenomenology at high-intensity/low-energy



- ► At high-intensities: cLFV observables BR( $\mu \rightarrow e\gamma$ ), BR( $\mu \rightarrow 3e$ ), CR( $\mu - e$ , N) within experimental reach!
- ► At colliders: direct searches for seesaw mediators



[Banerjee et al, 1503.05491]



► Searches at high-intensity facilities and colliders ⇒ complementary probes of seesaw!

## cLFV: Inverse Seesaw (ISS) realisations

 $\rightarrow \mathsf{SM} + \mathsf{Right-handed neutrinos} + \mathsf{Extra steriles}$  $\mathcal{L}_{\mathsf{ISS}} = -Y^{\nu} \,\overline{\nu_R} \,\tilde{H} \, L - M_R \,\overline{\nu_R} \, X - \frac{1}{2} \mu_X \, \bar{X}^c \, X + \frac{1}{2} \mu_R \, \overline{\nu_R} \, \nu_R^c$ 

► Addition of **3** "heavy" RH neutrinos and **3** extra "sterile" fermions X to SM  $\rightarrow ISS_{(3,3)}$ 

Spectrum and mixings: 9 physical states

$$\mathcal{M}_{\mathsf{ISS}}^{9\times9} = \begin{pmatrix} 0 & Y_{\nu}v & 0 \\ Y_{\nu}^{T}v & 0 & M_{R} \\ 0 & M_{R} & \mu_{X} \end{pmatrix} \Rightarrow \begin{cases} 3 \text{ light } \nu : m_{\nu} \approx \frac{(Y_{\nu}v)^{2}}{M_{R}^{2}}\mu_{X} \\ 3 \text{ pseudo-Dirac pairs } : m_{N^{\pm}} \approx M_{R} \pm \mu_{X} \end{cases}$$

Theoretically appealing: "naturally" small LNV parameter  $\mu_X \sim \mathcal{O}(0.01 \text{ eV} - \text{ MeV})$  $\Rightarrow$  accommodate  $m_{\nu}^{\text{light}}$  with sizeable  $Y^{\nu}$  for comparatively low  $M_R$  !

- Non-unitarity  $\tilde{U}_{PMNS} \Rightarrow$  modified neutral and charged leptonic currents
- New (virtual) states & modified couplings: many new "observable" phenomena cLFV, non-universality, signals at colliders!

and (warm) DM candidates, contributions to BAU, states within (direct) collider reach...

# cLFV: (3,3) ISS realisation

- ► At high energies (FCC-ee):  $BR(Z \rightarrow \tau \mu)$ allows to probe  $\mu - \tau$  cLFV beyond SuperB reach
- ► Rich low-energy phenomenology (cLFV, LFU, ...) For  $M_R \gtrsim \Lambda_{EW}$ : cLFV observables within exp reach NA62, Mu2e, COMET, FCC...





► Sizeable values for the different observables!

Within reach of **high-intensity facilities and colliders**  $\Rightarrow$  **complementary probes**!

# cLFV: (3,3) ISS realisation at colliders



## cLFV and $\nu_s$ : $\nu$ MSM

▶ Minimal "type I seesaw-like" extension: SM + 3  $\nu_R$ 

New states account for  $m_{\nu}^{\text{light}}$ , offer DM candidate, allow for BAU via leptogenesis

⇒ tiny Yukawa couplings; heavily constrained parameter space (th, cosmo, exp..)



# Concluding remarks

## cLFV and sterile neutrinos: outlook

#### ► Lepton flavour violation and New Physics

cLFV observables can provide (indirect) information on the underlying NP model Numerous observables currently being searched for!

⇒ very intensive worldwide experimental programme

#### **Extending the SM with sterile fermions**

Theoretically and phenomenologically motivated; impact on many observables! Sterile states: actively searched for at high energy, high intensity and in cosmology

#### Sterile neutrinos and cLFV

Sizable contributions to many observables (some leading to stringent constraints) including  $BR(\ell_i \rightarrow \ell_j \gamma)$ ,  $BR(\ell_i \rightarrow 3\ell_j)$ ,  $CR(\mu - e, N)$  and  $BR(\mu^-e^- \rightarrow e^-e^-)$ 

⇒ potentially within experimental reach

Analysis carried for simple "3+1 toy model" and mechanisms of  $\nu$  mass generation low-scale type I, Inverse Seesaw,  $\nu$ MSM

Interplay at high-intensity & high-energy: probe the underlying source of LFV