Lepton Universality (Violation, and its consequences)

Diego Guadagnoli
LAPTh Annecy (France)

Recap of flavor anomalies: $\mathbf{b} \rightarrow \mathbf{s}$

LHCb and B factories measured several key $b \rightarrow s$ modes.
Agreement with the SM is less than perfect.

Recap of flavor anomalies: $\mathbf{b} \rightarrow \mathbf{s}$

LHCb and B factories measured several key $b \rightarrow s$ modes. Agreement with the SM is less than perfect.
(1) $\quad R_{K}=\frac{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}}{B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}}=0.745 \cdot(1 \pm 13 \%)$
whereas the SM predicts unity within $\mathrm{O}\left(10^{-4}\right)$

Recap of flavor anomalies: $\mathbf{b} \rightarrow \mathbf{s}$

LHCb and B factories measured several key $b \rightarrow s$ modes. Agreement with the SM is less than perfect.
(1) $\quad R_{K}=\frac{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}}{B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}}=0.745 \cdot(1 \pm 13 \%)$
whereas the SM predicts unity within $O\left(10^{-4}\right)$
(2)

$$
B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}=(1.19 \pm 0.07) \cdot 10^{-7}
$$

vs.

$$
\begin{array}{r}
B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}^{S M}=1.75_{-0.29}^{+0.60} \times 10^{-7} \\
{[\text { Bobeth, Hiller, van Dyk (2012)] }}
\end{array}
$$

Recap of flavor anomalies: $\mathbf{b} \rightarrow \mathbf{s}$

LHCb and B factories measured several key $b \rightarrow s$ modes.
Agreement with the SM is less than perfect.
(1) $\quad R_{K}=\frac{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}}{B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}}=0.745 \cdot(1 \pm 13 \%)$
whereas the SM predicts unity within $O\left(10^{-4}\right)$

2

$$
B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}=(1.19 \pm 0.07) \cdot 10^{-7}
$$

vs.

$$
\begin{array}{r}
B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}^{S M}=1.75_{-0.29}^{+0.60} \times 10^{-7} \\
{[\text { Bobeth, Hiller, van Dyk (2012)] }}
\end{array}
$$

(3) $B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}$
agrees with the SM (within large errors)

Recap of flavor anomalies: $\mathbf{b} \rightarrow \mathbf{s}$

LHCb and B factories measured several key $b \rightarrow s$ modes. Agreement with the SM is less than perfect.
(1) $\quad R_{K}=\frac{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}}{B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}}=0.745 \cdot(1 \pm 13 \%)$
(2) $B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}=(1.19 \pm 0.07) \cdot 10^{-7}$ vs.

$$
\begin{array}{r}
B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}^{S M}=1.75_{-0.29}^{+0.60} \times 10^{-7} \\
{[\text { Bobeth, Hiller, van Dyk (2012)] }}
\end{array}
$$

(3) $\quad B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}$
agrees with the SM (within large errors)

Note

- The electron channel would be an obvious culprit (brems + low stats). But there is no disagreement

Recap of flavor anomalies: $\mathbf{b} \rightarrow \mathbf{s}$

LHCb and B factories measured several key $b \rightarrow s$ modes. Agreement with the SM is less than perfect.
(1) $\quad R_{K}=\frac{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}}{B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}}=0.745 \cdot(1 \pm 13 \%)$
(2) $B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}=(1.19 \pm 0.07) \cdot 10^{-7}$
vs.

$$
\begin{array}{r}
B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}^{S M}=1.75_{-0.29}^{+0.60} \times 10^{-7} \\
{[\text { Bobeth, Hiller, van Dyk (2012)] }}
\end{array}
$$

(3) $B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}$
agrees with the SM (within large errors)

Note

- The electron channel would be an obvious culprit (brems + low stats).
But there is no disagreement
- Disagreement is rather in muons, that are among the most reliable objects within LHCb

Recap of flavor anomalies: $\mathbf{b} \rightarrow \mathbf{s}$

LHCb and B factories measured several key $b \rightarrow s$ modes. Agreement with the SM is less than perfect.
(1) $\quad R_{K}=\frac{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}}{B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}}=0.745 \cdot(1 \pm 13 \%)$
(2) $B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}=(1.19 \pm 0.07) \cdot 10^{-7}$
vs.

$$
\begin{array}{r}
B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}^{S M}=1.75_{-0.29}^{+0.60} \times 10^{-7} \\
{[\text { Bobeth, Hiller, van Dyk (2012)] }}
\end{array}
$$

(3) $B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}$
agrees with the SM (within large errors)

Note

- The electron channel would be an obvious culprit (brems + low stats).
But there is no disagreement
- Disagreement is rather in muons, that are among the most reliable objects within LHCb

(1) $+\mathbf{2}+\boldsymbol{3} \quad \Rightarrow \quad$ There seems to be BSM LFNU and the effect is in $\mu \mu$, not ee

$$
B_{s} \rightarrow \varphi \mu \mu
$$

The R_{K} pattern, with data in the muon channel lower than the SM prediction, is supported by LHCb measurements of another b-to-s transition: $B_{s} \rightarrow \varphi \mu \mu$

$B_{s} \rightarrow \varphi \mu \mu$

The R_{κ} pattern, with data in the muon channel lower than the SM prediction, is supported by LHCb measurements of another b-to-s transition: $B_{s} \rightarrow \varphi \mu \mu$

- It occurs in the same kinematic range as R_{K} namely $m_{\mu \mu}^{2} \in[1,6] \mathrm{GeV}^{2}$
- It was initially found in $1 / f b$ of LHCb data, then confirmed by a full Run-I analysis (3/fb)

$B_{s} \rightarrow \varphi \mu \mu$

The R_{κ} pattern, with data in the muon channel lower than the SM prediction, is supported by LHCb measurements of another b-to-s transition: $B_{s} \rightarrow \varphi \mu \mu$

- It occurs in the same kinematic range as R_{K} namely $m_{\mu \mu}^{2} \in[1,6] \mathrm{GeV}^{2}$
- It was initially found in $1 / f b$ of LHCb data, then confirmed by a full Run-I analysis (3/fb)

The measured branching fraction is compatible with the previous measurement [3] and lies below SM expectations. For the q^{2} region $1.0<q^{2}<6.0 \mathrm{GeV}^{2} / c^{4}$ the differential branching fraction of $\left(2.58_{-0.31}^{+0.33} \pm 0.08 \pm 0.19\right) \times 10^{-8} \mathrm{GeV}^{-2} c^{4}$ is more than 3σ below the SM prediction of $(4.81 \pm 0.56) \times 10^{-8} \mathrm{GeV}^{-2} c^{4}[4,5,32]$.

$B \rightarrow K^{*} \mu \mu$ angular analysis:

The P_{5}^{\prime} anomaly

LHCb can perform a fully angular analysis of the decay products in $B \rightarrow K^{*} \mu \mu$
One can then construct observables with limited sensitivity to form factors.
One of such "clean" observables is called P_{5}^{\prime}

$B \rightarrow K^{*} \mu \mu$ angular analysis:

The P_{5}^{\prime} anomaly

LHCb can perform a fully angular analysis of the decay products in $B \rightarrow K^{*} \mu \mu$
One can then construct observables with limited sensitivity to form factors.
One of such "clean" observables is called P_{5}^{\prime}

Tension seen in P_{5}^{\prime} in [PRL 111, 191801 (2013)] confirmed [4.0, 6.0] and $[6.0,8.0] \mathrm{GeV}^{2} / c^{4}$ show deviations of 2.9σ each Naive combination results in a significance of 3.7σ
Compatible with $1 \mathrm{fb}^{-1}$ measurement

$B \rightarrow K^{*} \mu \mu$ angular analysis:

The P_{5}^{\prime} anomaly

LHCb can perform a fully angular analysis of the decay products in $B \rightarrow K^{*} \mu \mu$
One can then construct observables with limited sensitivity to form factors.
One of such "clean" observables is called P_{5}^{\prime}

Tension seen in P_{5}^{\prime} in [PRL 111, 191801 (2013)] confirmed [4.0, 6.0] and $[6.0,8.0] \mathrm{GeV}^{2} / c^{4}$ show deviations of 2.9σ each Naive combination results in a significance of 3.7σ
Compatible with $1 \mathrm{fb}^{-1}$ measurement

- Caveat:
this obs needs be taken cum grano salis
- What cancels is the dependence on the large- m_{b} form factors.

$B \rightarrow K^{*} \mu \mu$ angular analysis:

The P_{5}^{\prime} anomaly

LHCb can perform a fully angular analysis of the decay products in $B \rightarrow K^{*} \mu \mu$
One can then construct observables with limited sensitivity to form factors.
One of such "clean" observables is called P_{5}^{\prime}

Tension seen in P_{5}^{\prime} in [PRL 111, 191801 (2013)] confirmed [4.0, 6.0] and $[6.0,8.0] \mathrm{GeV}^{2} / c^{4}$ show deviations of 2.9σ each Naive combination results in a significance of 3.7σ Compatible with $1 \mathrm{fb}^{-1}$ measurement

- Caveat:
this obs needs be taken cum grano salis
- What cancels is the dependence on the large- m_{b} form factors.
- Debate on the role of
- Subleading terms in $1 / m_{b}$
- cc̄ loops and their resummation

See:

Jäger \& Martin-Camalich, PRD 2016
Ciuchini et al., 1512.07157

The $\mathbf{P}_{5}^{\mathbf{\prime}}$ anomaly: continued

The above said, this anomaly remains interesting:

The $\mathbf{P}_{5}{ }_{5}$ anomaly: continued

The above said, this anomaly remains interesting:

- It occurs in the same kinematic range as R_{K} namely $m_{\mu \mu}^{2} \in[1,6] \mathrm{GeV}^{2}$
- It was initially found in $1 / f b$ of LHCb data, then confirmed by a full Run-I analysis (3/fb)

The above said, this anomaly remains interesting:

- It occurs in the same kinematic range as R_{K} namely $m_{\mu \mu}^{2} \in[1,6] \mathrm{GeV}^{2}$
- It was initially found in $1 / f b$ of LHCb data, then confirmed by a full Run-I analysis (3/fb)
- And it was recently confirmed by Belle ! [1604.04042]

The above said, this anomaly remains interesting:

- It occurs in the same kinematic range as R_{K} namely $m_{\mu \mu}^{2} \in[1,6] \mathrm{GeV}^{2}$
- It was initially found in $1 / f b$ of LHCb data, then confirmed by a full Run-I analysis (3/fb)
- And it was recently confirmed by Belle ! [1604.04042]

- Conclusion:

If it's new physics, it is expected to show up elsewhere in the $B \rightarrow K^{*} \mu \mu$ angular analysis.

Run II will tell for sure

$$
\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\exp }}{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}}}=0.77 \pm 0.20
$$

$B R\left(B_{\mathrm{s}} \rightarrow \mu \mu\right)_{\text {exp }}=\left(2.8_{-0.6}^{+0.7}\right) \times 10^{-9}$
[LHCb\&CMS full-Run I combination]
$B R\left(B_{s} \rightarrow \mu \mu\right)_{S M}=(3.65 \pm 0.23) \times 10^{-9}$
[C. Bobeth et al., PRL 14]

$$
\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\text {exp }}}{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}}}=0.77 \pm 0.20
$$

$B R\left(B_{s} \rightarrow \mu \mu\right)_{\text {exp }}=\left(2.8_{-0.6}^{+0.7}\right) \times 10^{-9}$
[LHCb\&CMS full-Run I combination]

$$
B R\left(B_{\mathrm{s}} \rightarrow \mu \mu\right)_{\mathrm{SM}}=(3.65 \pm 0.23) \times 10^{-9}
$$

[C. Bobeth et al., PRL 14]

- Theory prediction now very solid. All (known) theory systematics included.
- "large- $\Delta \Gamma_{\mathrm{s}}$ " effect [K. De Bruyn et al., PRL 12]
- soft-photon corr's [Buras, Girrbach, DG, Isidori, EPJC 12]
- NLO EW \& NNLO QCD corr's [Bobeth, Gorbahn, Stamou, PRD 14; Hermann, Misiak, Steinhauser, JHEP 13]

$$
\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\exp }}{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}}}=0.77 \pm 0.20
$$

$B R\left(B_{s} \rightarrow \mu \mu\right)_{\text {exp }}=\left(2.8_{-0.6}^{+0.7}\right) \times 10^{-9}$
[LHCb\&CMS full-Run I combination]

$$
B R\left(B_{\mathrm{s}} \rightarrow \mu \mu\right)_{\mathrm{SM}}=(3.65 \pm 0.23) \times 10^{-9}
$$

[C. Bobeth et al., PRL 14]

- Theory prediction now very solid. All (known) theory systematics included.
- "large- $\Delta \Gamma_{\mathrm{s}}$ " effect [K. De Bruyn et al., PRL 12]
- soft-photon corr's [Buras, Girrbach, DG, Isidori, EPJC 12]
- NLO EW \& NNLO QCD corr's [Bobeth, Gorbahn, Stamou, PRD 14; Hermann, Misiak, Steinhauser, JHEP 13]
- current error ($\sim 6 \%$) dominated by CKM and $f_{\text {Bs }}$

$$
\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\exp }}{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}}}=0.77 \pm 0.20
$$

$B R\left(B_{s} \rightarrow \mu \mu\right)_{\text {exp }}=\left(2.8_{-0.6}^{+0.7}\right) \times 10^{-9}$
[LHCb\&CMS full-Run I combination]

$$
B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}}=(3.65 \pm 0.23) \times 10^{-9}
$$

[C. Bobeth et al., PRL 14]

- Theory prediction now very solid. All (known) theory systematics included.
- "large- $\Delta \Gamma_{\text {s }}$ " effect [K. De Bruyn et al., PRL 12]
- soft-photon corr's [Buras, Girrbach, DG, Isidori, EPJC 12]
- NLO EW \& NNLO QCD corr's [Bobeth, Gorbahn, Stamou, PRD 14; Hermann, Misiak, Steinhauser, JHEP 13]
- current error ($\sim 6 \%$) dominated by CKM and $f_{\text {Bs }}$
- Exp error will go to: $\sim 10 \%$ by end of Run II
$\sim 5 \%$ w/ LHCb upgrade

More discrepancies:
 b \rightarrow c decays

There are long-standing discrepancies in $b \rightarrow c$ transitions as well.

$$
R\left(D^{(*)}\right)=\frac{B R\left(B \rightarrow D^{(*)} \tau v\right)}{B R\left(B \rightarrow D^{(*)} \ell v\right)}(\text { with } \ell=e, \mu)
$$

More discrepancies:
 b \rightarrow c decays

There are long-standing discrepancies in $b \rightarrow c$ transitions as well.

$$
R\left(D^{(*)}\right)=\frac{B R\left(B \rightarrow D^{(*)} \tau v\right)}{B R\left(B \rightarrow D^{(*)} \ell v\right)}(\text { with } \ell=e, \mu)
$$

First discrepancy found by BaBar in 2012 in both $R(D)$ and $R\left(D^{*}\right)$
D. Guadagnoli, Lepton universality

More discrepancies:
 b \rightarrow c decays

There are long-standing discrepancies in $b \rightarrow c$ transitions as well.

$$
R\left(D^{(*)}\right)=\frac{B R\left(B \rightarrow D^{(*)} \tau v\right)}{B R\left(B \rightarrow D^{(*)} \ell v\right)(\text { with } \ell=e, \mu)}
$$

First discrepancy found
by BaBar in 2012 in both $R(D)$ and $R\left(D^{*}\right)$

2015: BaBar's R(D*) confirmed by LHCb

More discrepancies:
 b \rightarrow c decays

There are long-standing discrepancies in $b \rightarrow c$ transitions as well.

$$
R\left(D^{(*)}\right)=\frac{B R\left(B \rightarrow D^{(*)} \tau v\right)}{B R\left(B \rightarrow D^{(*)} \ell v\right)(\text { with } \ell=e, \mu)}
$$

First discrepancy found by BaBar in 2012 in both $R(D)$ and $R\left(D^{*}\right)$

2015: Belle finds a more SM-like R(D*) (hadronic tau)

2015: BaBar's R(D*) confirmed by LHCb

More discrepancies:
 b \rightarrow c decays

There are long-standing discrepancies in $b \rightarrow c$ transitions as well.

$$
R\left(D^{(*)}\right)=\frac{B R\left(B \rightarrow D^{(*)} \tau v\right)}{B R\left(B \rightarrow D^{(*)} \ell v\right)(\text { with } \ell=e, \mu)}
$$

First discrepancy found by BaBar in 2012 in both $R(D)$ and $R\left(D^{*}\right)$

2015: Belle finds a more SM-like R(D*) (hadronic tau)

2015: BaBar's R(D*) confirmed by LHCb

2016: Belle also starts to See an R(D*) excess (semi-lep. tau)

- Each of the mentioned effects needs confirmation from Run II to be taken seriously
- Each of the mentioned effects needs confirmation from Run II to be taken seriously
- Yet, focusing (for the moment) on the $b \rightarrow s$ discrepancies
- Q1: Can we (easily) make theoretical sense of data?
- Q2: What are the most immediate signatures to expect ?
D. Guadagnoli, Lepton universality

Concerning Q2: most immediate signatures to expect

Basic observation:

- If R_{K} is signaling $L F N U$ at a non-SM level, we may also expect $L F V$ at a non-SM level.

Concerning Q2: most immediate signatures to expect

Basic observation:

- If R_{K} is signaling $L F N U$ at a non-SM level, we may also expect $L F V$ at a non-SM level.

In fact:

- Consider a new, LFNU interaction above the EWSB scale, e.g. with new vector bosons: $\bar{\ell} Z^{\prime} \ell \quad$ or leptoquarks: $\bar{\ell} \varphi q$
D. Guadagnoli, Lepton universality

Concerning Q2: most immediate signatures to expect

Basic observation:

- If R_{K} is signaling $L F N U$ at a non-SM level, we may also expect $L F V$ at a non-SM level.

In fact:

- Consider a new, LFNU interaction above the EWSB scale, e.g. with new vector bosons: $\bar{\ell} Z^{\prime} \ell \quad$ or leptoquarks: $\bar{\ell} \varphi q$
- In what basis are quarks and leptons in the above interaction?

Generically, it's not the mass eigenbasis.
(This basis doesn't yet even exist. We are above the EWSB scale.)
D. Guadagnoli, Lepton universality

Concerning Q2: most immediate signatures to expect

Basic observation:

- If R_{K} is signaling $L F N U$ at a non-SM level, we may also expect $L F V$ at a non-SM level.

In fact:

- Consider a new, LFNU interaction above the EWSB scale, e.g. with new vector bosons: $\bar{\ell} Z^{\prime} \ell \quad$ or leptoquarks: $\bar{\ell} \varphi q$
- In what basis are quarks and leptons in the above interaction?

Generically, it's not the mass eigenbasis.
(This basis doesn't yet even exist. We are above the EWSB scale.)

- Rotating q and ℓ to the mass eigenbasis generates LFV interactions.
D. Guadagnoli, Lepton universality

Frequently made objection:

what about the SM? It has LFNU, but no LFV

Frequently made objection:

what about the SM? It has LFNU, but no LFV

Take the SM with zero v masses.

- Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis (hence no LFV)

Frequently made objection:

what about the SM? It has LFNU, but no LFV

Take the SM with zero v masses.

- Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis (hence no LFV)

Or more generally, take the SM plus a minimal mechanism for v masses.

- Physical LFV will appear in W couplings, but it's suppressed by powers of $\left(m_{v} / m_{w}\right)^{2}$

Frequently made objection:

what about the SM? It has LFNU, but no LFV

Take the SM with zero v masses.

- Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis (hence no LFV)

Or more generally, take the SM plus a minimal mechanism for v masses.

- Physical LFV will appear in W couplings, but it's suppressed by powers of $\left(m_{v} / m_{w}\right)^{2}$

Bottom line: in the $S M+v$ there is LFNU, but LFV is nowhere to be seen (in decays)

Frequently made objection:

what about the SM? It has LFNU, but no LFV

Take the SM with zero v masses.

- Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis (hence no LFV)

Or more generally, take the SM plus a minimal mechanism for v masses.

- Physical LFV will appear in W couplings, but it's suppressed by powers of $\left(m_{v} / m_{w}\right)^{2}$

Bottom line: in the $S M+v$ there is LFNU, but LFV is nowhere to be seen (in decays)

- But nobody ordered that the reason (=tiny m_{\downarrow}) behind the above conclusion be at work also beyond the SM

Frequently made objection:

what about the SM? It has LFNU, but no LFV

Take the SM with zero v masses.

- Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis (hence no LFV)

Or more generally, take the SM plus a minimal mechanism for v masses.

- Physical LFV will appear in W couplings, but it's suppressed by powers of $\left(m_{v} / m_{w}\right)^{2}$

Bottom line: in the $S M+v$ there is LFNU, but LFV is nowhere to be seen (in decays)

- But nobody ordered that the reason (=tiny m_{\imath}) behind the above conclusion be at work also beyond the SM

D. Guadagnoli, Lepton universality

Concerning Q1: can we easily make theoretical sense of these data?

D. Guadagnoli, Lepton universality

Concerning Q1: can we easily make theoretical sense of these data?

- Yes we can. Consider the following Hamiltonian

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

Concerning Q1: can we easily make theoretical sense of these data?

- Yes we can. Consider the following Hamiltonian

$$
\begin{aligned}
& \text { About equal size \& opposite sign } \\
& \text { in the SM (at the } m_{b} \text { scale) }
\end{aligned}
$$

$$
\left.H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

Concerning Q1: can we easily make theoretical sense of these data?

- Yes we can. Consider the following Hamiltonian

About equal size \& opposite sign in the SM (at the m_{b} scale)

$$
\left.H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

- Advocating the same $(V-A) \times(V-A)$ structure also for the corrections to $C_{9,10}{ }^{\text {SM }}$ (in the $\mu \mu$-channel only!) would account for:
- $\quad R_{K}$ lower than 1
- $B \rightarrow K \mu \mu \& B_{s} \rightarrow \mu \mu \quad B R$ data below predictions
- the P_{5}^{\prime} anomaly in $B \rightarrow K^{*} \mu \mu$

Concerning Q1: can we easily make theoretical sense of these data?

- Yes we can. Consider the following Hamiltonian

About equal size \& opposite sign in the SM (at the m_{b} scale)

$$
\left.H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

- Advocating the same $(V-A) \times(V-A)$ structure also for the corrections to $C_{9,10}{ }^{\text {SM }}$ (in the $\mu \mu$-channel only!) would account for:
- $\quad R_{K}$ lower than 1
- $B \rightarrow K \mu \mu \& B_{s} \rightarrow \mu \mu \quad B R$ data below predictions
- the $P_{5}{ }^{\prime}$ anomaly in $B \rightarrow K^{*} \mu \mu$
- A fully quantitative test requires a global fit.
new physics contributions to the Wilson coefficients. We find that the by far largest decrease in the χ^{2} can be obtained either by a negative new physics contribution to C_{9} (with $\left.C_{9}^{\mathrm{NP}} \sim-30 \% \times C_{9}^{\mathrm{SM}}\right)$, or by new physics in the $S U(2)_{L}$ invariant direction $C_{9}^{\mathrm{NP}}=-C_{10}^{\mathrm{NP}}$, (with $C_{9}^{\mathrm{NP}} \sim-12 \% \times C_{9}^{\mathrm{SM}}$). A positive NP contribution to C_{10} alone would also improve the fit, although to a lesser extent.
[Altmannshofer, Straub, EPJC '15]
For analogous conclusions, see also [Ghosh, Nardecchia, Renner, JHEP '14]
D. Guadagnoli, Lepton universality

Model example:

Glashow, DG, Lane, PRL 2015

- As we saw before, all $b \rightarrow s$ data are explained at one stroke if:

$$
\begin{aligned}
& -C_{9}^{(e)} \approx-C_{10}^{(e)} \quad \text { (V - A structure) } \\
& =\left|C_{9, \mathrm{NP}}^{(\mu)}\right| \gg\left|C_{9, \mathrm{NP}}^{(e)}\right| \quad \text { (LFNU) }
\end{aligned}
$$

Model example:

Glashow, DG, Lane, PRL 2015

- As we saw before, all $b \rightarrow s$ data are explained at one stroke if:

$$
\begin{aligned}
& -C_{9}^{(\ell)} \approx-C_{10}^{(\ell)} \quad(V-A \text { structure }) \\
& =\left|C_{9, \mathrm{NP}}^{(\mu)}\right| \gg\left|C_{9, \mathrm{NP}}^{(e)}\right| \quad \text { (LFNU) }
\end{aligned}
$$

- This pattern can be generated from a purely $3^{\text {rd }}$-generation interaction of the kind

$$
\begin{gathered}
H_{\mathrm{NP}}=G \bar{b}_{L}^{\prime} \gamma^{\lambda} b_{L}^{\prime} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau_{L}^{\prime} \\
\text { with } G=1 / \Lambda_{\mathrm{NP}}^{2} \ll G_{F}
\end{gathered}
$$

expected e.g. in partial-compositeness frameworks

Model example:

Glashow, DG, Lane, PRL 2015

- As we saw before, all $b \rightarrow s$ data are explained at one stroke if:

$$
\begin{aligned}
& -C_{9}^{(e)} \approx-C_{10}^{(e)} \quad \text { (V - A structure) } \\
& =\left|C_{9, \mathrm{NP}}^{(\mu)}\right| \gg\left|C_{9, \mathrm{NP}}^{(e)}\right| \quad \text { (LFNU) }
\end{aligned}
$$

- This pattern can be generated from a purely $3^{\text {rd }}$-generation interaction of the kind

$$
\begin{gathered}
H_{\mathrm{NP}}=G \bar{b}_{L}^{\prime} \gamma^{\lambda} b_{L}^{\prime} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau_{L}^{\prime} \\
\text { with } G=1 / \Lambda_{\mathrm{NP}}^{2} \ll G_{F}
\end{gathered}
$$

- Note: primed fields
- Fields are in the "gauge" basis (= primed)

Model example:

Glashow, DG, Lane, PRL 2015

- As we saw before, all $b \rightarrow s$ data are explained at one stroke if:

$$
\begin{aligned}
& -C_{9}^{(e)} \approx-C_{10}^{(e)} \quad(V-A \text { structure }) \\
& =\left|C_{9, \mathrm{NP}}^{(\mu)}\right| \gg\left|C_{9, \mathrm{NP}}^{(e)}\right| \quad \text { (LFNU) }
\end{aligned}
$$

- This pattern can be generated from a purely $3^{\text {rd }}$-generation interaction of the kind

$$
\begin{gathered}
H_{\mathrm{NP}}=G \bar{b}_{L}^{\prime} \gamma^{\lambda} b_{L}^{\prime} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau_{L}^{\prime} \\
\text { with } G=1 / \Lambda_{\mathrm{NP}}^{2} \ll G_{F}
\end{gathered}
$$

- Note: primed fields
- Fields are in the "gauge" basis (= primed)
- They need to be rotated to the mass eigenbasis

$$
\begin{aligned}
{b^{\prime}}_{L} \equiv\left(d_{L}^{\prime}\right)_{3}=\left(U_{L}^{d}\right)_{3 i} \underbrace{\substack{\text { mass } \\
\text { basis }}}_{\left(d_{L}\right)_{i}} \\
\left.\tau_{L}^{\prime} \equiv\left(\ell_{L}^{\prime}\right)_{3}=\left(U_{L}^{\ell}\right)_{3 i} \ell_{L}\right)_{i}
\end{aligned}
$$

D. Guadagnoli, Lepton universality

Model example:

Glashow, DG, Lane, PRL 2015

- As we saw before, all $b \rightarrow s$ data are explained at one stroke if:

$$
\begin{aligned}
& -C_{9}^{(e)} \approx-C_{10}^{(e)} \quad(V-A \text { structure }) \\
& =\left|C_{9, \mathrm{NP}}^{(\mu)}\right| \gg\left|C_{9, \mathrm{NP}}^{(e)}\right| \quad \text { (LFNU) }
\end{aligned}
$$

- This pattern can be generated from a purely $3^{\text {rd }}$-generation interaction of the kind

$$
\begin{gathered}
H_{\mathrm{NP}}=G \bar{b}_{L}^{\prime} \gamma^{\lambda} b_{L}^{\prime} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau_{L}^{\prime} \\
\text { with } G=1 / \Lambda_{\mathrm{NP}}^{2} \ll G_{F}
\end{gathered}
$$

- Note: primed fields
- Fields are in the "gauge" basis (= primed)
- They need to be rotated to the mass eigenbasis
- This rotation induces LFNU and LFV effects
expected e.g. in partial-compositeness frameworks

$$
\begin{gathered}
b_{L}^{\prime} \equiv\left(d_{L}^{\prime}\right)_{3}=\left(U_{L}^{d}\right)_{3 i}{ }_{\left(d_{L}\right)_{i}}^{\substack{\text { mass } \\
\text { basis }}} \\
\tau_{L}^{\prime} \equiv\left(\ell_{L}^{\prime}\right)_{3}=\left(U_{L}^{\ell}\right)_{3 i}\left(\ell_{L}\right)_{i}
\end{gathered}
$$

D. Guadagnoli, Lepton universality

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- Recalling our full Hamiltonian

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \overline{\mathrm{~s}} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- Recalling our full Hamiltonian

$$
k_{S M} \text { (SM norm. factor) }
$$

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- Recalling our full Hamiltonian

$$
k_{\text {SM }} \text { (SM norm. factor) }
$$

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

the shift to the C_{9} Wilson coeff. in the $\mu \mu$-channel becomes

$$
k_{\mathrm{SM}} C_{9}^{(u)}=k_{\mathrm{SM}} C_{9, \mathrm{SM}}+\frac{G}{2}\left(U_{L}^{d}\right)_{33}^{*}\left(U_{L}^{d}\right)_{32}\left|\left(U_{L}^{p}\right)_{32}\right|^{2}
$$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- Recalling our full Hamiltonian

$$
k_{S M} \text { (SM norm. factor) }
$$

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

the shift to the C_{9} Wilson coeff. in the $\mu \mu$-channel becomes

$$
k_{\mathrm{SM}} C_{9}^{(\mu)}=k_{\mathrm{SM}} C_{9, \mathrm{SM}}+\frac{G}{2}\left(U_{L}^{d}\right)_{33}^{*}\left(U_{L}^{d}\right)_{32}\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}
$$

The NP contribution has opposite sign than the SM one if

$$
G\left(U_{L}^{d}\right)_{32}<0
$$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- Recalling our full Hamiltonian

$$
k_{S M} \text { (SM norm. factor) }
$$

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

the shift to the C_{9} Wilson coeff. in the $\mu \mu$-channel becomes

$$
k_{\mathrm{SM}} C_{9}^{(\mu)}=k_{\mathrm{SM}} C_{9, \mathrm{SM}}+\frac{G}{2}\left(U_{L}^{d}\right)_{33}^{*}\left(U_{L}^{d}\right)_{32}\left|\left(U_{L}^{p}\right)_{32}\right|^{2}
$$

The NP contribution has opposite sign than the SM one if

$$
G\left(U_{L}^{d}\right)_{32}<0
$$

- On the other hand, in the ee-channel

$$
k_{\mathrm{SM}} C_{9}^{(e)}=k_{\mathrm{SM}} C_{9, \mathrm{SM}}+\frac{G}{2}\left(U_{L}^{d}\right)_{33}^{*}\left(U_{L}^{d}\right)_{32}\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}
$$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- Recalling our full Hamiltonian

$$
k_{\text {SM }} \text { (SM norm. factor) }
$$

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \overline{\mathrm{~s}} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t \mathrm{~s}} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

the shift to the C_{9} Wilson coeff. in the $\mu \mu$-channel becomes

$$
k_{\mathrm{SM}} C_{9}^{(\mu)}=k_{\mathrm{SM}} C_{9, \mathrm{SM}}+\frac{G}{2}\left(U_{L}^{d}\right)_{33}^{*}\left(U_{L}^{d}\right)_{32}\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}
$$

The NP contribution has opposite sign than the SM one if

$$
G\left(U_{L}^{d}\right)_{32}<0
$$

The NP contrib. in the eechannel is negligible, as

$$
\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2} \ll\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}
$$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- So, in the above setup

$$
R_{K} \approx \frac{\left|C_{9}^{(u)}\right|^{2}+\left|C_{10}^{(u)}\right|^{2}}{\left|C_{9}^{(e)}\right|^{2}+\left|C_{10}^{(e)}\right|^{2}} \simeq \frac{2\left|C_{10}^{\mathrm{SM}}+\delta C_{10}\right|^{2}}{2\left|C_{10}^{S M}\right|^{2}}
$$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- So, in the above setup

$$
R_{K} \approx \frac{\left|C_{9}^{(u)}\right|^{2}+\left|C_{10}^{(u)}\right|^{2}}{\left|C_{9}^{(e)}\right|^{2}+\left|C_{10}^{(e)}\right|^{2}} \simeq \frac{2\left|C_{10}^{\mathrm{SM}}+\delta C_{10}\right|^{2}}{\ddots\left|C_{10}^{S M}\right|^{2}}
$$

factors of 2:
equal contributions from $\left|C_{9}\right|^{2}$ and $\left|C_{10}\right|^{2}$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- So, in the above setup

$$
\begin{aligned}
R_{K} \approx & \frac{\left|C_{9}^{(u)}\right|^{2}+\left|C_{10}^{(u)}\right|^{2}}{\left|C_{9}^{(e)}\right|^{2}+\left|C_{10}^{(e)}\right|^{2}} \simeq \\
& \begin{array}{l}
\text { factors of 2: } \\
\text { equal contributions from }\left|C_{9}\right|^{2} \text { and }\left|C_{10}\right|^{2}
\end{array}
\end{aligned}
$$

- Note as well

$$
0.77 \pm 0.20=\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\exp }}{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}}}=\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}+\mathrm{NP}}}{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}}}=\frac{\left|C_{10}^{\mathrm{SM}}+\delta C_{10}\right|^{2}}{\left|C_{10}^{\mathrm{SM}}\right|^{2}}
$$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- So, in the above setup

$$
\begin{gathered}
R_{K} \approx \frac{\left|C_{9}^{(u)}\right|^{2}+\left|C_{10}^{(u)}\right|^{2}}{\left|C_{9}^{(e)}\right|^{2}+\left|C_{10}^{(e)}\right|^{2}} \simeq \frac{2\left|C_{10}^{\mathrm{SM}}+\delta C_{10}\right|^{2}}{\ddots, 2\left|C_{10}^{\mathrm{SM}}\right|^{2}} \\
\text { factors of } 2:
\end{gathered}
$$

equal contributions from $\left|C_{9}\right|^{2}$ and $\left|C_{10}\right|^{2}$

- Note as well

$$
0.77 \pm 0.20=\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\exp }}{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}}}=\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}+\mathrm{NP}}}{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}}}=\frac{\left|C_{10}^{\mathrm{SM}}+\delta C_{10}\right|^{2}}{\left|C_{10}^{\mathrm{SM}}\right|^{2}}
$$

implying (within our model) the correlations

$$
\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\text {exp }}}{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}}} \simeq R_{K} \simeq \frac{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{\mathrm{exp}}}{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{\mathrm{SM}}}
$$

D. Guadagnoli, Lepton universality

LFV model signatures

As mentioned: if R_{K} is signaling BSM LFNU, then expect BSM LFV as well

$$
\nabla \quad \frac{B R\left(B^{+} \rightarrow K^{+} \mu e\right)}{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)}=\frac{\left|\delta C_{10}\right|^{2}}{\left|C_{10}^{S M}+\delta C_{10}\right|^{2}} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}} \cdot 2
$$

LFV model signatures

As mentioned: if R_{K} is signaling BSM LFNU, then expect BSM LFV as well

$$
\nabla \quad \frac{B R\left(B^{+} \rightarrow K^{+} \mu e\right)}{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)}=\frac{\left|\delta C_{10}\right|^{2}}{\left\lvert\, \begin{array}{c}
\left|C_{10}^{S M}+\delta C_{10}\right|^{2} \\
\text { according to } \mathbf{R}_{\mathrm{K}}
\end{array}\right.} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}} \cdot 2
$$

LFV model signatures

As mentioned: if R_{K} is signaling BSM LFNU, then expect BSM LFV as well

$$
\text { v } \frac{B R\left(B^{+} \rightarrow K^{+} \mu e\right)}{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)}=\frac{\left|\delta C_{10}\right|^{2}}{\left\lvert\, \begin{array}{c}
\left|C_{10}^{S M}+\delta C_{10}\right|^{2} \\
=0.159^{2} \\
\text { according to } R_{K}
\end{array}\right.} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}} \begin{gathered}
-2 \\
\begin{array}{c}
\mu^{+} \mathrm{e}^{-} \& \mu^{-} \mathrm{e}^{+} \\
\text {modes }
\end{array}
\end{gathered}
$$

LFV model signatures

As mentioned: if R_{K} is signaling BSM LFNU, then expect BSM LFV as well

$$
\checkmark \quad \frac{B R\left(B^{+} \rightarrow K^{+} \mu e\right)}{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)}=\frac{\left|\delta C_{10}\right|^{2}}{\left\lvert\, \begin{array}{c}
\left|C_{10}^{S M}+\delta C_{10}\right|^{2} \\
=\mathbf{0 . 1 5 9 ^ { 2 }} \\
\text { according to } \mathbf{R}_{\mathrm{k}}
\end{array}\right.} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}} \begin{gathered}
2 \\
\begin{array}{c}
\mu^{+} \mathrm{e}^{-} \& \mu^{\mathrm{e}} \mathrm{e}^{+} \\
\text {modes }
\end{array}
\end{gathered}
$$

$$
\square B R\left(B^{+} \rightarrow K^{+} \mu e\right)<2.2 \times 10^{-8} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}}
$$

The current $B R(B+\rightarrow K+\mu e)$ limit yields the weak bound

$$
\left|\left(U_{L}^{\ell}\right)_{31} 1\left(U_{L}^{t}\right)_{32}\right|<3.7
$$

LFV model signatures

As mentioned: if R_{K} is signaling BSM LFNU, then expect BSM LFV as well

$$
\square B R\left(B^{+} \rightarrow K^{+} \mu e\right)<2.2 \times 10^{-8} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}}
$$

The current $B R(B+\rightarrow K+\mu e)$ limit yields the weak bound

$$
\left|\left(U_{L}^{\ell}\right)_{31}\right|\left(U_{L}^{t}\right)_{32} \mid<3.7
$$

$\boxtimes \quad B R\left(B^{+} \rightarrow K^{+} \mu \tau\right) \quad$ would be even more promising, as it scales with $\left.\left|\left(U_{L}^{\ell}\right)_{33}\right|\left(U_{L}^{\ell}\right)_{32}\right|^{2}$

LFV model signatures

As mentioned: if R_{K} is signaling BSM LFNU, then expect BSM LFV as well

The current $B R(B+\rightarrow K+\mu e)$ limit yields the weak bound

$$
\left|\left(U_{L}^{\ell}\right)_{31}\right|\left(U_{L}^{t}\right)_{32} \mid<3.7
$$$B R\left(B^{+} \rightarrow K^{+} \mu \tau\right) \quad$ would be even more promising, as it scales with $\|\left(U_{L}^{\ell}\right)_{33} /\left.\left(U_{L}^{\ell}\right)_{32}\right|^{2}$An analogous argument holds for purely leptonic modes

Parenthesis: More quantitative LFV predictions

- More quantitative LFV predictions require knowledge of the $U_{L}{ }^{e}$

Reminder:

$$
\left(U_{L}^{\ell}\right)^{\dagger} Y_{\ell} U_{R}^{\ell}=\hat{Y}_{\ell}
$$

Parenthesis: More quantitative LFV predictions

- More quantitative LFV predictions require knowledge of the $U_{L}{ }^{\ell}$

Reminder:

$$
\left(U_{L}^{\ell}\right)^{\dagger} Y_{\ell} U_{R}^{\ell}=\hat{Y}_{\ell}
$$

- One approach:

DG, Lane, PLB 2015

- Appelquist-Bai-Piai ansatz:
the flavor-SU(3) rotations are not all independent. Choosing 3 to be the independent ones allows to predict one SM Yukawa in terms of the other two.

Parenthesis: More quantitative LFV predictions

- More quantitative LFV predictions require knowledge of the $U_{L}{ }^{\ell}$

Reminder:

$$
\left(U_{L}^{\ell}\right)^{\dagger} Y_{\ell} U_{R}^{\ell}=\hat{Y}_{\ell}
$$

- One approach:

DG, Lane, PLB 2015

- Appelquist-Bai-Piai ansatz:
the flavor-SU(3) rotations are not all independent. Choosing 3 to be the independent ones allows to predict one SM Yukawa in terms of the other two.
- One can thereby determine Y_{t} in terms of Y_{u} and Y_{d}

Parenthesis: More quantitative LFV predictions

- More quantitative LFV predictions require knowledge of the $U_{L}{ }^{\ell}$

Reminder:

$$
\left(U_{L}^{\ell}\right)^{\dagger} Y_{\ell} U_{R}^{\ell}=\hat{Y}_{\ell}
$$

- One approach:

DG, Lane, PLB 2015

- Appelquist-Bai-Piai ansatz:
the flavor-SU(3) rotations are not all independent. Choosing 3 to be the independent ones allows to predict one SM Yukawa in terms of the other two.
- One can thereby determine Y_{t} in terms of Y_{u} and Y_{d}
- But we don't know Y_{u} and Y_{d} entirely, so we take an (independently motivated) model for them, reproducing quark masses and the CKM matrix [Martin-Lane, PRD 2005].

Parenthesis: More quantitative LFV predictions

- More quantitative LFV predictions require knowledge of the $U_{L}{ }^{\ell}$

Reminder:

$$
\left(U_{L}^{\ell}\right)^{\dagger} Y_{\ell} U_{R}^{\ell}=\hat{Y}_{\ell}
$$

- One approach:

DG, Lane, PLB 2015

- Appelquist-Bai-Piai ansatz:
the flavor-SU(3) rotations are not all independent. Choosing 3 to be the independent ones allows to predict one SM Yukawa in terms of the other two.
- One can thereby determine Y_{e} in terms of Y_{u} and Y_{d}
- But we don't know Y_{u} and Y_{d} entirely, so we take an (independently motivated) model for them, reproducing quark masses and the CKM matrix [Martin-Lane, PRD 2005].
- Another approach:

Boucenna, Valle, Vicente, PLB 2015

- One has $\left.\left(U_{L}\right)^{t}\right)^{\dagger} U_{L}{ }^{\nu}=$ PMNS matrix

Parenthesis: More quantitative LFV predictions

- More quantitative LFV predictions require knowledge of the $U_{L}{ }^{\ell}$

Reminder:

$$
\left(U_{L}^{\ell}\right)^{\dagger} Y_{\ell} U_{R}^{\ell}=\hat{Y}_{\ell}
$$

- One approach: DG, Lane, PLB 2015
- Appelquist-Bai-Piai ansatz:
the flavor-SU(3) rotations are not all independent. Choosing 3 to be the independent ones allows to predict one SM Yukawa in terms of the other two.
- One can thereby determine Y_{t} in terms of Y_{u} and Y_{d}
- But we don't know Y_{u} and Y_{d} entirely, so we take an (independently motivated) model for them, reproducing quark masses and the CKM matrix [Martin-Lane, PRD 2005].
- Another approach:

Boucenna, Valle, Vicente, PLB 2015

- One has $\left(U_{L}^{\ell}\right)^{\dagger} U_{L}^{v}=$ PMNS matrix
- Taking $U_{L}^{\nu}=1, U_{L}^{\ell}$ can be univocally predicted
- Bottom line: we can reasonably expect one of the $B \rightarrow K \ell \ell^{\prime}$ decays in the 10^{-8} ballpark and one of the $B \rightarrow \ell \ell^{\prime}$ decays in the 10^{-10} one, namely $\sim 5 \%$ of $B R\left(B_{s} \rightarrow \mu \mu\right)$

More on LFV model signatures

- Bottom line: we can reasonably expect one of the $B \rightarrow K \ell \ell^{\prime}$ decays in the 10^{-8} ballpark and one of the $B \rightarrow \ell \ell^{\prime}$ decays in the 10^{-10} one, namely $\sim 5 \%$ of $B R\left(B_{s} \rightarrow \mu \mu\right)$
- The most suppressed of the above modes is most likely $B_{s} \rightarrow \mu e$.
(The lepton combination is the farthest from the $3^{r d}$ generation, and it's chirally suppressed.)

More on LFV model signatures

- Bottom line: we can reasonably expect one of the $B \rightarrow K \ell \ell^{\prime}$ decays in the 10^{-8} ballpark and one of the $B \rightarrow \ell \ell^{\prime}$ decays in the 10^{-10} one, namely $\sim 5 \%$ of $B R\left(B_{s} \rightarrow \mu \mu\right)$
- The most suppressed of the above modes is most likely $B_{s} \rightarrow \mu e$.
(The lepton combination is the farthest from the $3^{r d}$ generation, and it's chirally suppressed.)
- What about $B_{s} \rightarrow \mu e \gamma$?
- $\quad Y=$ "hard" photon
(hard = outside of the di-lepton Invariant-mass signal window)

Las Chiral-suppression factor, of $O\left(m_{\mu} / m_{B S}\right)^{2}$ replaced by $\alpha_{e m} / \pi$ suppression

More on LFV model signatures

- Bottom line: we can reasonably expect one of the $B \rightarrow K \ell \ell^{\prime}$ decays in the 10^{-8} ballpark and one of the $B \rightarrow \ell \ell^{\prime}$ decays in the 10^{-10} one, namely $\sim 5 \%$ of $B R\left(B_{s} \rightarrow \mu \mu\right)$
- The most suppressed of the above modes is most likely $B_{s} \rightarrow \mu e$.
(The lepton combination is the farthest from the $3^{\text {rd }}$ generation, and it's chirally suppressed.)
- What about $B_{s} \rightarrow \mu$ e γ ?
- $\quad V=$ "hard" photon
(hard = outside of the di-lepton Invariant-mass signal window)

Qus Chiral-suppression factor, of $O\left(m_{\mu} / m_{B S}\right)^{2}$ replaced by $\alpha_{e m} / \pi$ suppression

D. Guadagnoli, Lepton universality

LFV in K decays

- The interaction advocated in Glashow et al.

$$
H_{\mathrm{NP}}=G \bar{b}_{L}^{\prime} \gamma^{\lambda} b_{L}^{\prime} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau_{L}^{\prime}
$$

can also manifest itself in $K \rightarrow$ (п) $\ell \ell^{\prime}$, for example
$-K_{L}^{0} \rightarrow e^{ \pm} \mu^{\mp}$
$-K^{+} \rightarrow \pi^{+} e^{ \pm} \mu^{\mp}$

LFV in K decays

- The interaction advocated in Glashow et al.

$$
H_{\mathrm{NP}}=G \bar{b}_{L}^{\prime} \gamma^{\lambda} b_{L}^{\prime} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau_{L}^{\prime}
$$

can also manifest itself in $K \rightarrow$ (п) $\ell \ell^{\prime}$, for example
$-K_{L}^{0} \rightarrow e^{ \pm} \mu^{\mp}$
$-K^{+} \rightarrow \pi^{+} e^{ \pm} \mu^{\mp}$

- Exp limits

$$
\begin{aligned}
& \frac{\Gamma\left(K_{L}^{0} \rightarrow e^{ \pm} \mu^{\mp}\right)}{\Gamma\left(K^{+} \rightarrow \mu^{+} v_{\mu}\right)}<1.7 \times 10^{-12} \\
& \frac{\Gamma\left(K^{+} \rightarrow \pi^{+} \mu^{+} e^{-}\right)}{\Gamma\left(K^{+} \rightarrow \pi^{0} \mu^{+} v_{u}\right)}<3.9 \times 10^{-10}
\end{aligned}
$$

D. Guadagnoli, Lepton universality

LFV in K decays

- Defining the basic quantity

$$
\beta^{(K)}=\frac{G\left(U_{L}^{d}\right)_{32}^{*}\left(U_{L}^{d}\right)_{31}\left(U_{L}^{\ell}\right)_{31}^{*}\left(U_{L}^{\ell}\right)_{32}}{\frac{4 G_{F}}{\sqrt{2}} V_{u s}^{*}}
$$

$$
\left|\beta^{(K)}\right|^{2}=2.15 \times 10^{-14}
$$

(within "model A" of DG, Lane, PLB 2015)

LFV in K decays

- Defining the basic quantity

$$
\beta^{(K)}=\frac{G\left(U_{L}^{d}\right)_{32}^{*}\left(U_{L}^{d}\right)_{31}\left(U_{L}^{\ell}\right)_{31}^{*}\left(U_{L}^{\ell}\right)_{32}}{\frac{4 G_{F}}{\sqrt{2}} V_{u s}^{*}}
$$

$$
\left|\beta^{(K)}\right|^{2}=2.15 \times 10^{-14}
$$

(within "model A" of DG, Lane, PLB 2015)

I obtain

$$
\frac{\Gamma\left(K_{L}^{0} \rightarrow e^{ \pm} \mu^{\mp}\right)}{\Gamma\left(K^{+} \rightarrow \mu^{+} v_{u}\right)}=\left|\beta^{(K)}\right|^{2}
$$

LFV in K decays

- Defining the basic quantity

$$
\beta^{(K)}=\frac{G\left(U_{L}^{d}\right)_{32}^{*}\left(U_{L}^{d}\right)_{31}\left(U_{L}^{\ell}\right)_{31}^{*}\left(U_{L}^{\ell}\right)_{32}}{\frac{4 G_{F}}{\sqrt{2}} V_{u s}^{*}}
$$

$$
\left|\beta^{(K)}\right|^{2}=2.15 \times 10^{-14}
$$

(within "model A" of DG, Lane, PLB 2015)

I obtain

$$
\begin{gathered}
\frac{\Gamma\left(K_{L}^{0} \rightarrow e^{ \pm} \mu^{\mp}\right)}{\Gamma\left(K^{+} \rightarrow \mu^{+} v_{\mu}\right)}=\left|\beta^{(K)}\right|^{2} \\
\operatorname{BR}\left(K_{L}^{0} \rightarrow e^{ \pm} \mu^{\mp}\right) \approx 6 \times 10^{-14}
\end{gathered}
$$

$$
\begin{aligned}
& \text { with } \\
& \mathrm{BR}\left(K^{+} \rightarrow \mu^{+} v_{u}\right) \approx 64 \% \\
& \Gamma\left(K^{+}\right) / \Gamma\left(K_{L}^{0}\right) \approx 4.2
\end{aligned}
$$

LFV in K decays

- Defining the basic quantity

$$
\beta^{(K)}=\frac{G\left(U_{L}^{d}\right)_{32}^{*}\left(U_{L}^{d}\right)_{31}\left(U_{L}^{\ell}\right)_{31}^{*}\left(U_{L}^{\ell}\right)_{32}}{4 G_{F \mathrm{~V}^{*}}} \quad \square \quad\left|\beta^{(K)}\right|^{2}=2.15 \times 10^{-14}
$$

(within "model A" of DG, Lane, PLB 2015)

I obtain
$\frac{\Gamma\left(K_{L}^{0} \rightarrow e^{ \pm} \mu^{\mp}\right)}{\Gamma\left(K^{+} \rightarrow \mu^{+} v_{\mu}\right)}=\left|\beta^{(K)}\right|^{2}$

$\operatorname{BR}\left(K_{L}^{0} \rightarrow e^{ \pm} \mu^{\mp}\right) \approx 6 \times 10^{-14}$
with
$\operatorname{BR}\left(K^{+} \rightarrow \mu^{+} v_{\mu}\right) \approx 64 \%$
$\Gamma\left(K^{+}\right) / \Gamma\left(K_{L}^{0}\right) \approx 4.2$

$$
\left.\frac{\Gamma\left(K^{+} \rightarrow \pi^{+} \mu^{ \pm} e^{\mp}\right)}{\Gamma\left(K^{+} \rightarrow \pi^{0} \mu^{+} v_{\mu}\right)}=4 \right\rvert\, \beta^{\left.(K)\right|^{2}}
$$

$$
\operatorname{BR}\left(K^{+} \rightarrow \pi^{+} \mu^{ \pm} e^{\mp}\right) \approx 3 \times 10^{-15}
$$

with
$\operatorname{BR}\left(K^{+} \rightarrow \pi^{0} \mu^{+} v_{\mu}\right) \approx 3 \%$

More signatures

- Being defined above the EWSB scale, our assumed operator $G \bar{b}^{\prime}{ }_{L} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}^{\prime}{ }_{L} \gamma_{\lambda} \tau^{\prime}{ }_{L}$ must actually be made invariant under $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

More signatures

- Being defined above the EWSB scale, our assumed operator $G \bar{b}^{\prime}{ }_{L} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}^{\prime}{ }_{L} \gamma_{\lambda} \tau^{\prime}{ }_{L}$ must actually be made invariant under $\operatorname{SU}(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

```
See: 
    Bhattacharya,
\[
\bar{b}_{L}^{\prime} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}^{\prime}{ }_{L} \gamma_{\lambda} \tau^{\prime}{ }_{L}
\]
```


More signatures

- Being defined above the EWSB scale, our assumed operator $G \bar{b}^{\prime}{ }_{L} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}^{\prime}{ }_{L} \gamma_{\lambda} \tau^{\prime}{ }_{L}$ must actually be made invariant under $\operatorname{SU}(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

```
See: 
    Bhattacharya,
\[
\bar{b}_{L}^{\prime} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}^{\prime}{ }_{L} \gamma_{\lambda} \tau^{\prime}{ }_{L}
\]
```


- Thus, the generated structures are all of:
$t^{\prime} t^{\prime} v_{\tau}^{\prime} v_{\tau}^{\prime}$,
$t^{\prime} t^{\prime} \tau^{\prime} \tau^{\prime}$,
$b^{\prime} b^{\prime} v^{\prime}{ }_{\tau} v^{\prime}{ }_{\tau}$,
$b^{\prime} b^{\prime} \tau^{\prime} \tau^{\prime}$,
$t^{\prime} b^{\prime} \tau^{\prime} v_{\tau}^{\prime}$

More signatures

- Being defined above the EWSB scale, our assumed operator $G \bar{b}^{\prime}{ }_{L} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}^{\prime}{ }_{L} \gamma_{\lambda} \tau^{\prime}{ }_{L}$ must actually be made invariant under $\operatorname{SU}(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

```
see:
```

See:
Bhattacharya, Datta, London,
Shivashankara, PLB 15
Shivashankara, PLB 15

$$
\bar{b}_{L}^{\prime} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}^{\prime}{ }_{L} \gamma_{\lambda} \tau^{\prime}{ }_{L}
$$

- Thus, the generated structures are all of:

$$
t^{\prime} t^{\prime} v_{\tau}^{\prime} v_{\tau}^{\prime}, \quad t^{\prime} t^{\prime} \tau^{\prime} \tau^{\prime}, \quad b^{\prime} b^{\prime} v_{\tau}^{\prime} v_{\tau}^{\prime}, \quad b^{\prime} b^{\prime} \tau^{\prime} \tau^{\prime}, \quad t^{\prime} b^{\prime} \tau^{\prime} v_{\tau}^{\prime}
$$

More signatures

- Being defined above the EWSB scale, our assumed operator $G \bar{b}^{\prime}{ }_{L} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}^{\prime}{ }_{L} \gamma_{\lambda} \tau^{\prime}{ }_{L}$ must actually be made invariant under $\operatorname{SU}(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

```
See: 
    Bhattacharya, D, PLB 15
\[
\bar{b}_{L}^{\prime} \gamma^{\lambda} b_{L}^{\prime} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau_{L}^{\prime}
\]
```


- Thus, the generated structures are all of:
$t^{\prime} t^{\prime} \nu_{\tau}^{\prime} \nu_{\tau}^{\prime}, \quad t^{\prime} t^{\prime} \tau^{\prime} \tau^{\prime}$,
$b^{\prime} b^{\prime} v^{\prime}{ }_{\tau} v^{\prime}{ }_{\tau}$,
$b^{\prime} b^{\prime} \tau^{\prime} \tau^{\prime}$,
$t^{\prime} b^{\prime} \tau^{\prime} v_{\tau}^{\prime}$
- After rotation to the mass basis (unprimed), the last structure contributes to $\Gamma\left(b \rightarrow c \tau \bar{v}_{i}\right)$

$$
\square \text { Can explain BaBar }+ \text { Belle }+L H C b \text { deviations on } R\left(D^{(*)}\right)=\frac{B R\left(\bar{B} \rightarrow D^{(*)+} \tau^{-} \bar{v}_{\tau}\right)}{B R\left(\bar{B} \rightarrow D^{(*)+} \ell^{-} \bar{v}_{\ell}\right)}
$$

But this coin has a flip side

- Properly taking into account RGE running from the NP scale to the scale(s) of the low-energy processes, one finds non-trivial constraints from:
- $B \rightarrow K v v$

See also:
Calibbi, Crivellin, Ota, PRL 2015

But this coin has a flip side

- Properly taking into account RGE running from the NP scale to the scale(s) of the low-energy processes, one finds non-trivial constraints from:
- $B \rightarrow K v v$

See also:
 Calibbi, Crivellin, Ota, PRL 2015

- Modifications to LEP-measured $Z \rightarrow \ell$ couplings

But this coin has a flip side

- Properly taking into account RGE running from the NP scale to the scale(s) of the low-energy processes, one finds non-trivial constraints from:
- $B \rightarrow K v v$

See also:
 Calibbi, Crivellin, Ota, PRL 2015

- Modifications to LEP-measured $Z \rightarrow \ell$ couplings
- LFU-breaking effects in $\tau \rightarrow \ell \vee v \quad$ (tested at per mil accuracy)

But this coin has a flip side

- Properly taking into account RGE running from the NP scale to the scale(s) of the low-energy processes, one finds non-trivial constraints from:
- $B \rightarrow K v v$

```
See also:
Calibbi, Crivellin, Ota, PRL 2015
```

- Modifications to LEP-measured $Z \rightarrow \ell$ couplings
- LFU-breaking effects in $\tau \rightarrow \ell \vee v \quad$ (tested at per mil accuracy)

The latter are the most dangerous.
They "strongly disfavour an explanation of the $R\left(D^{*}\right)$) anomaly model-independently"

But this coin has a flip side

- Properly taking into account RGE running from the NP scale to the scale(s) of the low-energy processes, one finds non-trivial constraints from:
- $B \rightarrow K v v$

See also:
Calibbi, Crivellin, Ota, PRL 2015

- Modifications to LEP-measured $Z \rightarrow \ell \ell$ couplings
- LFU-breaking effects in $\tau \rightarrow \ell \vee v \quad$ (tested at per mil accuracy)

The latter are the most dangerous.
They "strongly disfavour an explanation of the $R\left(D\left(^{*}\right)\right.$) anomaly model-independently"

- Also LFV decays of leptons are generated, and they provide sensitive probes.
E.g.:

$$
\operatorname{BR}(\tau \rightarrow 3 \mu) \& \operatorname{BR}(\tau \rightarrow \mu \rho) \sim 5 \times 10^{-8}
$$

Some models explaining R_{K} and $R\left(D^{*}\right)$

- Introduce one single leptoquark scalar, transforming as (3, 1, $-1 / 3$) under $\operatorname{SU}(3)_{c} \times S U(2)_{L} x U(1)_{Y}$

Some models explaining R_{K} and $R\left(D^{*}\right)$

- Introduce one single leptoquark scalar, transforming as (3, 1, $-1 / 3$) under $\operatorname{SU}(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$
- One coupling does all the job: $\bar{Q}^{c}{ }_{L i} \lambda_{i j} i \tau_{2} L_{L j} \phi$

Some models explaining R_{k} and $R\left(D^{*}\right)$

- Introduce one single leptoquark scalar, transforming as (3, 1, -1/3) under $\operatorname{SU}(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

Picks up an up-type quark with a down-type lepton or viceversa

- One coupling does all the job: $\bar{Q}^{c}{ }_{L i} \lambda_{i j} i \tau_{2} L_{L j} \phi$

Some models explaining R_{k} and $R\left(D^{*}\right)$

- Introduce one single leptoquark scalar, transforming as (3, 1, $-1 / 3$) under $\operatorname{SU}(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

Picks up an up-type quark with a down-type lepton or viceversa

- One coupling does all the job: $\bar{Q}^{c}{ }_{L i} \lambda_{i j} i \tau_{2} L_{L j} \phi$
- Two insertions (making a tree diag.) contribute to $B \rightarrow D$ Tv

Some models explaining R_{k} and $R\left(D^{*}\right)$

- Introduce one single leptoquark scalar, transforming as (3, 1, $-1 / 3$) under $\operatorname{SU}(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

Picks up an up-type quark with a down-type lepton or viceversa

- One coupling does all the job: $\bar{Q}^{c}{ }_{L i} \lambda_{i j} i \tau_{2} L_{L j} \phi$
- Two insertions (making a tree diag.) contribute to $B \rightarrow D$ Tv

Some models explaining R_{K} and $R\left(D^{*}\right)$

- Introduce one single leptoquark scalar, transforming as (3, 1, -1/3) under $\operatorname{SU}(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

Picks up an up-type quark with a down-type lepton or viceversa

- One coupling does all the job: $\bar{Q}^{c}{ }_{L i} \lambda_{i j, \ldots} i \tau_{2} L_{L j} \phi$
- Two insertions (making a tree diag.) contribute to $B \rightarrow D$ Tv
- Four insertions (making a box) contribute to $B \rightarrow K$ e

- With $M_{\phi} \sim 1 \mathrm{TeV}$ and $O(1)$ generation-diagonal couplings, contributions are just the right size

One model explaining all flavor

 anomalies and the diphoton resonance- New non-Abelian strongly interacting sector with $N_{T C}$ new "techni-fermions" (TC fermions).

Buttazzo, Greljo Isidori 1604.03940

One model explaining all flavor anomalies and the diphoton resonance

- New non-Abelian strongly interacting sector with $N_{T C}$ new "techni-fermions" (TC fermions).

Buttazzo, Greljo, Isidori 1604.03940

The basic idea can easily be understood in analogy to QCD:

- The TC-fermion condensate breaks spontaneously a large global symmetry G to a smaller group H, at a scale of about 1 TeV

One model explaining all flavor

 anomalies and the diphoton resonance- New non-Abelian strongly interacting sector with $N_{\text {TC }}$ new "techni-fermions" (TC fermions).

Buttazzo, Greljo, Isidori dori, Marzocca 1604.03940

The basic idea can easily be understood in analogy to QCD:

- The TC-fermion condensate breaks spontaneously a large global symmetry G to a smaller group H, at a scale of about 1 TeV
- The broken G/H symmetry gives rise to (pseudo) Goldstone bosons.
"Pseudo" because G/H is also broken explicitly by the TC-fermion masses

One model explaining all flavor

 anomalies and the diphoton resonance- New non-Abelian strongly interacting sector with $N_{\text {TC }}$ new "techni-fermions" (TC fermions).

The basic idea can easily be understood in analogy to QCD:

- The TC-fermion condensate breaks spontaneously a large global symmetry G to a smaller group H, at a scale of about 1 TeV
- The broken G/H symmetry gives rise to (pseudo) Goldstone bosons. "Pseudo" because G/H is also broken explicitly by the TC-fermion masses

One of the pNGB is the $750-\mathrm{GeV}$ state seen by Atlas \& CMS It couples to 2 gluons and decays to 2γ via the anomaly

One model explaining all flavor anomalies and the diphoton resonance:
continued

- There are also vector mesons, like QCD's rho.

Buttazzo, Greljo, Isidori, Marzeljo,

Their coupling to quarks and leptons explains the flavor anomalies.

One model explaining all flavor

 anomalies and the diphoton resonance:continued

- There are also vector mesons, like QCD's rho.

Buttazzo, Greljo, Isidori Mar 1604.03940

Their coupling to quarks and leptons explains the flavor anomalies.

- Vector mesons couple to techni-baryons, which in turn linearly mix with SM fermions.

One model explaining all flavor

 anomalies and the diphoton resonance:continued

- There are also vector mesons, like QCD's rho.

Their coupling to quarks and leptons explains the flavor anomalies.

- Vector mesons couple to techni-baryons, which in turn linearly mix with SM fermions.

- To explain the flavor deviations, the mixing needs be hierarchical across generations (largest for the $3^{\text {rd }}$ one, as in partial compositeness)

One model explaining all flavor

 anomalies and the diphoton resonance: continued
Buttazzo, Greljo Isidori 1604.03940 Mara

- There are also vector mesons, like QCD's rho.

Their coupling to quarks and leptons explains the flavor anomalies.

- Vector mesons couple to techni-baryons, which in turn linearly mix with SM fermions.

- To explain the flavor deviations, the mixing needs be hierarchical across generations (largest for the $3^{\text {rd }}$ one, as in partial compositeness)
- Integrating out the vector mesons then yields automatically (among the others) the effective operator

$$
H_{\mathrm{NP}}=G \bar{b}_{L}^{\prime} \gamma^{\lambda} b_{L}^{\prime} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau_{L}^{\prime}
$$

proposed in [Glashow, DG, Lane, PRL 15]

Conclusions

- In flavor physics there are by now several persistent discrepancies with respect to the SM. Their most convincing aspects are the following:
- Experiments: Results are consistent between LHCb and B factories.

Conclusions

- In flavor physics there are by now several persistent discrepancies with respect to the SM. Their most convincing aspects are the following:
- Experiments: Results are consistent between LHCb and B factories.
- Data: Deviations concern two independent sets of data: $b \rightarrow s$ and $b \rightarrow c$ decays.

Conclusions

- In flavor physics there are by now several persistent discrepancies with respect to the SM. Their most convincing aspects are the following:
- Experiments: Results are consistent between LHCb and B factories.
- Data: Deviations concern two independent sets of data: $b \rightarrow s$ and $b \rightarrow c$ decays.
- Data vs. theory: Discrepancies go in a consistent direction.

A BSM explanation is already possible within an EFT approach.

Conclusions

- In flavor physics there are by now several persistent discrepancies with respect to the SM. Their most convincing aspects are the following:
- Experiments: Results are consistent between LHCb and B factories.
- Data: Deviations concern two independent sets of data: $b \rightarrow s$ and $b \rightarrow c$ decays.
- Data vs. theory: Discrepancies go in a consistent direction.

A BSM explanation is already possible within an EFT approach.

- Early to draw conclusions. But Run II will provide a definite answer

Conclusions

- In flavor physics there are by now several persistent discrepancies with respect to the SM.

Their most convincing aspects are the following:

- Experiments: Results are consistent between LHCb and B factories.
- Data: Deviations concern two independent sets of data: $b \rightarrow s$ and $b \rightarrow c$ decays.
- Data vs. theory: Discrepancies go in a consistent direction.

A BSM explanation is already possible within an EFT approach.

- Early to draw conclusions. But Run II will provide a definite answer
- Timely to propose further tests. One promising direction is that of LFV. Plenty of channels, many of which largely untested.

