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The P'
5
  anomaly

LHCb can perform a fully angular analysis of the decay products in B → K* μμ 

One can then construct observables with limited sensitivity to form factors.

One of such “clean” observables is called P'
5

B → K* μμ angular analysis:

 Caveat: 
this obs needs be taken cum grano salis

What cancels is the dependence on the 
large-m

b
 form factors.

Debate on the role of

  Subleading terms in 1/m
b

 cc loops and their resummation

See:
  Jäger & Martin-Camalich, PRD 2016
  Ciuchini et al., 1512.07157
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The above said, this anomaly remains interesting:

It occurs in the same kinematic range as R
K
   namely  m2

μμ
 ∈ [1, 6 ] GeV2

The P'
5
 anomaly: continued



It was initially found in 1/fb of LHCb data, then confirmed by a full Run-I analysis (3/fb)

And it was recently confirmed by Belle !  [1604.04042]

 Conclusion: 

If it's new physics, it is expected to
show up elsewhere in the B → K* μμ
angular analysis.

Run II will tell for sure
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BR (Bs→μμ)SM

= 0.77±0.20
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Theory prediction now very solid.

“large-ΔΓ
s
” effect

All (known) theory systematics included.

soft-photon corr's

NLO EW & NNLO QCD corr's

Exp error will go to:        ~ 10% by end of Run II

BR(Bs→μμ)exp = (2.8−0.6
+0.7 )×10−9

BR(Bs→μμ)SM = (3.65±0.23) × 10−9

[LHCb&CMS full-Run I combination]

[C. Bobeth et al., PRL 14]

[K. De Bruyn et al., PRL 12]

[Buras, Girrbach, DG, Isidori, EPJC 12]

[Bobeth, Gorbahn, Stamou, PRD 14; 
 Hermann, Misiak, Steinhauser, JHEP 13]

current error (~6%) dominated by CKM and  f
Bs

~ 5% w/ LHCb upgrade

 B
s
 → μμ
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R(D(*)) =
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BR(B→D(*)ℓν) (with ℓ=e ,μ)



First discrepancy found
by BaBar in 2012

in both R(D) and R(D*)

R(D*) state-of-the-art, as of Moriond 2016 (Goldenzweig, Belle)


2015: BaBar's R(D*)
confirmed by LHCb


2015: Belle finds a 
more SM-like R(D*)

(hadronic tau)


2016: Belle also starts to

See an R(D*) excess
(semi-lep. tau)
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 Each of the mentioned effects needs confirmation from Run II 
to be taken seriously

Q1:   Can we (easily) make theoretical sense of data?

Q2:   What are the most immediate signatures to expect ?

 Yet, focusing (for the moment) on the b → s discrepancies
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In fact:

 Consider a new, LFNU interaction above the EWSB scale, e.g. with

ℓ Z'ℓnew vector bosons: ℓ φ  qor            leptoquarks:

 In what basis are quarks and leptons in the above interaction?

Generically, it's not the mass eigenbasis. 
(This basis doesn't yet even exist. We are above the EWSB scale.)



 Rotating q and ℓ to the mass eigenbasis generates LFV interactions.
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Take the SM with zero ν masses.

 Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis
(hence no LFV)

Bottom line: in the  SM+ν  there is LFNU, but LFV is nowhere to be seen (in decays)

But nobody ordered that the reason (=tiny mν) behind the above conclusion  

be at work also beyond the SM


So, BSM LFNU         BSM LFV (i.e. not suppressed by mν )⇒

Or more generally, take the SM plus a minimal mechanism for ν masses.

 Physical LFV will appear in W couplings, but it's suppressed by powers of  ( mν / mW )
2
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 Advocating the same (V –  A) x (V – A) structure also for the corrections to C
9,10

SM 

(in the µµ-channel only!) would account for:

R
K
 lower than 1

B → K µµ  & B
s
 → µµ    BR data below predictions

 A fully quantitative test requires a global fit.

 [Altmannshofer, Straub, EPJC '15]

  Concerning Q1:  can we easily make theoretical sense of these data?

For analogous conclusions, see also  [Ghosh, Nardecchia, Renner, JHEP '14] 

 Yes we can. Consider the following Hamiltonian
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λb ' L τ̄ ' Lγλ τ ' L expected e.g. in

partial-compositeness 
frameworks 

Fields are in the “gauge” basis (= primed)

They need to be rotated to the mass eigenbasis

Note: primed fields

This rotation induces  LFNU and LFV effects

b 'L ≡ (d ' L)3 = (U L
d )3 i (d L)i

τ ' L ≡ (ℓ ' L)3 = (U L
ℓ )3 i (ℓL)i

mass
basis

☞
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HSM+NP(b̄→ s̄μμ) = −
4GF

√2
V tb

* V ts

αem

4π [ b̄L γλ sL⋅ (C9
(μ ) μ̄ γλμ + C10

(μ ) μ̄ γλ γ5μ ) ]

Recalling our full Hamiltonian
k

SM  
(SM norm. factor)
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Explaining b → s data

the shift to the C
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  Wilson coeff. in the µµ-channel becomes
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HSM+NP(b̄→ s̄μμ) = −
4GF

√2
V tb

* V ts

αem

4π [ b̄L γλ sL⋅ (C9
(μ ) μ̄ γλμ + C10

(μ ) μ̄ γλ γ5μ ) ]

Recalling our full Hamiltonian
k

SM  
(SM norm. factor)

The NP contribution  has
opposite sign than the SM one if

G (U L
d )32 < 0

 On the other hand, in the ee-channel

kSM C9
(e ) = kSM C9,SM + G

2
(U L

d )33
* (U L

d )32|(U L
ℓ)31|

2

The NP contrib. in the ee-
channel is negligible, as

|(U L
ℓ )31|

2
≪ |(U L

ℓ )32|
2
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Explaining b → s data

 So, in the above setup

RK ≈
|C9

(μ)|2+|C10
(μ )|2

|C9
(e)|2+|C10

(e)|2
≃
2|C10

SM+δC10|
2

2|C10
SM|2
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Note as well

0.77±0.20 =
BR (Bs→μμ)exp

BR (Bs→μμ)SM

=
BR (B s→μμ)SM+NP

BR(B s→μμ)SM

=
|C10

SM+δC10|
2

|C10
SM|2

implying (within our model) the correlations

BR (Bs→μμ)exp

BR (Bs→μμ)SM

≃ RK ≃
BR(B+→K+μμ)exp

BR(B+→K+μμ)SM

Another good reason 
to pursue accuracy in

the B
s  → µµ measurement

See also
 Hiller, Schmaltz, PRD 14
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As mentioned: if R
K
  is signaling BSM LFNU, then expect BSM LFV as well

LFV model signatures

BR (B+→K+μ e)
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=
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according to R
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☑ An analogous argument holds for purely leptonic modes
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Parenthesis: More quantitative LFV predictions

 More quantitative LFV predictions require knowledge of the U
L
ℓ

(U L
ℓ )† Y ℓ U R

ℓ = Ŷ ℓ

Reminder: 
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Reminder: 



  

D. Guadagnoli, Lepton universality

  
Parenthesis: More quantitative LFV predictions

 More quantitative LFV predictions require knowledge of the U
L
ℓ

One approach: DG, Lane,  PLB 2015

Appelquist-Bai-Piai ansatz:
the flavor-SU(3) rotations are not all independent.   Choosing 3 to be the independent ones 
allows to predict one SM Yukawa in terms of the other two.

One can thereby determine Yℓ in terms of Y
u
 and Y

d

But we don't know Y
u
 and Y
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reproducing quark masses and the CKM matrix [Martin-Lane, PRD 2005].

Another approach: Boucenna, Valle, Vicente, PLB 2015

One has (U
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ℓ)† U
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One approach: DG, Lane,  PLB 2015

Appelquist-Bai-Piai ansatz:
the flavor-SU(3) rotations are not all independent.   Choosing 3 to be the independent ones 
allows to predict one SM Yukawa in terms of the other two.

One can thereby determine Yℓ in terms of Y
u
 and Y

d

But we don't know Y
u
 and Y

d
 entirely, so we take an (independently motivated) model for them,

reproducing quark masses and the CKM matrix [Martin-Lane, PRD 2005].

Another approach: Boucenna, Valle, Vicente, PLB 2015

One has (U
L
ℓ)† U

L
ν = PMNS matrix

Taking U
L
ν = 1,  U

L
ℓ can be univocally predicted

(U L
ℓ )† Y ℓ U R

ℓ = Ŷ ℓ

Reminder: 
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Bottom line:  we can reasonably expect one of the B → Kℓℓ' decays in the 10–8  ballpark 

                    and one of the B → ℓℓ' decays in the 10–10 one,  namely ~ 5% of  BR(B
s 
 → μμ) 

More on LFV model signatures DG, Melikhov, Reboud, 2016
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Bottom line:  we can reasonably expect one of the B → Kℓℓ' decays in the 10–8  ballpark 

                    and one of the B → ℓℓ' decays in the 10–10 one,  namely ~ 5% of  BR(B
s 
 → μμ) 

More on LFV model signatures

The most suppressed of the above modes is most likely B
s
 → μ e.

(The lepton combination is the farthest from the 3rd generation, and it's chirally suppressed.)

What about  B
s
 → μ e γ ?

Chiral-suppression factor, of O(m
μ
 / m

Bs
)2   

replaced by  α
em 

/ π suppression

DG, Melikhov, Reboud, 2016
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γ = “hard” photon

(hard = outside of the di-lepton 
Invariant-mass signal window)
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em 
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☞

BR(B
s
 → μ e γ)

BR(B
s
 → μ e)

γ = “hard” photon

(hard = outside of the di-lepton 
Invariant-mass signal window)

Enhancement by ~ 30%

Inclusion of the radiative mode more-than-
doubles statistics of the non-radiative
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The interaction advocated in Glashow et al.

can also manifest itself in K → (π) ℓ ℓ' , for example

  
LFV in K decays

HNP = G b̄ ' Lγ
λb ' L τ̄ ' Lγλ τ ' L



K L
0 → e±μ∓

K + → π+ e±μ∓
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The interaction advocated in Glashow et al.

can also manifest itself in K → (π) ℓ ℓ' , for example

  
LFV in K decays

HNP = G b̄ ' L γ
λb ' L τ̄ 'L γλ τ ' L

BNL E871 Collab., PRL 1998

Exp limits





K L
0 → e±μ∓

K + → π+ e±μ∓

Γ(K L
0 → e±μ∓)

Γ(K + → μ+ νμ)
< 1.7×10−12

BNL E865 Collab., PRD 2005
Γ(K + → π+μ+ e−)
Γ(K + → π0μ+ νμ)

< 3.9×10−10
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Defining the basic quantity

  
LFV in K decays

β(K ) =
G(U L

d)32
* (U L

d )31(U L
ℓ)31

* (U L
ℓ)32

4GF
√2

V us
*

within “model A” of DG, Lane, PLB 2015



|β(K )|2 = 2.15×10−14
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LFV in K decays

β(K ) =
G(U L

d)32
* (U L

d )31(U L
ℓ)31

* (U L
ℓ)32

4GF
√2

V us
*

within “model A” of DG, Lane, PLB 2015



I obtain

Γ(K L
0 → e±μ∓)

Γ(K + → μ+ νμ)
= |β(K )|2 Γ(K + → π+μ± e∓)

Γ(K + → π0μ+ νμ)
= 4 |β(K )|2

|β(K )|2 = 2.15×10−14

BR (K L
0 → e±μ∓) ≈ 6×10−14 BR(K + → π+μ± e∓) ≈ 3×10−15

BR (K + → μ+ νμ) ≈ 64 %

with

Γ(K +)/Γ(K L
0 )≈ 4.2

BR (K + → π0μ+ νμ) ≈ 3 %

with



  

  
More signatures

 Being defined above the EWSB scale, our assumed operator G b̄ ' L γ
λb ' L τ̄ 'L γλ τ ' L

For a recent discussion:
Alonso, Grinstein, Martin-Camalich,

PRL 14

must actually be made invariant under  SU(3)
c
 x SU(2)

L
 x U(1)

Y
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SU(2)
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inv.

Q̄ ' L γ
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i γλQ ' L

j L̄ ' j L γλ L' L
i





[neutral-current int's only]

[also charged-current int's]

must actually be made invariant under  SU(3)
c
 x SU(2)

L
 x U(1)

Y
 

See: 

Bhattacharya, Datta, London, 

Shivashankara, PLB 15
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λQ ' L L̄ ' Lγλ L 'L

Q̄ ' L
i γλQ ' L

j L̄ ' j L γλ L' L
i





[neutral-current int's only]

[also charged-current int's]

 Thus, the generated structures are all of:

t ' t ' ν ' τ ν ' τ , t ' t ' τ ' τ ' , b ' b ' ν ' τ ν ' τ , b ' b ' τ ' τ ' , t ' b ' τ ' ν ' τ

 After rotation to the mass basis (unprimed), the last structure contributes to Γ(b→c τ ν̄i)

Can explain BaBar + Belle + LHCb deviations on R (D(*)) =
BR(B̄→D(*)+ τ- ν̄ τ)
BR (B̄→D(*)+ℓ- ν̄ℓ)

must actually be made invariant under  SU(3)
c
 x SU(2)

L
 x U(1)

Y
 

See: 

Bhattacharya, Datta, London, 

Shivashankara, PLB 15
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But this coin has a flip side

 Properly taking into account RGE running from the NP scale to the scale(s) of the low-energy
processes, one finds non-trivial constraints from:

Feruglio, Paradisi, Pattori, 2016

B → K vv
See also:
Calibbi, Crivellin, Ota, PRL 2015
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Modifications to LEP-measured Z → ℓℓ couplings
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But this coin has a flip side

 Properly taking into account RGE running from the NP scale to the scale(s) of the low-energy
processes, one finds non-trivial constraints from:
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But this coin has a flip side

 Properly taking into account RGE running from the NP scale to the scale(s) of the low-energy
processes, one finds non-trivial constraints from:

Feruglio, Paradisi, Pattori, 2016



The latter are the most dangerous.
They “strongly disfavour an explanation of the R(D(*)) anomaly model-independently”

Also LFV decays of leptons are generated, and they provide sensitive probes.

B → K vv
See also:
Calibbi, Crivellin, Ota, PRL 2015

Modifications to LEP-measured Z → ℓℓ couplings

LFU-breaking effects in τ → ℓ v v      (tested at per mil accuracy)

E.g.:

BR ( τ → 3μ) & BR (τ → μρ) ∼ 5×10−8
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Some models explaining R

K
 and R(D*)



Q̄c
Li λij i τ2 LL j ϕ

Picks up an up-type quark 
with a down-type lepton 

or viceversa

under  SU(3)
c
 x SU(2)

L
 x U(1)

Y
 

Bauer-Neubert, PRL 2016

Introduce one single leptoquark scalar, transforming as (3, 1, –1/3 ) 

One coupling does all the job: 

Two insertions (making a tree diag.) contribute to  B → D τν

Four insertions (making a box) contribute to  B → K ℓℓ

 With Mϕ ~ 1 TeV and O(1) generation-diagonal

couplings, contributions are just the right size
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One model explaining all flavor
anomalies and the diphoton resonance



Buttazzo, Greljo,Isidori, Marzocca1604.03940New non-Abelian strongly interacting sector with  N
TC

  new “techni-fermions” 
(TC fermions).
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Buttazzo, Greljo,Isidori, Marzocca1604.03940New non-Abelian strongly interacting sector with  N
TC

  new “techni-fermions” 
(TC fermions).

The TC-fermion condensate breaks spontaneously a large global symmetry 
G to a smaller group H, at a scale of about 1 TeV

The basic idea can easily be understood in analogy to QCD:

The broken G/H symmetry gives rise to (pseudo) Goldstone bosons.

“Pseudo” because G/H is also broken explicitly by the TC-fermion masses

One of the pNGB is the 750-GeV state seen by Atlas & CMS

It couples to 2 gluons and decays to 2γ via the anomaly
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One model explaining all flavor
anomalies and the diphoton resonance:
continued

Buttazzo, Greljo,Isidori, Marzocca1604.03940There are also vector mesons, like QCD's rho.

Their coupling to quarks and leptons explains the flavor anomalies.

 Vector mesons couple to techni-baryons, which in turn linearly mix 
with SM fermions.

To explain the flavor deviations, the mixing 
needs be hierarchical across generations 
(largest for the 3rd one, as in partial compositeness)

Integrating out the vector mesons then yields
automatically (among the others) the effective
operator

HNP = G b̄ ' L γ
λb ' L τ̄ 'L γλ τ ' L

proposed in  [Glashow, DG, Lane, PRL 15]
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Conclusions

 In flavor physics there are by now several persistent discrepancies with respect to the SM.

Data vs. theory: Discrepancies go in a consistent direction.
                            A BSM explanation is already possible within an EFT approach.

Experiments: Results are consistent between LHCb and B factories.

 Early to draw conclusions. But Run II will provide a definite answer

 Timely to propose further tests.  One promising direction is that of LFV. 
Plenty of channels, many of which largely untested.

Their most convincing aspects are the following:

Data: Deviations concern two independent sets of data:  b → s  and  b → c  decays.
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