Lepton Universality (Violation, and its consequences)

Diego Guadagnoli
LAPTh Annecy (France)




Recap of flavor anomalies: b — s

(1+13%)

D. Guadagnoli, Lepton universality



Recap of flavor anomalies: b — s

D. Guadagnoli, Lepton universality



Recap of flavor anomalies: b — s

But disagreement is

muons are among
objects within LHC
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LHCb and B factories measured several key b — s and b — ¢ modes.

Agreement with the SM is less than perfect.

BR(B+')K+MM)[1,6]

Rz, | = = 0.745-(1+13%)

BR(B™»K ee)

@ BR(B_ — @ pu): >30 below SM prediction.

(

the electron channel would be an
obvious culprit (brems + low stats).

But disagreement is rather in muons

muons are among the most reliable
objects within LHCb

Same kinematical region mz,,,, e[1,6]GeV?
Initially found in 1/fb of LHCb data, then confirmed by a full Run-I analysis (3/fb)
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LHCb and B factories measured several key b — s and b — ¢ modes.
Agreement with the SM is less than perfect.

1

Ry

BR(B_ — @ pu): >30 below SM prediction.

BR(B™» K )y

BR(B™» K ee)

= 0.745 - (1+13%)

/

\
the electron channel would be an
obvious culprit (brems + low stats).

But disagreement is rather in muons
muons are among the most reliable
objects within LHCb Il

Same kinematical region m? , € [1, 6 ] GeV?

Initially found in 1/fb of LHCb data, then confirmed by a full Run-I analysis (3/fb)

B — K* uu angular analysis: discrepancy in P, Again same region mZW e[1, 6] GeV?

Compatibility between 1/fb and 3/fb LHCb analyses.

Supported also by recent Belle analysis.
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LHCb and B factories measured several key b — s and b — ¢ modes.

Agreement with the SM is less than perfect.

1

e N
e the electron channel would be an
BR ( B+ > K+ u M) obvious culprit (brems + low stats).
1] L8 = 0,745 - (1 +13 %) But disagreement is rather in muons
K + +

e muons are among the most reliable
objects within LHCb

BR(B_ — @ uu): >30 below SM prediction.  Same kinematical region mzup e[1, 6] GeV?
Initially found in 1/fb of LHCb data, then confirmed by a full Run-I analysis (3/fb)

B — K* uu angular analysis: discrepancy in P, Again same region mZW e[1, 6] GeV?
Compatibility between 1/fb and 3/fb LHCb analyses. Supported also by recent Belle analysis.

Significance of the effect is debated.
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BR<B+')K+MM)[1,6]

= = 0.745 - (1+13%)

BR(B'»K'ee),

BR(B_ — @ pu): >30 below SM prediction.
Initially found in 1/fb of LHCb data, then confirmed by a full Run-I analysis (3/fb)

B — K* uu angular analysis: discrepancy in P, Again same region mzw e[1,6]GeV?
Compatibility between 1/fb and 3/fb LHCb analyses.

Significance of the effect is debated.

LHCb and B factories measured several key b — s and b — ¢ modes.
Agreement with the SM is less than perfect.

(

Same kinematical region mz,,,, e[1, 6] GeV?

Supported also by recent Belle analysis.

the electron channel would be an
obvious culprit (brems + low stats).

But disagreement is rather in muons

muons are among the most reliable
objects within LHCb

0(+0+0)

—

There seems to be BSM LFNU

and the effect is in uu, not ee /
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Recap of flavor anomalies: b — ¢

First discrepancy found
by BaBar in 2012
in both R(D) and R(D*)

0.2937 . +0.015

0.336 = 0.027 +0.030

0.302 * 0.030 +0.011

(
‘nﬂ""ak““é

R(D*) state-of-the-art, as of Moriond 2016 (Goldenzweig, Belle)

0.332 + 0.024 = 0.018 :
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in both R(D) and R(D*)
PR B s

0.332 + 0.024 = 0.018

0.2937 . +0.015

0.336 = 0.027 +0.030

2015: BaBar's R(D*)

0.302 + 0.030 +0.011 ——s confirmed by LHCb

(
‘nﬂ""ak““é

R(D*) state-of-the-art, as of Moriond 2016 (Goldenzweig, Belle)
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Recap of flavor anomalies: b — ¢

First discrepancy found
by BaBar in 2012
in both R(D) and R(D*)

0.332 + 0.024 = 0.018
2015: Belle finds a

’ more SM-like R(D*)
0.2035 5, +0.015 3 (hadronic tau's)

0.336 = 0.027 +0.030 e e

2015: BaBar's R(D*)
confirmed by LHCb

0.302 + 0.030 +0.011 —lh—
=g
o | — . — o ——

R(D*) state-of-the-art, as of Moriond 2016 (Goldenzweig, Belle)
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Recap of flavor anomalies: b — ¢

llllllllllllllIIIIIIIIIIIIIIIIIIIIIllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII“

l‘lllllll

There are long-standing discrepancies in b — c transitions as well.

BR(B» D"t v)(with t=e,u)
First discrepancy found
by BaBar in 2012
SM prediction in both R(D) and R(D*)
PRD 3352 0.003 "2 Fp
BABAR, had. 426 fb
0.332 + 0.024 = 0.018 —— PRL mgawlnaa%z[{zmz: a )
2015: Belle finds a
: 4 more SM-like R(D*)
u.ﬂﬂm +0.015 —— %“;3'5?%7'"1 ?E'Qn?’sﬂ Bl . (hadronic tau's) )
LA £ BT & i LFEE‘GE’M&&?—J&%" 1391 )
2015: BaBar's R(D*)
8.303 + 0.000 + G011 Belle, “m“eAp [7" b confirmed by LHCb
- 3 = __A:)_, Fs:g = e \ v,
O sig —
" x & " 1 . " & X 1 " & . & 1 " . " ip E l__ ;1 x i " 1 E i X " ?E:z'
0 0.1 0.2 0.3 0.4 05 0.6
2016: Belle also starts to
R(D*) state-of-the-art, as of Moriond 2016 (Goldenzweig, Belle) see an R(D*) excess

(semi-lep. tau's)
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* Each of the mentioned effects needs confirmation from Run I/
to be taken seriously
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* Each of the mentioned effects needs confirmation from Run I/
to be taken seriously

* Yet, focusing (for the moment) on the b — s discrepancies

= Q1: Can we (easily) make theoretical sense of data?

- Q2: What are the most immediate signatures to expect ?
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Concerning Q2: most immediate signatures to expect
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Concerning Q2: most immediate signatures to expect

r a new, LFNU interaction above the EWSB scale, e.g. with

sctor bosons: £ Z'C or leptoquarks: £ ¢ q
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Basic observation:

* IfR, is signaling LFNU at a non-SM level, we may also expect LFV at a non-SM level.

In fact:

* Consider a new, LFNU interaction above the EWSB scale, e.g. with

new vector bosons: L Z'C or leptoquarks: £ @ q

* In what basis are quarks and leptons in the above interaction?

Generically, it's not the mass eigenbasis.
(This basis doesn't yet even exist. We are above the EWSB scale.)
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Concerning Q2: most immediate signatures to expect

L7 \J
(3 "
0aaa iR R LR RS

Basic observation:

* IfR, is signaling LFNU at a non-SM level, we may also expect LFV at a non-SM level.

In fact:

* Consider a new, LFNU interaction above the EWSB scale, e.g. with

new vector bosons: rz'¢ or leptoquarks: Loq

* In what basis are quarks and leptons in the above interaction?

Generically, it's not the mass eigenbasis.
(This basis doesn't yet even exist. We are above the EWSB scale.)

* Rotating q and ¢ to the mass eigenbasis generates LFV interactions.
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Frequently made objection:
what about the SM? It has LFNU, but no LFV
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Frequently made objection:
what about the SM? It has LFNU, but no LFV

’,

Take the SM with zero v masses.

* Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis
(hence no LFV)

Or more generally, take the SM plus a minimal mechanism for v masses.

* Physical LFV will appear in W couplings, but it's suppressed by powers of (m_/m,,)?
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’,

Take the SM with zero v masses.

* Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis
(hence no LFV)

Or more generally, take the SM plus a minimal mechanism for v masses.

* Physical LFV will appear in W couplings, but it's suppressed by powers of (m_/m,,)?

Bofttom line: in the SM+v there is LFNU, but LFV is nowhere to be seen (in decays)
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] Frequently made objection: ’
what about the SM? It has LFNU, but no LFV
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Take the SM with zero v masses.

* Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis
(hence no LFV)

Or more generally, take the SM plus a minimal mechanism for v masses.

* Physical LFV will appear in W couplings, but it's suppressed by powers of (m_/m,,)?

Bofttom line: in the SM+v there is LFNU, but LFV is nowhere to be seen (in decays)

° But nobody ordered that the reason (=tiny m ) behind the above conclusion
be at work also beyond the SM
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Frequently made objection:
what about the SM? It has LFNU, but no LFV

’,

Take the SM with zero v masses.

* Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis
(hence no LFV)

Or more generally, take the SM plus a minimal mechanism for v masses.

* Physical LFV will appear in W couplings, but it's suppressed by powers of (m_/m,,)?

Bofttom line: in the SM+v there is LFNU, but LFV is nowhere to be seen (in decays)

* But nobody ordered that the reason (=tiny m ) behind the above conclusion
be at work also beyond the SM

Q )

So, BSMLFNU = BSM LFV (i.e. not suppressed by m )

4

D. Guadagnoli, Lepton universality



Concerning Q1: can we easily make theoretical sense of these data?
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Concerning Q1: can we easily make theoretical sense of these data?
About equal size & opposite sign
in the SM (at the m, scale)

4G, . / ™\

R = O(em R w)il— —
Honp (BIS0M) = —— thVtsE{bLY”SL- Cliyiu +( Clays ysul|

* Yes we can. Consider the following Hamiltonian

* Advocating the same (V- A) x (V — A) structure also for the corrections to C, , "
(in the uu-channel only!) would account for:

T RK lower than 1

- B—Kuyu &B,— uu BR data below predictions

—~ the P, anomaly in B — K* uu
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About equal size & opposite sign
Yes we can. Consider the following Hamiltonian

in the SM (at the m, scale)

7\

- 4Gy .o O |- e _
Hop (b2301) = ===V, V, 22 Boy's, (Clayiu +( Clayaysul]

Advocating the same (V — A) x (V — A) structure also for the corrections to C, , "
(in the uu-channel only!) would account for:

T RK lower than 1

- B—Kuyu &B,— uu BR data below predictions

—~ the P, anomaly in B — K* uu

A fully quantitative test requires a global fit.

new physics contributions to the Wilson coefficients. We find that the by far largest de-
crease in the y? can be obtained either by a negative new physics contribution to Cy (with
CoF ~ —30% x CSM), or by new physics in the SU(2);, invariant direction CYY = —CNF,
(with CYF ~ —12% x C5M). A positive NP contribution to Cjg alone would also improve the
fit, although to a lesser extent. [Altmannshofer, Straub, EPJC '15]

For analogous conclusions, see also [Ghosh, Nardecchia, Renner, JHEP '14]
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Model example:
Glashow, DG, Lane, PRL 2015
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Model example:
Glashow, DG, Lane, PRL 2015

can be generated from a purely 3°-generation interaction of the kind

expected e.
partial-compositeness
frameworks

el = GE'Lykb’Lf'LYKT’L

e /A, < G,
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Model example:
Glashow, DG, Lane, PRL 2015

As we saw before, all b — s data - C (j) ~ —C (1? (V — A structure)

are explained at one stroke |if: (W (e)
Conel > [Conel  (LFNU)

This pattern can be generated from a purely 3°-generation interaction of the kind

i A A = ted e.g. in
H — G b ' b ' T ' T ' expec g
i LY LTty partial-compositeness

_ 5 frameworks
with G = 1/A, < G;

Note: primed fields

~ Fields are in the “gauge” basis (= primed)
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Model example:
Glashow, DG, Lane, PRL 2015

As we saw before, all b — s data - C (91?) ~ —C (12) (V — A structure)

are explained at one stroke |if: (W (e)
= [Conel > [Conel — (LFNU)

This pattern can be generated from a purely 3°-generation interaction of the kind

i A A = ted e.g. in
H — G b ' b ' T ' T ' expec g
i LY LTty partial-compositeness

_ 5 frameworks
with G = 1/A,, < G,

Note: primed fields

~ Fields are in the “gauge” basis (= primed) mass

~ They need to be rotated to the mass eigenbasis &5 b', = (d',), = (Ui)m d,),

A
T
Il
—
SR
-
N
w

1
e~ <%
=

—
)
h

~
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Model example:
Glashow, DG, Lane, PRL 2015

As we saw before, all b — s data - C (91?) ~ —C (12) (V — A structure)
are explained at one stroke |if: (W (e)
= |Conel > [Conel  (LFNU)

This pattern can be generated from a purely 3°-generation interaction of the kind

i A A = ted e.g. in
H — G b ' b ' T ' T ' expec g
i LY LTty partial-compositeness

_ 5 frameworks
with G = 1/A,, < G,

Note: primed fields

~ Fields are in the “gauge” basis (= primed) mass

~ They need to be rotated to the mass eigenbasis &5 b', = (d',), = (Ui)m d,),

A
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—
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e~ <%
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= This rotation induces LFNU and LFV effects
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Explaining b — s data
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Explaining b — s data

D. Guadagnoli, Lepton universality



Explaining b — s data

2 C, Wilson coeff. in the uu-channel becomes

j kSM C'9,SM i (UL)EB(U;;)BZKU?)BZF

&
2
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Explaining b — s data

The NP contribui
opposite sign t

(UDxl(U}
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Explaining b — s data

. . kg, (SM norm. factor)
* Recalling our full Hamiltonian

S 4G, . oy [ — 0
Hoynp(D2511) = —WF VoVe By"s,-[CV my,u + Cl wy, yaul]

the shift to the C, Wilson coeff. in the uu-channel becomes

The NP contribution has
opposite sign than the SM one if

*

kSM C(SM) i kSM C9,SM i (U(Ii)SB(Ug)32|(UIé:)32|2

N[O

G (US)SEl

* On the other hand, in the ee-channel

*

(UD)s(UD)al(Ug)yf

e G
Ksm C(g) = kgy Cosm *+ B
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Explaining b — s data

. . kg, (SM norm. factor)
* Recalling our full Hamiltonian

4GF = Aoy )

Hgyn(b¥S11) = 7 VioVis 7 QYAY5M”

[BLYKSL ' (Cgu) wy,u + C(fg

the shift to the C, Wilson coeff. in the uu-channel becomes

The NP contribution has
opposite sign than the SM one if

G . ~
kSM C(M) i kSM C9,SM i E (U(Ii)SB(Ug)32|(U£)32|2 !
G (UL)SZ i O

* On the other hand, in the ee-channel
The NP contrib. in the ee-

(e) G i channel is negligible, as
ke Co’ = kg Cogn + o (U UL)31| o il .
|(UL)31| < |(UL)32|
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Explaining b — s data
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Explaining b — s data

CYP+cle  2leh'f

factors of 2:
equal contributions from |C |* and |C, |?
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Explaining b — s data

CyP+IchP 2l +oCul
cP+lcsE  2lic 't

&

factors of 2:
equal contributions from |C |* and |C, |?

BR(BS_)MM)exp

m - BR(B,2uuly,

_ BR(B,2uu)yn

_ o, f

Cot
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* So, in the above setup

_IcP+chP t2leR +Cyf
oy ot ] oy

g ~.J7

equal contributions from |C |? and |C, |?

K

factors of 2:

* Note as well

0772020 = BRBAMMey _ BRIBAUW e _ [Cio +3Csf

BR(B,2uu)y,  BR(B,~>uu)g, ICMP
implying (within our model) the correlations Anothe
~ fo Lur, 900 reqs
the B j/Ue ace, /‘acyo.n
+ + ° n
BR(BS_)MM)exp ~ R ~ BR(B _)K Mu)exp . e sure/nenf
BR(B,»uu)g, © BR(B™K uu)y, iy <328 3150
\ G s Chmaltz, PRD 14 /
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LFV model signatures
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LFV model signatures

=0.1592
according to R
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LFV model signatures

Clo +8C,f

=0.1592
according to R

H'e &y et
modes
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LFV model signatures

| be |
Clo +0C,
H'e &y et

= 0.1592 modes
according to R

The current BR(E
limit yields the weak
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LFV model signatures

As mentioned: if R, is signaling BSM LFNU, then expect BSM LFV as well

BR(B'»K ue)

M 3 3
BR(B'»K uu)

|l:> BR(B'™>K'ue) < 2.2x107° -

r

8C[ |

Clo +0C |

= 0.159?

\according to R&

-

The current BR(B+ — K+ ue)
limit yields the weak bound

(Ut .
|(UL)31 (UL)32| < 37 /

t t

M BR (B+ 2K +M r) would be even more promising, as it scales with |( UL>33/ (UL )32|2
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LFV model signatures

As mentioned: if R, is signaling BSM LFNU, then expect BSM LFV as well

( )
o BR(B'2K'we) | PG | [(Ual(—
i + - SM 2| el
BR(B >K MM) Co +9C |(UL)32|

pe- &y e*
= 0.1592 modes

\according to R&

The current BR(B+ — K+ ue)
|l:> 8 |( U£)31|2 limit yields the weak bound
BR(B'™» K pe) < 22x107" - ——
( M ) |(U£)32|2 |(U£)31/(U£)32| I 3.7
~ i

M BR (B+ 2K +M r) would be even more promising, as it scales with |( Uf)33/ (Uf )32|2

M An analogous argument holds for purely leptonic modes
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Parenthesis: More quantitative LFV predictions

Reminder:

(UDT Y, U}i = ?t’

D. Guadagnoli, Lepton universality



S
»

Reminder:
* More quantitative LFV predictions require knowledge of the U, *
: (A v
(UL> Y, Up = Y,

* One approach: (DG, Lane, PLB 2015 )

= Appelquist-Bai-Piai ansatz:
the flavor-SU(3) rotations are not all independent. Choosing 3 to be the independent ones
allows to predict one SM Yukawa in terms of the other two.

4
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Parenthesis: More quantitative LFV predictions

., 3
..................................................................................................................... »

Reminder:
* More quantitative LFV predictions require knowledge of the U, *
: (A v
(UL> Y, Up = Y,

* One approach: (DG, Lane, PLB 2015 )

= Appelquist-Bai-Piai ansatz:

the flavor-SU(3) rotations are not all independent. Choosing 3 to be the independent ones
allows to predict one SM Yukawa in terms of the other two.

= One can thereby determine Y ,in terms of Y and Y

4
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Parenthesis: More quantitative LFV predictions

S ",

Reminder:
* More quantitative LFV predictions require knowledge of the U, *

e ¥
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* One approach: (DG, Lane, PLB 2015 )

= Appelquist-Bai-Piai ansatz:
the flavor-SU(3) rotations are not all independent. Choosing 3 to be the independent ones
allows to predict one SM Yukawa in terms of the other two.

= One can thereby determine Y ,in terms of Y and Y

= Butwe don't know Y and Y, entirely, so we take an (independently motivated) model for them,
reproducing quark masses and the CKM matrix [Martin-Lane, PRD 20085].
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Parenthesis: More quantitative LFV predictions
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Reminder:

’
%,

* More quantitative LFV predictions require knowledge of the U, *

¥
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* One approach: (DG, Lane, PLB 2015 )

= Appelquist-Bai-Piai ansatz:
the flavor-SU(3) rotations are not all independent. Choosing 3 to be the independent ones
allows to predict one SM Yukawa in terms of the other two.

= One can thereby determine Y ,in terms of Y and Y

= Butwe don't know Y and Y, entirely, so we take an (independently motivated) model for them,
reproducing quark masses and the CKM matrix [Martin-Lane, PRD 20085].

* Another approach: (Boucenna, Valle, Vicente, PLB 2015 )

= One has (U)" U = PMNS matrix
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Parenthesis: More quantitative LFV predictions
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Reminder:

’
%,

* More quantitative LFV predictions require knowledge of the U, *

¥
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* One approach: (DG, Lane, PLB 2015 )

= Appelquist-Bai-Piai ansatz:
the flavor-SU(3) rotations are not all independent. Choosing 3 to be the independent ones
allows to predict one SM Yukawa in terms of the other two.

= One can thereby determine Y ,in terms of Y and Y

= Butwe don't know Y and Y, entirely, so we take an (independently motivated) model for them,
reproducing quark masses and the CKM matrix [Martin-Lane, PRD 20085].

* Another approach: (Boucenna, Valle, Vicente, PLB 2015 )

= One has (U)" U = PMNS matrix

= Taking U, = 1, U, can be univocally predicted
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More on LFV model signatures
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Bottom line: we can reasonably expect one of the B — K" decays in the 108 ballpark
and one of the B — £t" decays in the 10-"° one, namely ~ 5% of BR(B, — uu)

The most suppressed of the above modes is most likely B, — u e.
(The lepton combination is the farthest from the 3™ generation, and it's chirally suppressed.)
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* Bottom line: we can reasonably expect one of the B — K{(" decays in the 108 ballpark
and one of the B — £t" decays in the 10-"° one, namely ~ 5% of BR(B, — uu)

* The most suppressed of the above modes is most likely B, — u e.
(The lepton combination is the farthest from the 3™ generation, and it's chirally suppressed.)

« What about B, — ey ?

= v = “hard” photon

(hard = outside of the di-lepton
Invariant-mass signal window)

L

Chiral-suppression factor, of O(mp /mg)?
replaced by a__/ 1T suppression
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Bottom line: we can reasonably expect one of the B — K" decays in the 108 ballpark
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and one of the B — £t" decays in the 10-"° one, namely ~ 5% of BR(B, — uu)

The most suppressed of the above modes is most likely B, — u e.

(The lepton combination is the farthest from the 3™ generation, and it's chirally suppressed.)

What about B,— ey ?

Chiral-suppression factor, of O(mu /mg)?

= 0.02
replaced by a__/ 1T suppression

()-()‘l r : : ; ‘ ‘ ‘
L1 —— BR(B,—uey)
it BR(B,— U ¢)
~ vy = “hard” photon EoL
1 1 003, | |} \\
(hard'= outside o.f the d/'-/epton L\L LHCb excluded
Invariant-mass signal window) | \

(@

Enhancement by ~ 30%

Inclusion of the radiative mode more-than-
doubles statistics of the non-radiative

0.01-
)

0.00

50

100 150 200
G (units of 10‘8)
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LFV in K decays

< 1.7x10°"

BNL E871 Collab
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LFV in K decays

= 2.15
(within “model A” of DG, Lane
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................... M-Camajgp,
| ) T ALy —r g e,
* Being defined above the EWSB scale, our assumed operator G b',y"'b', T',y,t', e
must actually be made invariant under SU(3)_ x SU(2), x U(1),
............... dona
See ya, patta, Lo
: Bhattachan ara, PLB Y e _ _
B . ANRATTE ettt r r I ' il T
Shwas,.‘.‘. ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ SU(2), - Q' ¥y'Q', L'y, L, [neutral-current int's only]
“aiili N Wi g =Sl ' ‘
BTy .y
inv. =i Ayi T ] i
°Q 'lLy Q 'JL L 'JL Y, L 'IL [also charged-current int's]
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| ) T ALy —r g e,
* Being defined above the EWSB scale, our assumed operator G b',y"'b', T',y,t', e
must actually be made invariant under SU(3)_ x SU(2), x U(1),
............... dona
See ya, patta, Lo
: Bhattachan ara, PLB Y e _ _
B . ANRATTE ettt r r I ' il T
Shwas,.‘.‘. ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ SU(2), - Q' ¥y'Q', L'y, L, [neutral-current int's only]
“aiili N Wi g =Sl ' ‘
BTy .y
inv. =i Ayi T ] i
°Q 'lLy Q 'JL L 'JL Y, L 'IL [also charged-current int's]

* Thus, the generated structures are all of:

I I ! I I
iy v ' t't't't', b'b'v' v'., b'b't't', t ' b i
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* Being defined above the EWSB scale, our assumed operator G b',y"'b', T',y,t', e
must actually be made invariant under SU(3)_ x SU(2), x U(1),
............... dona
see ryas patta, Lo
3 B“a“aChan ara, PP 1O e — A =
B . ANRATTE ettt r r I ' il T
Shwas,.‘.‘. --------------- SU(2), o Q LY Q I L LYKL L [neutral-current int's only]
“aiili N Wi g =Sl ' ‘
By .y
inv. =i Ayi T ] i
°Q 'lLy Q 'JL L 'JL Y, L 'IL [also chal;ged-current int's]

* Thus, the generated structures are all of:

I I ! I I '
iy v ' t't't't', b'b'v' v'., b'b't't', ;t’b'r'v’rg

..........................
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: More signatures A,orna r 'SCuss ------------------
:"', “:: :: SO! rin . lon, e
—— PRL 14 ste'"’ Mart,'n_camal "
..................... ic
5 . 1 Ay r "
* Being defined above the EWSB scale, our assumed operator G b',y"'b', T',y,t', e
must actually be made invariant under SU(3) x SU(2), x U(1),
IIIIIIIIIIIIIIIIIIIIII n,
see: tta, 1o"4°
Bha“achaw ra, PLB R— = A _
Shwa.s..‘.‘i‘.\. ...................... SU), o Q 'L Y Q 'L L 'LYKL 'L [neutral-current int's only]
il il Wi g =Sl ' ‘
D T Y, T, :>
nv- . (_2 'IL ka 'JL L ']L Y, L 'IL [also chal;ged-current int's]
* Thus, the generated structures are all of:
t't’V'tV'T, t't'T'T', b'b'V'TV'T, b'bl,‘:!,c!, t'b'T'V'I
* After rotation to the mass basis (unprimed), the last structure contributes to T’ ( b=>ct \71-)
: | » « _ BR(B*D""t¥v) .
Can explain BaBar + Belle + LHCb deviations on R(D""’) = —
= BR(B»D""t'v,) »
'«..‘ ................................................................................................................................................................................................................................ r.»‘
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But this coin has a flip side

See also:
: Calibbi, Crivellin, Ota, PRL 2015 :

e R
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cations to LEP-measured Z — ¢ couplings
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But this coin has a flip side

See also:
: Calibbi, Crivellin, Ota, PRL 2015 :

e R

ations to LEP-measured Z — ¢ couplings

eaking effectsint— £vv  (tested at per mil accuracy)
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* Properly taking into account RGE running from the NP scale to the scale(s) of the low-energy
processes, one finds non-trivial constraints from:

: See also: :
= B>Kw  Calibbi, Crivellin, Ota, PRL 2015

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
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-

= LFU-breaking effectsin t— £vv  (tested at per mil accuracy)

The latter are the most dangerous.
They “strongly disfavour an explanation of the R(D(*)) anomaly model-independently”

H
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N 4
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* Properly taking into account RGE running from the NP scale to the scale(s) of the low-energy
processes, one finds non-trivial constraints from:

: See also: :
= B>Kw  Calibbi, Crivellin, Ota, PRL 2015

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
.

= LFU-breaking effectsin t— £vv  (tested at per mil accuracy)

The latter are the most dangerous.
They “strongly disfavour an explanation of the R(D(*)) anomaly model-independently”

)
3
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

* Also LFV decays of leptons are generated, and they provide sensitive probes.
E.g.:
BR(t » 3u) & BR(t = up) ~ 5x10°°
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Some models explaining R, and R(D¥)
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Some models explaining R, and R(D¥)

J does all the job: (chl. Ajit,L ;o
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Some models explaining R, and R(D¥)
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g does all the job: Q. %
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Some models explaining R, and R(D¥)

W|th a down type Iepton :
or viceversa

ortions (making a tree diag.) contribute to B — D 1v
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Some models explaining R, and R(D¥)

.
K
»

ij

J does all the job: (ch,- A

ions (making a tree diag.) contribute to B — D 1v

ortions (making a box) contribute to B — K £

I———————
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Some models explaining R, and R(D*) :

» Introduce one single leptoquark scalar, transforming as (3, 1, —1/3) Bauer Neb .............. |
: P "Veube
under SU(3), x SU(2), x U(1), : "RL207g o
Picks up an up-type quark e,
..... with a down-type lepton
o or viceversa
» One coupling does all the job: Q_CLI. )\U I 1:2:§L Lj )
b v

o

—= Two insertions (making a tree diag.) contribute to B — D 1v

—=  Four insertions (making a box) contribute to B — K ¢

b ——deemmaeeenl—

* WithM,~ 1 TeV and O(1) generation-diagonal
couplings, contributions are just the right size

N 4
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One model explaining all flavor
anomalies and the diphoton resonance

BUtt
lSIdOr, M’ C;rello
1604 03 occa
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One model explaining all flavor
anomalies and the diphoton resonance
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* New non-Abelian strongly interacting sector with N.. new ‘techni-fermions” -
(TC fermions).
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2
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.....
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The basic idea can easily be understood in analogy to QCD:

il The TC-fermion condensate breaks spontaneously a large global symmetry
G to a smaller group H, at a scale of about 1 TeV
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* New non-Abelian strongly interacting sector with N.. new ‘techni-fermions” -
(TC fermions).
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The basic idea can easily be understood in analogy to QCD:

il The TC-fermion condensate breaks spontaneously a large global symmetry
G to a smaller group H, at a scale of about 1 TeV

M The broken G/H symmetry gives rise to (pseudo) Goldstone bosons.
‘Pseudo” because G/H is also broken explicitly by the TC-fermion masses
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One model explaining all flavor
anomalies and the diphoton resonance
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* New non-Abelian strongly interacting sector with N.. new ‘techni-fermions” -
(TC fermions).
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ey,
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The basic idea can easily be understood in analogy to QCD:

il The TC-fermion condensate breaks spontaneously a large global symmetry
G to a smaller group H, at a scale of about 1 TeV

M The broken G/H symmetry gives rise to (pseudo) Goldstone bosons.
‘Pseudo” because G/H is also broken explicitly by the TC-fermion masses

:> One of the pNGB is the 750-GeV state seen by Atlas & CMS
It couples to 2 gluons and decays to 2y via the anomaly
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One model explaining all flavor
anomalies and the diphoton resonance:
continued
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One model explaining all flavor
anomalies and the diphoton resonance:
continued

\:\ tor mesons couple to techni-baryons, which in turn linearly mix

ith SM fermions.
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One model explaining all flavor
anomalies and the diphoton resonance:
continued
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m There are also vector mesons, like QCD's rho. .,
Their coupling to quarks and leptons explains the flavor anomalies.
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» Vector mesons couple to techni-baryons, which in turn linearly mix
with SM fermions.

* To explain the flavor deviations, the mixing
needs be hierarchical across generations
(largest for the 3" one, as in partial compositeness)

Ysm
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One model explaining all flavor
anomalies and the diphoton resonance:
continued S —

m There are also vector mesons, like QCD's rho. M,
Their coupling to quarks and leptons explains the flavor anomalies.

laag
Yag,
2
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........

» Vector mesons couple to techni-baryons, which in turn linearly mix
with SM fermions.

* To explain the flavor deviations, the mixing
needs be hierarchical across generations
(largest for the 3" one, as in partial compositeness)

Ysm

» Integrating out the vector mesons then yields
B automatically (among the others) the effective

\\ operator
’lf)m-f

Hy, =G E'Lykb'L T, YT,

proposed in [Glashow, DG, Lane, PRL 15]
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ments: Results are consistent between LHCb and B factories.
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Conclusions

* In flavor physics there are by now several persistent discrepancies with respect to the SM.

Their most convincing aspects are the following:

it Experiments: Results are consistent between LHCb and B factories.

m Data: Deviations concern two independent sets of data: b — s and b — ¢ decays.

m Data vs. theory: Discrepancies go in a consistent direction.
A BSM explanation is already possible within an EFT approach.
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Conclusions

* In flavor physics there are by now several persistent discrepancies with respect to the SM.

Their most convincing aspects are the following:

it Experiments: Results are consistent between LHCb and B factories.

m Data: Deviations concern two independent sets of data: b — s and b — ¢ decays.

m Data vs. theory: Discrepancies go in a consistent direction.

A BSM explanation is already possible within an EFT approach.

* Early to draw conclusions. But Run Il will provide a definite answer

* Timely to propose further tests. One promising direction is that of LFV.
Plenty of channels, many of which largely untested.

D. Guadagnoli, Lepton universality
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