Dark Matter and Flavor Violation

Mu-Chun Chen, University of California, Irvine

Based on work done with Jinrui Huang (Los Alamos) and Volodymyr Takhistov (→ UCLA) JHEP 1602 (2016) 060 [arXiv:1510.04694]

The 2nd International Conference on Charged Lepton Flavor Violation, Charlottesville, Virginia, June 20, 2016

Dark Matter Evidence

Identity of dark matter? What is its mass? Possible interactions?

Flavored Dark Matter

- Dark matter come in multiple copies
- Non-trivial flavor structure in couplings to quarks and leptons
 - distinct signatures
- FCNC constraints
 - universal couplings
 - minimal flavor violation Batell, Pradler, Spannowsky (2011)
 - beyond MFV: "dark minimal flavor violation" Agrawal, Blanke, Gemmler (2014)
 - dark matter coupling: only new source of flavor violation
 - implemented in quark sector
 - lepton sector unexplored ⇒ this work

Minimal Flavor Violation with SM gauge group

Beyond Minimal Flavor Violation

The Model - Particle Content

	$SU(3)_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	$SU(3)_Q$	$\mathrm{SU}(3)_U$	$\mathrm{SU}(3)_D$	$\mathrm{SU}(3)_L$	$\mathrm{SU}(3)_E$	$\mathrm{SU}(3)_{\chi}$
Q_L	3	2	1/6	3	1	1	1	1	1
u_R	3	1	2/3	1	3	1	1	1	1
d_R	3	1	-1/3	1	1	3	1	1	1
L_L	1	2	-1/2	1	1	1	3	1	1
e_R	1	1	-1	1	1	1	1	3	1
H	1	2	1/2	1	1	1	1	1	1
ϕ	1	1	-1	1	1	1	1	1	1
χ	1	1	0	1	1	1	1	1	3
Y_U	1	1	0	3	$\overline{3}$	1	1	1	1
Y_D	1	1	0	3	1	$\overline{3}$	1	1	1
Y_E	1	1	0	1	1	1	3	3	1
λ	1	1	0	1	1	1	1	3	$\overline{3}$

The Model - Lagrangian

Dark Matter Stability

Dark Matter Stability

Model Assumptions

MFV limit: (i) $SU(3)_x \in SU(3)_E$: $\lambda_{ij} = (\alpha \ 1 + \beta [Y_E^+ Y_E])_{ij}$ $\mathcal{M}_{ij} = (\mathcal{M}_{\chi} 1 + \Delta_m [\Upsilon_E^+ \Upsilon_E])_{ij}$ (ii) $SU(3)_{x} = SU(3)_{L} : \lambda_{ij} = (Y_{E})_{ij}$ $\mathcal{M}_{ij} = \left(\mathcal{M}_{\chi} \mathbf{1} + \Delta_{m} \left[\mathbf{Y}_{E}^{\dagger} \mathbf{Y}_{E} \right] \right)_{ij}$ BMFV 213 : unrestricted $m_{ij} = (m_x 1 + \Delta_m [x^{\dagger} x])_{ij}$ RG induced mass splitting: $\Delta_m \sim \frac{1}{16\pi^2} \ln\left(\frac{m_{\chi}}{\Lambda^2}\right)$, $\Lambda: \frac{SU(3)\chi}{breaking}$ scale assume near degenerate Mza = Mz, a=1,2,3 $M_{\phi} > M_{\chi} \quad \omega / \quad \phi \rightarrow \chi \overline{e}_{\mu} \quad (100'/.)$

Constraints: cLFV

Constraints: cLFV

Rather tightly constrained

Constraints: cLFV

Constraints: Muon (g-2)

$$a_{\mu}^{\exp} \equiv \frac{g_{\mu} - 2}{2} \equiv \frac{\mu_{\mu}}{(e\hbar/2m_{\mu})} - 1 = (11659208.9 \pm 6.3) \times 10^{-10}$$
$$a_{\mu}^{SM} = (11659182.8 \pm 4.9) \times 10^{-10}$$
$$a_{\mu}^{diff} = a_{\mu}^{\exp} - a_{\mu}^{SM} = (26.1 \pm 8.0) \times 10^{-10}$$
$$\mathsf{BMFV:} \qquad \delta a_{\mu} = -\frac{m_{\mu}^{2}}{192\pi^{2}m_{\phi}^{2}} \Big[\sum_{i=1}^{3} (\lambda_{2i}^{*}\lambda_{2i}) \Big] F_{1}(x)$$

contributions $< 0 \Rightarrow$ increase the discrepancy

Constraints: Relic Abundance

Za li multiple DM species w/ distinc masses. self-annihilation Xa Xa > li Ij Za Ej $\langle \sigma V \rangle_{\chi_a \overline{\chi}_a} \sim \lambda_{ia} \lambda_{ja} \lambda_{ia} \lambda_{ja} \frac{m_{\chi_a}}{(m_{\chi_a}^2 + m_{\phi}^2)^2}$ Highly degenerate DM species : Mxa = Mxb = Mxc Xa li → Xb lj fast => co-annihilation dominates $\langle \sigma v \rangle_{ess} \sim \sum_{i,j=e,\mu,\tau} \left[\sum_{a,b=1,2,3} \langle \sigma v \rangle_{\chi_a \overline{\chi}_b} \rightarrow li \overline{l_j} \right]$ correct relic abundance => < OU / eff = 2.2 × 10 cm/s

Constraints: Relic Abundance

BMFV (λ_0): more channels opened up

BMFV (λ_1): similar to MFV

Constraints: DM Direct Detection

- no direct tree-level couplings of lepton flavored DM to target nucleus
 - DM scattering off target electrons at tree-level
 Kopp, Niro, Schwetz, Zupan (2009)
 - through photon exchange at one loop: dominant!

Constraints: DM Direct Detection

LUX: Xenon, A = 129, Z = 54

BMFV (λ_0): more channels opened up

BMFV (λ_1): similar to MFV

Constraints: Indirect Detection - AMS

Constraints: Indirect Detection - Fermi-LAT

@ Hadron Collider

@ Hadron Collider

@ Hadron Collider

@ Lepton Collider

@ Lepton Collider

Decaying DM

- Without the additional stabilizing symmetry: $\chi \rightarrow \text{lepton} + \text{meson}$
- e.g. $\begin{pmatrix} \frac{\lambda Y_D Y_U^{\dagger}}{\Lambda^2} \end{pmatrix} \chi \overline{e_R} d_R \overline{u_R} \implies \chi \to e^+ \pi^- \\ \begin{pmatrix} \frac{\lambda Y_E Y_D}{\Lambda^2} \end{pmatrix} \chi d_R \overline{LQ} = \begin{pmatrix} \frac{\lambda Y_E Y_D}{\Lambda^2} \end{pmatrix} \chi d_R \{ \overline{\nu_L} \overline{d_L} - \overline{e_L} u_L \} \implies \chi \to \overline{\nu} \pi^0 , \ \chi \to e^+ \pi^- \\ \begin{pmatrix} \frac{\lambda Y_E Y_U^{\dagger}}{\Lambda^2} \end{pmatrix} \chi \overline{u_R} \overline{LQ} = \begin{pmatrix} \frac{\lambda Y_E Y_U^{\dagger}}{\Lambda^2} \end{pmatrix} \chi \overline{u_R} \{ \overline{\nu_L} d_L - \overline{e_L} u_L \} \implies \chi \to \overline{\nu} \pi^0 , \ \chi \to e^+ \pi^- \\ \begin{pmatrix} \frac{\lambda Y_E^{\dagger}}{\Lambda^2} \end{pmatrix} \chi e_R \overline{LL} = \begin{pmatrix} \frac{\lambda Y_E^{\dagger}}{\Lambda^2} \end{pmatrix} \chi e_R \{ \overline{\nu_L} e_L - \overline{e_L} \overline{\nu_L} \} \implies \chi \to \overline{\nu} e^+ e^-$ Mimic RPV neutralino decays
- DM lifetime

$$\tau_{\chi} \sim 10^{26} \mathrm{s} \left(\frac{1}{f(\lambda, \lambda^{\dagger}, Y, Y^{\dagger})}\right)^2 \left(\frac{\mathrm{TeV}}{m_{\chi}}\right)^5 \left(\frac{\Lambda}{10^{15} \mathrm{~GeV}}\right)^4$$

• c.f. age of the universe

 $\tau_{univ.} \sim 4.3 \times 10^{17} \mathrm{s}$

Summary

- Lepton Flavored DM: beyond MFV with SU(3)χ
- Contrast to quark flavored DM case: no automatic stabilizing symmetry
- Most stringent constraints from cLFV processes
- Interesting collider signatures
- UV Theory of (B)MFV?

26th International Workshop on Weak Interactions and Neutrinos (WIN2017)

6/19 - 24/2017

University of California, Irvine

Please check back soon for details!

http://www.physics.uci.edu/WIN2017/index.html

Department of Physics and Astronomy University of California Irvine Irvine California, 92697-4575

local organizing contact information: Mu-Chun Chen (UC Irvine) Michael Smy (UC Irvine)

DEPARTMENT OF PHYSICS & ASTRONOMY UNIVERSITY of CALIFORNIA · IRVINE