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Outline
• Muonic atoms 

• Muon electron coherent conversion 

• Spectrum of the bound muons 

• Central region 

• Endpoint region 

• Radiative correction to the spectrum
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Muonic atoms & 
Muon electron conversion



General characteristic
One of the electrons is replaced by a muon 

Muon orbit is much smaller than the electron orbit 

Much larger momentum 

Muons are more sensitive to the structure of the 
nucleus 

Muon can be captured by the nucleus or it can 
decay

rµ
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mµ

1

mµ
< rN
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Muon DIO

Muon DIO: standard muon 
decay into an electron and two 
neutrinos, with the muon and a 
nucleus forming a bound state 

For DIO momentum can be 
exchanged between the 
nucleus and both the muon 
and the electron 

Al

μ

e

⌫̄e ⌫µDIO — Decay In Orbit
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Al

μ

Muon electron coherent 
conversion

Al

Ee ⇡ mµ e

Neutrinos not produced 
CLFV
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Why conversion?
Plethora of models gives large CLFV 
Muon g-2 discrepancy 

3.5 
3.3 
3.3

�

�

(Chakraborty, Davies, de Oliveira, Koponen, Lepage, 2016)Lattice calculation
e+e� + ⌧ (Jegerlehner, Szafron, 2011)

� (Hagiwara, Liao, Martin, Nomura,  Teubner, 2011)e+e�

Proton radius puzzle 
Today’s LHC statistical fluctuations

Signal is clean and the background is small 
SM background can be well understood
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Characteristic scales of 
muonic atom

Al

μ

MAl � mµ � mµZ↵ � mµ(Z↵)2

MAl

mµ

Z↵mµ

(Z↵)2mµ

nucleus mass

muon mass

muon momentum

muon binding energy

electron cloud ⇠ me
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DIO Spectrum

1

2
mµ mµ

DIO

Free muon

Conversion  
signal
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Endpoint energy

Eb ⇡ �mµ
(Z↵)2

2
Binding energy

Erec ⇡ �
m2

µ

2mN

Recoil energy 

Both corrections decrease the endpoint energy

(kinetic energy of the nucleus)(+ higher orders)
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E
max

= mµ + Eb + E
rec
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…but energetic 
charged 
particles  are  
accompanied 
by radiation…
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(theoretical perspective)



Conversion spectrum

µ e

N

µ e

N

Emission of photons decreases the electron energy

Types of photons: 
A. hard 
B. soft 
C. ultrasoft

E� ⇠ mµ

E� ⇠ mµZ↵

E� ⇠ mµ(Z↵)2

pep� ⇠ m2
ecollinear
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Conversion spectrum
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Requires NRQED 
(see orthopositronium case)



Signal is  
reduced by  
the radiative 
corrections
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Signal is  
reduced by  
the radiative 
corrections
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Signal window [MeV] 0.1 1.5 2.0

Universal part 0.861 0.923 0.930

Model I 0.861 0.923 0.930

Model II 0.861 0.924 0.930

Model III 0.858 0.921 0.927

Corrections to the 
conversion signal

Details of the model are not important! 

Number of 
electrons  
that can reach 
the detector per 
one conversion
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Bound muon spectrum
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Why study bound muon 
spectrum? 

 Background for a conversion process 

 If not CLFV is found then at least we will have precise 
measurement of the DIO spectrum 

 Underlying physics! 

 Many similarities with the heavy quark decay where the 
perturbation theory breaks down at a scale  

 For muons, pure theoretical calculation is possible without 
input from experiments

⇠ ⇤QCD
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Bound muon 
spectrum

Heavy quarks 
physics

Shape function

pQCD 
methods

Endpoint  
expansion

NRQED 
pNRQED

Ultrasoft 
corrections

SCET & 
QCD factorization 

theorems 

Leading 
logarithms

Quark 
fragmentation 

function

QED 
corrections to 

free muon
Region 

expansion

Numerical 
Dirac Equation 

solution

Schwinger 
background field 

method
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DIO spectrum regions

Central  

End- 
point 

Region

•Measured by the TWIST 
experiment in 2009 

•Muon motion dominates

•Background for the 
conversion experiments 

•Will be measured in 
conversion experiments 
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Ee ⇠ mµ

Ee ⇠
mµ
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Central region

Free muon decay is the Leading Order effect 

Binding effects are only a correction  

Typical momentum transfer between nucleus and 
muon is of the order of  

Binding effects need to be re-summed; wave-
function cannot be expanded

mµZ↵

 (q) ⇠ 1
⇥
q2 +m2

µ(Z↵)
2
⇤2
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Factorization 
(shape function)

Following QCD approach a factorization theorem can 
be derived 

d�DIO

dEe
=

d�free

dEe
⌦ S

Free muon spectrum 
It is associated with the 
hard scale mµ

QED Shape function 
It is associated with the 
soft scale mµZ↵

Separation of scales mµZ↵ ⌧ mµ
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QCD case:  
Neubert 1993; Mannel, 
Neubert 1994; Bigi, 
Shifman,Uraltsev, 
Vainshtein, 1994



Shape function
For a point-like nucleus, the LO shape function can 
be calculated analytically

S(�) =
8m5

µZ
5↵5

3⇡
⇥
�2 +m2

µZ
2↵2

⇤3 .
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Shape function
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Z
d��S(�) = 0

Scaling 
First moment is zero 

�DIO = �0 +O(Z2↵2)

Szafron, Czarnecki, 2015
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and their relation to the TWIST data
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NLO
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Czarnecki, Dowling,  
Garcia i Tormo,  
Marciano, Szafron; 2014
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Endpoint Region 
(conversion background)

• Free muon spectrum is nonexistent in this region 

• Binding effects constitute the LO terms 

• Typical momentum transfer between the nucleus 
and the muon is large (             ) 

• Both wave functions and propagators can be 
expanded in powers of Z↵

End- 
point 

RegionEe ⇠ mµ

q2 ⇠ m2
µ
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Endpoint expansion
Near the endpoint, the dominant contribution comes 
from the exchange of hard virtual photons. 

mµ

�Free

d�

dEe
⇡ 1024

5⇡
(Z↵)5

✓
�

mµ

◆5

� = E
max

� E
e

µ

Nucleus

eµ µ ee

q2 = �m2
µ

Szafron, Czarnecki; 2015
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Local  
interaction



Phase space suppression
µ ee

µ

Nucleus

eµ

µ

Nucleus

e

νµ

νe

Z
d3⌫

⌫0

d3⌫0
⌫0

� (�� ⌫0 � ⌫0) . . . /⌫ . . . /⌫ ⇠ �5

Each neutrino gives 3 powers of �

Can be used to constrain effective BSM operators!



Binding suppression
µ ee µ
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eµ

|M|2 ⇠ | (0)|2 ⇥
��V (m2

µ)
��2 ⇠ (Z↵)3 ⇥ (Z↵)2

V (k2) ⇠ �Z↵

k2

N

µ�

N

e�

⇠ | (0)|2

N

µ�

N

e�

⇠ | (0)|2 ⇥
��V (m2

µ)
��2

| (0)|2 ⇠ (Z↵)3



Endpoint Radiative 
Correction

d�
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Background 
suppression 

~15%
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Endpoint Radiative 
Correction

• Soft vacuum polarization correction to the muon 
wave-function at the origin (running to              )mµZ↵
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Endpoint Radiative 
Correction

• Soft vacuum polarization correction to the muon 
wave-function at the origin (running to              )

• Hard vacuum polarization 
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Endpoint Radiative 
Correction

• Soft vacuum polarization correction to the muon 
wave-function at the origin (running to              )

• Hard vacuum polarization 

• Soft photon emission
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Endpoint Radiative 
Correction

• Soft vacuum polarization correction to the muon 
wave-function at the origin (running to              )

• Hard vacuum polarization 

• Soft photon emission

• Hard correction
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Interpolating between regions

We also need to know the spectrum for 
intermediate electron energies 

We have identified the leading corrections and it 
is possible to calculate them! 

1. Real radiation can be approximated by taking into 
account collinear photon emission 

2. Vacuum polarization can be included when we 
solve the Dirac equation numerically
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Vacuum polarization 

Electron loop generates 
long distance potential 
and this leads to large 
logarithmic corrections

ln
mµ

me

ln
Z↵mµ

me

V (r) = �Z↵

r
+ Z↵

↵

⇡
VU (r,me)

q2 ⇠ m2
µ

e e

N N

e�, µ� e�, µ�

30

r ⇠ 1

me
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mµZ↵
Atom sizeCorrection  
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Soft-Collinear Factorization

e�

�

e� e�

�

= ⌦

with the perturbative fragmentation function

De(x) = �(1� x) +
↵

2⇡
ln

 
m

2
µ

m

2
e

!
P

(0)
ee (x) + . . .

d�LL

dEe
=

d�LO

dEe
⌦De
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LL+VP

LL only

VP only
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Correction to the DIO spectrum



LL only

LL+VP
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Endpoint region
Vacuum Polarization correction 

is very important! 

N N

e� e�e�, µ�
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Vacuum polarization correction
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Exponentiation 

Soft photons 
exponentiated

Fixed order

Near the endpoint emission of soft photons is  
logarithmically enhanced 

↵

⇡
�S ln

✓
E

max

� Ee

E
max

◆
!

✓
E

max

� Ee

E
max

◆↵
⇡ �S
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Fixed order
Exponentiated

Exponentiation 
Bin Size 1 MeV 0.5 MeV 0.1 MeV

Fixed order/
Exponentiated 0.2% 0.4% 0.8%
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Summary
• Conversion spectrum is not sensitive to the BSM 

model 

• We can correctly reproduce TWIST measurement 

• Vacuum polarization gives large, nonfactorizable 
correction to the DIO spectrum 

• Endpoint spectrum is very sensitive to the binding 
energy (Lamb shift)  

• Large finite nucleus size effects 
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U
nknow

n region

Summary
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1

DIO spectrum — 
a quantity that is 
changing by more 
than 16 orders is 
calculated 
including the 
leading 
corrections 

If you want to discover New Physics, first
you have to understand the Standard Model 
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Backup 
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