Decay of a bound muon

Robert Szafron

CLFV2016 June 20-22, 2016 Charlottesville

1

Outline

- Muonic atoms
- Muon electron coherent conversion
- Spectrum of the bound muons
 - Central region
 - Endpoint region
 - Radiative correction to the spectrum

Muonic atoms & Muon electron conversion

General characteristic

- * One of the electrons is replaced by a muon
- * Muon orbit is much smaller than the electron orbit $\frac{r_{\mu}}{r_{e}} \sim \frac{m_{e}}{m_{\mu}}$
 - * Much larger momentum
 - * Muons are more sensitive to the structure of the $\;\frac{1}{m_{\mu}} < r_{N}\;$ nucleus
- Muon can be captured by the nucleus or it can decay

Muon DIO DIO — Decay In Orbit

- Muon DIO: standard muon decay into an electron and two neutrinos, with the muon and a nucleus forming a bound state
- For DIO momentum can be exchanged between the nucleus and both the muon and the electron

~39%

Muon electron coherent conversion

Why conversion?

- Plethora of models gives large CLFV
- Muon g-2 discrepancy
 - 3.5σ Lattice calculation (Chakraborty, Davies, de Oliveira, Koponen, Lepage, 2016)
 - $3.3\sigma \ e^+e^- + \tau$ (Jegerlehner, Szafron, 2011)
 - $3.3\sigma e^+e^-$

(Hagiwara, Liao, Martin, Nomura, Teubner, 2011)

- Proton radius puzzle
- Today's LHC statistical fluctuations

Signal is clean and the background is small
 SM background can be well understood

 $M_{Al} \gg m_{\mu} \gg m_{\mu} Z \alpha \gg m_{\mu} (Z \alpha)^2$

 $M_{Al} \gg m_{\mu} \gg m_{\mu} Z \alpha \gg m_{\mu} (Z \alpha)^2$

DIO Spectrum

Both corrections decrease the endpoint energy

Conversion signal (theoretical perspective)

Conversion spectrum

Emission of photons decreases the electron energy

Types of photons: A. hard $E_{\gamma} \sim m_{\mu} \longrightarrow$ collinear $p_e p_{\gamma} \sim m_e^2$ B. soft $E_{\gamma} \sim m_{\mu} Z \alpha$ C. ultrasoft $E_{\gamma} \sim m_{\mu} (Z \alpha)^2$

Conversion spectrum

Emission of photons decreases the electron energy

Corrections to the conversion signal

Signal window [MeV]	0.1	1.5	2.0
Universal part	0.861	0.923	0.930
Model I	0.861	0.923	0.930
Model II	0.861	0.924	0.930
Model III	0.858	0.921	0.927

Number of electrons that can reach the detector per one conversion

Details of the model are not important!

Bound muon spectrum

Why study bound muon spectrum?

***** Background for a conversion process

If not CLFV is found then at least we will have precise measurement of the DIO spectrum

***** Underlying physics!

 * Many similarities with the heavy quark decay where the perturbation theory breaks down at a scale $\sim \Lambda_{QCD}$

For muons, pure theoretical calculation is possible without input from experiments
16

DIO spectrum regions

- Measured by the TWIST experiment in 2009
- Muon motion dominates
- Background for the conversion experiments
- •Will be measured in conversion experiments

Central region

- Free muon decay is the Leading Order effect
- Binding effects are only a correction
- * Typical momentum transfer between nucleus and muon is of the order of $m_{\mu}Z\alpha$
- Binding effects need to be re-summed; wavefunction cannot be expanded

Separation of scales $m_{\mu}Z\alpha \ll m_{\mu}$

20

For a point-like nucleus, the LO shape function can be calculated analytically Szafron, Czarnecki, 2015

$$S(\lambda) = \frac{8m_{\mu}^5 Z^5 \alpha^5}{3\pi \left[\lambda^2 + m_{\mu}^2 Z^2 \alpha^2\right]^3}.$$

For a point-like nucleus, the LO shape function can be calculated analytically Szafron, Czarnecki, 2015

$$S(\lambda) = \frac{8m_{\mu}^5 Z^5 \alpha^5}{3\pi \left[\lambda^2 + m_{\mu}^2 Z^2 \alpha^2\right]^3}.$$

 λ [MeV]

For a point-like nucleus, the LO shape function can be calculated analytically Szafron, Czarnecki, 2015

$$S(\lambda) = \frac{8m_{\mu}^5 Z^5 \alpha^5}{3\pi \left[\lambda^2 + m_{\mu}^2 Z^2 \alpha^2\right]^3}.$$

For a point-like nucleus, the LO shape function can be calculated analytically

$$S(\lambda) = \frac{8m_{\mu}^5 Z^5 \alpha^5}{3\pi \left[\lambda^2 + m_{\mu}^2 Z^2 \alpha^2\right]^3}.$$

Szafron, Czarnecki, 2015

For a point-like nucleus, the LO shape function can be calculated analytically Szafron, Czarnecki, 2015

$$S(\lambda) = \frac{8m_{\mu}^5 Z^5 \alpha^5}{3\pi \left[\lambda^2 + m_{\mu}^2 Z^2 \alpha^2\right]^3}.$$

For a point-like nucleus, the LO shape function can be calculated analytically

$$S(\lambda) = \frac{8m_{\mu}^5 Z^5 \alpha^5}{3\pi \left[\lambda^2 + m_{\mu}^2 Z^2 \alpha^2\right]^3}.$$

Szafron, Czarnecki, 2015

Scaling
$$\lambda \sim m_{\mu} Z \alpha$$

First moment is zero
 $\int d\lambda \lambda S(\lambda) = 0$
 I
 $\Gamma_{\text{DIO}} = \Gamma_0 + \mathcal{O}(Z^2 \alpha^2)$

Results for real atom

Czarnecki, Dowling, Garcia i Tormo, Marciano, Szafron; 2014

and their relation to the TWIST data

 E_e [MeV]

Leading Corrections

Czarnecki, Dowling, Garcia i Tormo, Marciano, Szafron 2014

and their relation to the TWIST data

Endpoint Region (conversion background)

 $E_e \sim m_\mu$

Free muon spectrum is nonexistent in this region

End-

point

Region

- Binding effects constitute the LO terms
- Typical momentum transfer between the nucleus and the muon is large ($q^2 \sim m_\mu^2)$
- Both wave functions and propagators can be expanded in powers of $Z\alpha$

Endpoint expansion

Near the endpoint, the dominant contribution comes from the exchange of hard virtual photons. Szafron, Czarnecki; 2015

$$\frac{m_{\mu}}{\Gamma_{Free}} \frac{d\Gamma}{dE_e} \approx \frac{1024}{5\pi} (Z\alpha)^5 \left(\frac{\Delta}{m_{\mu}}\right)^5$$

$$\Delta = E_{max} - E_e$$

Phase space suppression

Each neutrino gives 3 powers of Δ

Can be used to constrain effective BSM operators!

Binding suppression $\mu^{\oplus} e^{\oplus} e^{\oplus} \mu^{\oplus} e^{\oplus}$ Nucleus

 $\left|\mathcal{M}\right|^{2} \sim \left|\psi(0)\right|^{2} \times \left|V(m_{\mu}^{2})\right|^{2} \sim (Z\alpha)^{3} \times (Z\alpha)^{2}$

 $\left|\psi(0)\right|^2 \sim (Z\alpha)^3$

$$\Delta = E_{max} - E_e$$

$$\frac{1}{\Gamma_{Free}}\frac{d\Gamma}{dE_e} = \Delta^5 \frac{1024}{5\pi m_{\mu}^6} (Z\alpha)^5 \left(\frac{\Delta}{m_{\mu}}\right)^{\frac{\alpha}{\pi}\delta_S} \left(1 + \frac{\alpha}{\pi}\delta_{VP} + \frac{\alpha}{\pi}\delta_H\right)$$

- Soft vacuum polarization correction to the muon wave-function at the origin (running to $m_\mu Z \alpha$)

Background suppression ~15%

$$\Delta = E_{max} - E_e$$

$$\frac{1}{\Gamma_{Free}}\frac{d\Gamma}{dE_e} = \Delta^5 \frac{1024}{5\pi m_{\mu}^6} (Z\alpha)^5 \left(\frac{\Delta}{m_{\mu}}\right)^{\frac{\alpha}{\pi}\delta_S} \left(1 + \frac{\alpha}{\pi}\delta_{VP} + \frac{\alpha}{\pi}\delta_H\right)$$

- Soft vacuum polarization correction to the muon wave-function at the origin (running to $m_\mu Z \alpha$)
- Hard vacuum polarization

$$\Delta = E_{max} - E_e$$

$$\frac{1}{\Gamma_{Free}}\frac{d\Gamma}{dE_e} = \Delta^5 \frac{1024}{5\pi m_{\mu}^6} (Z\alpha)^5 \left(\frac{\Delta}{m_{\mu}}\right)^{\frac{\alpha}{\pi}\delta_S} \left(1 + \frac{\alpha}{\pi}\delta_{VP} + \frac{\alpha}{\pi}\delta_H\right)$$

- Soft vacuum polarization correction to the muon wave-function at the origin (running to $m_\mu Z\alpha$)
- Hard vacuum polarization
- Soft photon emission

$$\Delta = E_{max} - E_e$$

$$\frac{1}{\Gamma_{Free}} \frac{d\Gamma}{dE_e} = \Delta^5 \frac{1024}{5\pi m_{\mu}^6} (Z\alpha)^5 \left(\frac{\Delta}{m_{\mu}}\right)^{\frac{\alpha}{\pi}\delta_S} (1 + \frac{\alpha}{\pi}\delta_{VP} + \frac{\alpha}{\pi}\delta_H)$$
28

- Soft vacuum polarization correction to the muon wave-function at the origin (running to $m_\mu Z \alpha$)
- Hard vacuum polarization
- Soft photon emission
- Hard correction

Background suppression ~15%

 $\Delta = E_{max} - E_e$

 $\frac{1}{\Gamma_{Free}}\frac{d\Gamma}{dE_e} = \Delta^5 \frac{1024}{5\pi m_{\mu}^6} (Z\alpha)^5 \left(\frac{\Delta}{m_{\mu}}\right)^{\frac{\sim}{\pi}\sigma_S} \left(1 + \frac{\alpha}{\pi}\delta_{VP} + \frac{\alpha}{\pi}\delta_H\right)$ 28

Interpolating between regions

- We also need to know the spectrum for intermediate electron energies
- We have identified the leading corrections and it is possible to calculate them!
 - 1. Real radiation can be approximated by taking into account collinear photon emission
- Vacuum polarization can be included when we solve the Dirac equation numerically

Vacuum polarization

$$V(r) = -\frac{Z\alpha}{r} + Z\alpha\frac{\alpha}{\pi}V_U(r, m_e)$$

Electron loop generates long distance potential and this leads to large logarithmic corrections

 $Z\alpha m_{\mu}$

 m_e

 $m_{\underline{\mu}}$

 m_e

ln

Soft-Collinear Factorization

with the perturbative fragmentation function

$$D_e(x) = \delta(1-x) + \frac{\alpha}{2\pi} \ln\left(\frac{m_{\mu}^2}{m_e^2}\right) P_{ee}^{(0)}(x) + \dots$$
31

Correction to the DIO spectrum

Endpoint region

Exponentiation

Near the endpoint emission of soft photons is logarithmically enhanced

Exponentiation

Summary

- Conversion spectrum is not sensitive to the BSM model
- We can correctly reproduce TWIST measurement
- Vacuum polarization gives large, nonfactorizable correction to the DIO spectrum
- Endpoint spectrum is very sensitive to the binding energy (Lamb shift)
- Large finite nucleus size effects

Summary If you want to discover New Physics, first you have to understand the Standard Model

