

Search for Muon to Electron Conversion at J-PARC MLF

The Current Status of DeeMe Experiment

Yohei Nakatsugawa KEK IMSS

Outline

Current Status
 Beamline
 Spectrometer Magnet
 Detector
 After-Proton Measurement
 Muon Production Target

Summary & Prospects

Outline

Summary & Prospects

CLFV in muon

experimental observation of CLFV process || clear evidence of the new physics beyond the Standard Model

CLFV in muon

Theoretical models beyond the Standard Model (SUSY-GUT, SUSY-seesaw, Doubly Charged Higgs, etc..)

sizable branching ratio of CLFV

predicted branching ratio = $10^{-14} \sim 10^{-18}$ (ex. SUSY-GUT)

Current upper limit from experiments

 $\mu^- N \rightarrow e^- N$ $\mu^+ \rightarrow e^+ \gamma$ SINDRUM-II : BR(μ^- Au $\rightarrow e^-$ Au) < 7 × 10^{-13}</td>MEG : BR($\mu^+ \rightarrow e^+ \gamma$) < 4.2 × 10^{-13}</td>SINDRUM-II : BR(μ^- Ti $\rightarrow e^-$ Ti) < 4.3 × 10^{-12}</td>(new!)TRIUMF : BR(μ^- Ti $\rightarrow e^-$ Ti) < 4.6 × 10^{-12}</td>(new!)

The discovery is right around the corner.

 \Rightarrow A new experimental search with sensitivity under 10⁻¹³ should be started in a timely manner.

Muon to Electron Conversion in the Nuclear Field

 \rightarrow signal momentum

the most important BG.

 $\rightarrow \gamma + N(A,Z-1), \gamma \rightarrow e^+ e^-$

• Beam related BG (After-Proton)

Sensitivity to Reaction Mechanism

Outline

Physics Motivation

DeeMe Experiment

Current Status
 Beamline
 Spectrometer Magnet
 Detector
 After-Proton Measurement
 Muon Production Target

Summary & Prospects

DeeMe Experiment @ J-PARC

new μ – e conversion search , **DeeMe** at **J-PARC Material and Life Science Experimental Facility (MLF)**

MLF

primary proton beam

•3 GeV, 500 kW \rightarrow will be upgraded to <u>1 MW</u>.

muon production target \rightarrow 4 beamlines (MUSE)

neutron production target → more than 20 beamlines

MLF MUSE

MLF MUSE

J-PARC MLF Muon Science Establishment (MUSE)

H Line

for fundamental physics

multipurpose beamlineμ-e conversion search (DeeMe)

muonium hyperfine splitting

•g-2/EDM

muon microscopy

conceptual design by Jaap Doornbos (TRIUMF)

Beam Structure & Time Window

pulsed proton beam 25 Hz double pulse: 200nsec width, 600nsec interval

Time window for analysis at <u>300nsec</u> after the second pulse \Rightarrow reject the prompt burst

• beam energy = 3 GeV

 $< \mathbf{\overline{p}} \operatorname{production}$ threshold \Rightarrow no $\mathbf{\overline{p}}$ induced backgrounds fast extracted beam
 no off timing proton

no off-timing proton

 \Rightarrow no prompt background

at time window

12

• Fully utilizing existing facility (high quality beam from RCS, muon target, etc)

... Early realization of the experiment

new physics result in timely manner

Performance of H Line

- Transmission Efficiency
- simulated by G4BEAMLINE
- beam optics
 optimized for signal electron (105MeV/c)
- acceptance at the spectrometer as a function of momentum

Sensitivity, Backgrounds

Outline

Summary & Prospects

Frontend devices in H Line were placed.

Frontend devices in H Line were placed.

H Line under construction

- Beamline shield is designed based on Full M.C. simulation of dose using PHITS by N. Kawamura(KEK IMSS).
- Construction of beamline shield will start soon.

current status of the Exp. Hall

Outline

DeeMe Experiment

Current Status

Beamline

Spectrometer Magnet

Detector

After-Proton Measurement

Muon Production Target

Summary & Prospects

Spectrometer Magnet

PACMAN Magnet

- used for PIENU exp. @ TRIUMF, Canada
- transported from TRIUMF to J-PARC
- central field = **0.4 T** (300A) for **105 MeV/c**, **70 degree** bending
- Test operation was successfully done in J-PARC MLF.
- Field measurement was performed.

Spectrometer Magnet

Field calculation by Opera-3d

Comparison between Opera-3d and measured

A field map for momentum analysis was created by Opera-3d based on field measurement.

tune magnet shape and B-H curve
 ⇒ fit calculation to measured.

PACMAN is ready !

Outline

Physics Motivation

DeeMe Experiment

Current Status

Beamline

Spectrometer Magnet

Detector

After-Proton Measurement

Muon Production Target

Summary & Prospects

Detector

Tracking Device

Thin Multi Wire Proportional Chamber (MWPC)

2 upstream + 2 downstream of the magnet = totally **4 chambers**

- position resolution = 0.3 mm, thickness = 0.1% $X_0 \Rightarrow \delta P < 0.5 \text{ MeV/c}$ (RMS)
- tolerate to beam bunch of 10^8 MIP
- instantaneous hit rate ~ 70 GHz/mm²
- return to operational 300 nsec after beam pulse to detect delayed electrons

Detector

Detector

Beam tests

- Muon beamline (D-Line) @ MLF, J-PARC
- Electron Linac @ Research Reactor Institute, Kyoto Univ.

HV Switching Period

• gain of cathode strip ... clear separation between pedestal and signal

Good performance of HV Switching

• Further analysis is ongoing.

disappeared

Poster Presentation by Natsuki Teshima

"Delvelopment of High-Rate-Tolerant HV-Switching Multi-Wire Propotional Chamber and Its Readout Electronics for DeeMe Experiment"

All MWPC's will be ready soon.

already available (a little modification) 2 assembling 2

Outline

Physics Motivation

DeeMe Experiment

Beamline

Spectrometer Magnet

Detector

After-Proton Measurement

Muon Production Target

Summary & Prospects

After-Proton Background

After-Proton

- residual protons in RCS (synchrotron)
- Fast Extraction
 → no After-Proton, in principle
- may be created by beam halo in RCS and extracted to MLF when kicker is off
- induce prompt background in the analysis time window

 count protons by Beam Loss Monitor (BLM)

•
$$f = \frac{\text{After-Proton}}{\text{BLM hits}} = 40 \text{ (MC)}$$

After-Proton Background

Beam Loss Monitor

- 3 Scintillators + Pb absorber
- coincidence signal of 3 Scintillators

- After-Proton Rate
- total protons extracted = 3.5×10^{20} (2 weeks)
- hits in the time window = 3

$$\Rightarrow$$
 R_{AP} = 3.4 × 10⁻¹⁹

Outline

Physics Motivation

DeeMe Experiment

Current Status

Beamline

Spectrometer Magnet

Detector

After-Proton Measurement

Muon Production Target

Summary & Prospects

Silicon Carbide Muon Production Target

Silicon Carbide Muon Production Target

SiC target

~ 6 times higher physics sensitivity than current carbide target

Material	$\Sigma f_c \times f_{MC}$
Graphite (C)	0.08
Silicon Carbide (SiC)	0.46

Rotating SiC target

prototype of SiC rotating target compared with graphite ...

10 times strength >> <= 80 times thermal stress

8 times larger risk under beam irradiation

•SiC target is under development.

> increase disk partition and

current design

reduce disk radius

→ lower thermal stress and thermal difference.

> additional SiC \rightarrow stop more π , μ

Outline

DeeMe Experiment

Current Status
 Beamline
 Spectrometer Magnet
 Detector
 After-Proton Measurement
 Muon Production Target

Summary & Prospects

Summary & Prospects

DeeMe , μ – e conversion search at J-PARC MLF

• Sensitivity : 1.2×10^{-13} for C target , 2.1×10^{-14} for SiC target

A new beamline (H Line) is under construction.

The spectrometer magnet is ready.

• test operation, field magnet, Opera-3d

HV-Switchin MWPC was developed.

• All MWPC's will be ready soon.

After-Proton measured

DeeMe will start data taking soon after H Line completed (Japan FY 2016).

DeeMe Collaboration

M.Aoki ⁽¹⁾, D.Bryman ⁽²⁾, Y.Furuya ⁽³⁾, M.Ikegami ⁽⁴⁾, Y.Irie ^(3,4), N.Kawamura ^(5,11), M.Kinsho ⁽⁶⁾, H.Kobayashi ⁽⁴⁾, S.Makimura ^(5,11), H.Matsumoto ⁽⁴⁾, S.Meigo ⁽⁶⁾, T.Mibe ⁽⁷⁾, S.Mihara ⁽⁷⁾, Y.Miyake ^(5,11), D.Nagao ⁽¹⁾, Y.Nakatsugawa ⁽⁵⁾, H.Natori ⁽⁷⁾, H.Nishiguchi ⁽⁷⁾, T.Numao ⁽⁸⁾, C.Ohomori ⁽⁴⁾, S.Ritt ⁽¹⁰⁾, P.K.Saha ⁽⁶⁾, N.Saito ^(7,11), Y.Seiya ⁽³⁾, K.Shimomura ^(5,11), P.Strasser ^(5,11), N.Teshima ⁽³⁾, N.D.Thong ⁽¹⁾, N.M.Truong ⁽¹⁾, K.Yamamoto ⁽⁶⁾, K.Yamamoto ⁽³⁾, M.Yoshii ⁽⁴⁾, K.Yoshimura ⁽⁹⁾

(1) Osaka University
(2) UBC
(3) Osaka City University
(4) KEK Accelerator
(5) KEK IMSS
(6) JAEA
(7) KEK IPNS
(8) TRIUMF
(9) Okayama University
(10) PSI
(11) J-PARC Center

Backup

Single Event Sensitivity

Source of After Proton

Source of After Proton (Con't)

Beam outer ellipse (H) at the "begin Ext. INS". (324 ~ 5000 π mm mrad)

We estimated the possible initial conditions that the proton can extract with no kicker excitation. As a result, the protons that has 2500π mm-mrad. emittance can partially extract. however, some particles hit the branch chamber.

→We can catch the existence of after proton by monitoring scintillator signals near this point!

DIO Spectrum Measurement

Decay In Orbit (DIO) ... major background for µ-e conversion search

Knowledge about DIO spectrum is very important for background estimation.

Theoretical model

■ DIO spectrum calculated by Czarnecki (including nuclear recoil)

without recoil

DIO Spectrum Measurement

Measurement of DIO spectrum @ 50~70 MeV/c

Concept of DIO measurement

similar to momentum calibration \dots μ - stopped in the secondary target measure the momentum of DIO electron by the spectrometer

- Monte Carlo simulation
 - similar way to momentum calibration
 - 10 MeV/c µ- extraction by H-line
 - secondary target = 500µm thickness Graphite foil
 - ~ 4000 DIO electron / day @ 50~70 MeV/c

Subthreshold p Production 断面積

