

Searching for new physics at Kaon experiments at CERN

Chris Parkinson, on behalf of NA62 CLFV 2016 21st June 2016

Outline

- An introduction to Kaon experiments at CERN
- Recent results (published or underway) from older Kaon experiments at CERN
- An introduction to the NA62 experiment
- Physics prospects of the NA62 experiment

Why search for NP at Kaon experiments

- Many Kaon decays can proceed, or are enhanced, by contributions from new physics particles
- To study these (rare) processes, need precise measurement of many Kaons with low backgrounds
- Kaon experiments at CERN fulfil these characteristics, making Kaon experiments an ideal laboratory in which to search for new physics processes
- Kaon experiments are also π^0 factories ($K^+ \rightarrow \pi^+ \pi^0$ branching fraction = 20%)
- Results from CERNs Kaon physics programme:
 - Inflaton or heavy (majorana) neutrino in $K^* \rightarrow \pi \mu \mu$ decays (analysis completed, paper in preparation)
 - Dark photons in Dalitz decays of the π^0
 - Heavy neutrino production in $K^+ \rightarrow \mu^+ N$ decays (analysis underway)
 - Heavy neutrino, or other BSM particles, affecting the ratio of $K^+ \rightarrow \mu^+ \nu$ and $K^+ \rightarrow e^+ \nu$ branching fractions

CLFV2016

Kaon physics at CERN

Recent history of NA experiments

1984 ↓ 1990	NA31 (K _S /K _L)	First evidence of direct CPV
1997 ↓ 2001	NA48 (K _s /K _L)	Re ε'/ε Discovery of direct CPV
2002	NA48/1 (K _s /hyperons)	Rare K_s and hyperon decays
2003 ↓ 2004	NA48/2 (K ⁺ /K ⁻)	Direct CPV Rare K ⁺ / K ⁻ decays
2007 ↓ 2008	NA62 R _k phase (K ⁺ /K ⁻)	$R_{K} = K_{ev}^{\pm}/K_{\mu\nu}^{\pm}$
2014 ↓ 2018	NA62 (K+)	K ⁺ →π ⁺ νν Rare K ⁺ and π ⁰ decays

Kaon physics at CERN

Kaon decay-in-flight experiments at CERN

- SPS Protons @ 400 GeV steered to Beryllium target (T10)
- Secondary hadron beam 6% Kaons (70% pions, rest = protons, electrons*)

The NA48/2 and NA62_{RK} detector

21/06/2016

Chris Parkinson

CLFV2016

Searching for new physics at Kaon experiments at CERN

The NA48/2 and NA62_{RK} experiments

- The beam parameters were modified for the NA62_{RK} experiment to give a more favourable environment for measuring R_K

	NA48/2	NA62-RK
Data taking	2003-4	2007-8
Primary intensity (ppp)	7 × 10 ¹¹	7 × 10 ¹¹
Solid angle (µsr)	~0.4	~0.4
Beam momentum (GeV)	60	74
RMS momentum bite (GeV)	2.2	1.4
Spectrometer thickness, X ₀	2.8%	2.8%
Spectrometer P_T kick, MeV	120	265
$M(K \rightarrow \pi^+ \pi^+ \pi^-)$ resolution, MeV	1.7	1.2
K decays in fiducial region	2 × 10 ¹¹	2 × 10 ¹⁰

PHYSICS RESULTS FROM NA62_{RK} AND NA48/2

Physics results from NA62_{RK} and NA48/2

- Results from CERNs Kaon physics programme:
 - 1. Heavy neutrino and/or other BSM particles affecting the ratio of $K^+ \rightarrow \mu^+ \nu$ and $K^+ \rightarrow e^+ \nu$ branching fractions
 - 2. Inflaton or heavy Majorana neutrino in $K^{\star} \rightarrow \pi \mu \mu$ (analysis completed, paper draft in preparation)
 - 3. Dark photons in Dalitz decays of the π^0

$\mathbf{R}_{\mathbf{K}}$ at NA62_{RK}

• Value of R_K can be precisely calculated in the SM

- R_K is sensitive to:
 - Ratio of mixing parameters of 4th neutrino U_{e4}/U_{µ4} [JHEP 1302 (2013) 048]

 LFV loop diagrams in e.g. SUSY models at O(10⁻³) [EPJ C72 (2012) 2228]

R_k at NA62_{RK}

World's most precise measurement of R_k [PLB 719 (2013) 326]

 $R_{K} = 2.488(7)_{st}(7)_{sy} \times 10^{-5}$ = 2.488(10) x10⁻⁵ 0.4% precision $\Delta r_{\rm K} = (4 \pm 4) \times 10^{-3}$

Chris Parkinson CLFV2016 Searching for new physics at Kaon experiments at CERN

Search for lepton number violation

- The NA48/2 data contains ~3.5k $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ candidates [PLB697 (2011) 107]
- A re-analysis was made to improve the search for the $K^+ \rightarrow \mu^+ \mu^+ \pi^-$ (LNV) decay

Search for lepton number violating N

Interpret the results as a search for Majorana neutrino [PLB 620 (2005) 17] mediating the $K^+ \rightarrow \mu^+ (\mu^+ \pi^-)$ (LNV) decay

For N_M with lifetime τ =100ps, **production x decay** limits set at ~10⁻¹⁰ (90% CL)

Search for lepton number conserving N

- Interpret the results as a search for heavy neutrino [PLB 620 (2005) 17] mediating the $K^+ \rightarrow \mu^+(\pi^+\mu^-)$ (LNC) decay
- Peak search in the $\pi^+\mu^-$ mass distribution

• For N_M with lifetime τ =100ps, **production x decay** limits set at ~10⁻⁹ (90% CL)

 \boldsymbol{K}

Search for inflatons

- Interpret the results as a search for inflatons [PLB 639 (2006) 414] mediating the $K^+ \rightarrow \pi^+(\mu^+\mu^-)$ (LNC) decay
- Peak search in the $\mu^+\mu^-$ mass distribution

• For X with lifetime τ=100ps, **production x decay** limits set at ~10⁻⁹ (90% CL)

21/06/2016

Search for dark photons

No local significance greater than $3\sigma \rightarrow no$ hint of the dark photon

photon explanation of the $(g-2)_{\mu}$ discrepancy [PLB 746 (2015) 178-185]

Searching for new physics at Kaon experiments at CERN

NA48/2

CLFV2016

E774

10⁻⁷

E141

10

 $10^{2}_{M_{A'}}$ (MeV/c²)

THE NA62 EXPERIMENT

- The NA62 detector is primarily designed to collect 100 K⁺→π⁺vv events with only 10 background events
- Since the K⁺ $\rightarrow \pi^+ \nu \nu$ branching fraction is $\mathcal{B}(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (9.11 \pm 0.72) \times 10^{-11}$ this implies a huge number of K⁺ decays [Buras et. al.] and background reduction at the level of 10⁻¹²
- This requires:
 - A more intense secondary beam from the target
 - ... which implies a stringent trigger system based on detectors with excellent timing resolution
 - Efficient vetoing of photons (particularly from π^0 decays), electrons, and muons
 - Accurate momentum and energy measurement of kaon decay products
- These requirements (often inverted!) also make NA62 the perfect laboratory for searches for exotic particles
 - Development of a trigger strategy for exotic processes is critical

Kaon decay-in-flight experiments at CERN

- Beam intensities raised by about 4x
- 30x larger acceptance (solid angle) due to improved beamline optics

	NA48/2	NA62-RK	NA62
Data taking	2003-4	2007-8	2014-18
Primary intensity (ppp)	7 × 10 ¹¹	7 × 10 ¹¹	3 × 10 ¹²
Solid angle (µsr)	~0.4	~0.4	~12.7
Beam momentum (GeV)	60	74	75
RMS momentum bite (GeV)	2.2	1.4	0.8

21

The NA62 detector

K⁺ tagging – CEDAR/KTAG

- Kaons are tagged with the CEDAR/KTAG system
- CEDAR collects Cherenkov light with fixed diaphragm
- KTAG 8-fold PMT array with σ_t ≈80 ps
- Nominal Kaon rate ≈ 45 MHz

STRAW spectrometer

- Position and momentum of π^+ measured by the **STRAW** spectrometer
- Straw tubes operated in vacuum very low material budget

	NA48/2	NA62-RK	NA62
Spectrometer thickness, X ₀	2.8%	2.8%	1.8%
Spectrometer P_T kick, MeV	120	265	270
$M(K \rightarrow \pi^+ \pi^+ \pi^-)$ resolution, MeV	1.7	1.2	0.8

- $\sigma_p/p \approx 0.32\% \oplus 0.008\% p \,[GeV/c]$
 - Comparable momentum resolution to muons in LHCb [LHCb muons 2015]

21/06/2016

CLFV2016

Searching for new physics at Kaon experiments at CERN

NA62 Charged Hodoscope

- NA62 Charged Hodoscope (NA62CHOD)
- New for 2016
- Designed as a simple charged particle trigger with time resolution of order ~1ns

CLFV2016

Searching for new physics at Kaon experiments at CERN

RICH detector

- Ring Imaging Cherenkov detector
- Offline: Particle identification for particles with 15 < p < 35 GeV/c
- **Trigger:** Charged particle trigger with time resolution less than 100ps

21/06/2016

18 m

Mirrors

RICH detector

- Ring Imaging Cherenkov detector
- Offline: Particle identification for particles with 15 < p < 35 GeV/c
- **Trigger:** Charged particle trigger with time resolution less than 100ps

CLFV2016

Plot from CERN Courier article

Muon veto system (MUV)

- MUV system formed of two calorimeters (MUV1, MUV2) plus a segmented layer of plastic scintillator (MUV3)
- **Offline:** MUV1&MUV2 provide muon rejection
- Trigger: MUV3 provides muon rejection with time resolution of ≈ 450 ps MUV1 and MUV2 information combined with LKr

Hermetic photon veto

- Hermetic photon veto built from multiple detector systems
- Small Angles Vetoes (IRC and SAC) cover from 0 to 1.0 mrad
- The LKr calorimeter covers from 1.0 to 8.5 mrad
- Large Angles Vetoes (LAV) is formed of 12 stations, which are distributed along the experiment to cover from 8.5 to 50 mrad

Trigger: Information from **LAV12** is available Information from **IRC** and **SAC** can be combined with the **LKr**

Electromagnetic calorimetry

- The Liquid Krypton Calorimeter, as used in NA48
- Measures particle energy with energy resolution comparable to e.g. CMS ECAL

$$\frac{\sigma_E}{E} = \frac{3.2\%}{\sqrt{E(GeV)}} \oplus \frac{9\%}{E(GeV)} \oplus 0.42\%$$

• **Trigger:** total energy deposition information available

 $(\sigma_{\rm F}/{\rm E}\approx1\%$ at 10 GeV)

NA62

- Construction complete: Summer 2014
- Pilot physics run: October December 2014
- Detector commissioning: June November 2015

21/06/2016

CLFV2016

Searching for new physics at Kaon experiments at CERN

NA62

- Construction complete: Summer 2014
- Pilot physics run: October December 2014
- Detector commissioning : June November 2015

21/06/2016

CLFV2016

Searching for new physics at Kaon experiments at CERN

The NA62 experiment

	NA48/2	NA62-RK	NA62
Data taking	2003-4	2007-8	2014-18
Primary intensity (ppp)	7 × 10 ¹¹	7 × 10 ¹¹	3 × 10 ¹²
Solid angle (µsr)	~0.4	~0.4	~12.7
Beam momentum (GeV)	60	74	75
RMS momentum bite (GeV)	2.2	1.4	0.8
Spectrometer thickness, X_0	2.8%	2.8%	1.8%
Spectrometer P_T kick, MeV	120	265	270
$M(K \rightarrow \pi^+ \pi^-)$ resolution, MeV	1.7	1.2	0.8
K decays in fiducial region	2 × 10 ¹¹	2 × 10 ¹⁰	1.2 × 10 ¹³

NA62 data-taking – past, present and future ³⁴

- 2014 Pilot Physics run (initial setup of experiment, first look at data)
- 2015 beam time mostly dedicated to TDAQ and detector commissioning, nevertheless, 10¹⁰ events collected at low intensity (1% of nominal) with minimum bias triggers
- 2016 to present commissioning and data-taking with exotics trigger, at between 3% and 20% of nominal intensity
- 2016-2017-2018 data-taking for $K^+ \rightarrow \pi^+ \nu \nu$, run exotics trigger in parallel

The NA62 L0 Trigger in 2016

 The lowest-level of the NA62 trigger system (L0) is implemented in hardware, based on FPGA technology

- A multiple track trigger (MT) can be built requiring signals in 10 RICH PMTs and two (NA62)CHOD quadrants
- **Dielectron trigger: multiple track +** more than 10GeV of energy in the LKr
- **Dimuon trigger: multiple track +** signals in two MUV3 tiles
- LFV (muon-electron) trigger: multiple track + more than 10GeV of energy in the LKr and signal in one MUV3 tile (selects K⁺→πµe decays)

- In simulations the total rate from the above L0 triggers ~ few 100 kHz, which is sufficiently low to run in parallel to the $K^+ \rightarrow \pi^+ vv$ trigger
- Validation of the trigger rates with data is **currently underway**

PHYSICS PROSPECTS OF NA62

Searching for HNL production

- Can also search for production of HNL in $K^+ \rightarrow \mu^+ N$ decays
- $K^+ \rightarrow \mu^+ N$ events appear as peaks in the $K^+ \rightarrow \mu^+ \nu$ squared missing mass spectrum
- Note: Production searches are model-independent

Searching for HNL production

- Can also search for production of HNL in $K^+ \rightarrow \mu^+ N$ decays
- Production searches are model-independent
- Most stringent limits are set by Kaon decay measurements

Searching for HNL production

- Lifting of the R_K-suppression by the HNL means there could be a similar number of $K^+ \rightarrow e^+N$ events as $K^+ \rightarrow \mu^+N$
- Limits on $K^+ \rightarrow e^+N$ are much weaker than those of $K^+ \rightarrow \mu^+N$
- K⁺→e⁺N background small enough for stringent limits to be set on this decay

Physics prospects

 R_{κ} measurement expected to improve by a factor of 2-4x at NA62

Expect background reduction and larger sample of $K^+ \rightarrow \pi \mu \mu$ decays, expect improved limits down to 10⁻¹²

 $\Delta r_{K} = R_{K}(NA62)/R_{K}(SM) - I$

102

10⁰

 10^{6}

 M_{κ} enhancement

NA62 excluded

21/06/2016

Entries/(0.5 MeV/c²) 0

10

460

470

480

Searching for new physics at Kaon experiments at CERN

• Searches for $\mathbf{K}^+ \rightarrow \pi \mu \mathbf{e}$ have potential to probe to 10^{-12}

Searches for $\mathbf{K}^+ \rightarrow \pi \mu \mathbf{e}$ have potential to probe to 10^{-12}

CLFV2016

Searching for new physics at Kaon experiments at CERN

10

Searches for HNL from the target

- HNL can be produced in meson decays at the T10 target
- These HNL can then decay inside the NA62 fiducial volume

- With zero background events, can probe beyond current limits
- Proof-of-principle from 2016 data: searches for dark photon and axion (see <u>link</u>) production at the target. Prospects for these searches are currently being evaluated

Summary

- The long history of Kaon experiments at CERN continues with NA62
- The previous experiments, NA48/2 and NA62RK continue to produce results related to 'exotic' processes including: dark photons; inflatons; heavy (majorana) neutrinos in production and decay.
 - New world-best limits on the LNV decay $K^+{\rightarrow}\mu^+\mu^+\pi^-$

$$N(\mu^{\pm}\mu^{\pm}) = 1$$

$$N_{bkg} = 1.16 \pm 0.87$$

$$BR(K^{\pm} \rightarrow \pi^{\mp}\mu^{\pm}\mu^{\pm}) < 8.6 \times 10^{-11} [90\% CL]$$

- The NA62 experiment is a substantial upgrade over previous experiments, providing about 70x more kaon decays with much better background rejection
- There are planned and current searches for exotic processes at NA62
- Watch this space for more information!

21/06/2016