

Indian Institute of Technology Guwahati

Charged Lepton Flavor Violation at Belle & Belle II

Bipul Bhuyan

(On behalf of the Belle and Belle II Collaborations)

2nd International Conference on CLFV 2016 University of Virginia, Charlottesville June 22, 2016

- Introduction
- **Review of the searches of LFV at Belle**
- Status of Belle II and prospects of LFV at Belle II
- **Conclusions**

Introduction

- Observed neutrino oscillations signal violation of lepton flavor in the neutral leptonic sector.
 - What about LFV in the charged leptons?
- LFV violation in the charged leptons is highly suppressed in the SM even after the inclusion of neutrino masses:
 - Neutrino masses are expected to be much smaller compared to the electroweak scale, $M_W \approx 80.4$ GeV.
 - Searches of LFV in the SM is beyond experimental reach:

$$\mathcal{B}(\tau \to \ell \gamma) \propto \left(\frac{M_{\nu_\tau}^2 - M_{\nu_\ell}^2}{M_W^2}\right)^2 \approx 10^{-50} \sim 10^{-54}$$

- Observation of LFV in the charged lepton is a clear signal for NP beyond SM:
 - Many extensions of the SM such as supersymmetry, little Higgs models, extra dimensions predict enhanced LFV.
 - LFV in τ decays can be as high as O(10⁻⁸)
 - Within the reach of current experiments such as Belle II

Introduction

- Searches for charged LFV is currently dominated by BaBar and Belle experiments.
 - Most of the results are in t decays
 - Heaviest lepton: less GIM suppression compared to muon.
 - Strong coupling to NP contributions.
 - Many possible LFV decays
- τ LFV violation decays studied so far: 48 channels in total
 - T→3/
 - $T \rightarrow I V^0 (V^0 = \rho^0, K^{*0}, \overline{K^{*0}}, \omega, \phi)$
 - T→I h h' (h = π, K)
 - т→∧ *h/* л*h*
 - т→/γ

Belle at KEK

- Electron-positron collider (operated during 1999 2010)
- Asymmetric E: 8 GeV (e⁻) and 3.5 GeV (e⁺)
 - Mainly operated at the Y(4S) resonance (10.58 GeV)
- Total accumulated luminosity: 1023 fb-1
 - τ cross section ~ 0.9 nb
 - About 9 x 10⁸ ττ events at Belle

Belle Detector

Lepton ID efficiency ~ 90% Fake rate ~0.1% (electrons), ~1% (muons)

Luminosity at the **B** factories

T⁻→ *l⁺ l⁺ l⁺* : Analysis Strategy

- Blind analysis: optimization of event selection is based on MC samples
 Signal and background MC events from stars signal side
 - Signal and background MC events from T⁺ T⁻ decays are generated by KORALB/TAUOLA.
- T⁺ T⁻ events are divided into two hemispheres:
 - Signal τ: Look for τ decaying to 3 leptons
 - Tag τ: one charged track, any number of γ and v
- Major backgrounds:

Radiative Bhabha

tag side

е

νττ

 π^{-}

e+

ττ

e

$\tau \rightarrow l^{+} l^{+} l^{+} :$ Analysis Strategy

On the signal side

Extract signal from the two dimensional plane of ΔE and 3 l invariant mass:

$$\Delta E = E_{3l}^{CM} - E_{beam}^{CM}$$

$$m_{3l} = \sqrt{E_{3l}^2 - p_{3l}^2}$$

Estimate background from the data sideband regions.

$T \rightarrow I I^+ I^-$ Results

- Based on Belle data set: 782 fb⁻¹
- No events observed in the signal region for all the 6 modes studied
- Very good lepton ID
 - Almost no background
 - Expected background events: 0.01 – 0.21

Br < (1.5 – 2.7) x 10⁻⁸ @ 90% C.L. (Phys. Lett. B 687, 139 (2010))

Similar results from LHCb.

Mode	£ (%)	N _{BG}	α _{syst} (%)	Nobs	$B(\times 10^{-8})$
$\tau^- \rightarrow e^- e^+ e^-$	6.0	0.21 ± 0.15	9.8	0	< 2.7
$\tau^- \rightarrow \mu^- \mu^+ \mu^-$	7.6	0.13 ± 0.06	7.4	0	< 2.1
$\tau^- \rightarrow e^- \mu^+ \mu^-$	6.1	0.10 ± 0.04	9.5	0	< 2.7
$\tau^- \rightarrow \mu^- e^+ e^-$	9.3	0.04 ± 0.04	7.8	0	< 1.8
$\tau^- \rightarrow e^+ \mu^- \mu^-$	10.1	0.02 ± 0.02	7.6	0	< 1.7
$\tau^- \rightarrow \mu^+ e^- e^-$	11.5	0.01 ± 0.01	7.7	0	< 1.5

$\tau \rightarrow l h h'$ at Belle

- Based on Belle data set: 854 fb⁻¹
- Similar analysis strategy:
 - Signal side selection: a lepton (e or μ) and two h (π, K)
 - Tag side selection: a charged track (either a hadron or lepton), any number of γ and v
- Major backgrounds: μ hh': continuum and generic ττ decays, e hh': two photon processes.
- Suppress dominant backgrounds by either cutting on M²_{miss} = E²_{miss} p²_{miss} or 2D distribution⁵
 p_{miss} and M²_{miss}
 - for ehh', μ π π, μ K K:
 - -1.5 GeV² < M^2_{miss} < 1.5 GeV² (hadronic tag)
 - -1.0 GeV² < M_{miss}^2 < 2.5 GeV² (leptonic tag)
 - for μ π K: larger residual background
 - p_{miss} > -8.0 x M²_{miss} -0.5 and p_{miss} > 8.0 x M²_{miss} -0.5 (hadronic tag)
 - p_{miss} > -9.0 x M²_{miss} + 0.4 and p_{miss} > 1.8 x M²_{miss}-0.4 (leptonic tag)

Removes 75% of the generic $\tau\tau$ background with an efficiency of ~ 75%

11

$\mathbf{T} \rightarrow \mu h h'$ Results

 In the signal region: 1 event in μ⁺ π⁻ π⁻ and μ⁻ π⁺ K⁻ (consistent with expected background). 0 events in other modes.

т *→e h h'* Results

- Br < (2.0 − 8.6) x 10⁻⁸ @ 90% C.L. (Phys. Lett. B 719, 346 (2013))
- Signal selection efficiency: 2.55% 6.56%

$T \rightarrow I V^0 (V^0 = \rho^0, K^{*0}, \overline{K}^{*0}, \omega, \phi)$

- Based on Belle data set: 854 fb⁻¹
- Similar analysis strategy as in 3 I and I h h' channels
 - Reconstruct ρ⁰ from π⁺ π and φ from K⁺ K⁻, ω from π⁺ π π⁰, K^{*0} from K⁺ π and K^{*0} from K⁻ π⁺

0.2

-0.4

1.7

1.8

M_{uk*0} (GeV/c²)

- Major backgrounds:
 - μ V⁰ : continuum and generic ττ decays,
 - e V⁰: two photon processes and inelastic V⁰ photoproduction (e⁺e⁻→ e⁺ e⁻ V⁰)
- Extract signal from the IV⁰ invariant mass and ΔE distributions

1 event in $\mu\phi$, $\mu^- K^{*0}$ and $\mu^- K^{*0}$ (consistent with bkg) 0 event in other modes.

1.7

1.8

M.m. (GeV/c²)

-0.2

 $\mathbf{T} \rightarrow \mathbf{I} \ \mathbf{V}^0 \ (\mathbf{V}^0 = \boldsymbol{\rho}^0 \ , \ \mathbf{K}^{\star 0}, \ \mathbf{\overline{K}}^{\star 0}, \boldsymbol{\omega}, \boldsymbol{\phi})$

т →/ ү

- Existing published result is based on Belle data set: 535 fb⁻¹ (Phys. Lett. B 666 (2008)
- Similar analysis strategy as in 3 I and I h h' channels
 - Identify signal side lepton based on PID, tracking detector and ECL.
 - μ ID efficiency is 90% with pion fake rate probability of 0.8%
 - e ID efficiency: 95% with pion fake rate: 0.07%
 - Charged track in the tag side is required to be not a μ (e) for the μ (e) channel.
- Dominant backgrounds:
 - μ γ: ττ events with τ → μ vv or τ → πv (with π misID)
 + ISR photon or beam BG.
 - e γ: radiative Bhabha and τ⁺ τ⁻ γ
- Apply selection cuts on p_{miss} and m²_{miss} distribution to remove тт background

 $T \rightarrow / Y$

$\tau \rightarrow \mu \gamma$: Updated Analysis

Preliminary results

22/06/16

 M_{uv}^{c} (GeV/c²)

$\tau \rightarrow \Lambda h, \overline{\Lambda} h (h = \pi, K)$

- Based on 906 fb⁻¹ of data from Belle
- 4 decay modes studied
 - $T^- \rightarrow \overline{\Lambda} h^- (B-L \text{ Conserving})$
 - $T^- \rightarrow \Lambda h^- (B-L \text{ Violating})$
- Select three hadrons on the signal B-L Conserving side, require Λ vertex, reconstruct Λ from a proton and a π
- Dominant backgrounds:
 - $\tau \rightarrow \pi K_s v$ with K_s mis-ID as Λ : Rejected by K_s veto using M_{m}
 - qq background having Λ and π . Reject by vetoing proton on the tag side.

Allowed within GUT framework

$T → Λ h, \overline{Λ} h (h = π, K)$

No events seen in the signal region.

Mode	ε (%)	$N_{ m BG}$	$\sigma_{ m syst}$ (%)	$N_{\rm obs}$	s_{90}	$B(10^{-8})$
$ au^- o \Lambda \pi^-$	4.80	0.21 ± 0.15	8.2	0	2.26	2.8
$ au^- o \Lambda \pi^-$	4.39	0.31 ± 0.18	8.2	0	2.17	3.0
$ au^- o ar{\Lambda} K^-$	4.11	0.31 ± 0.14	8.6	0	2.17	3.1
$ au^- o \Lambda K^-$	3.16	0.42 ± 0.19	8.6	0	2.08	4.2

Summary of tau LFV searches at *B*-factories.

48 decay modes studied – Updated Belle results on l γ to be released soon.

Belle II at SuperKEKB

- KEKB is being upgraded to the SuperKEKB Collider
 - Target: achieve 40 times more luminosity than KEKB
 - Higher luminosity -> higher background -> the Belle detector needs to be upgraded.

Belle becomes Belle II

 Belle II will collect about 10¹¹ τ leptons compared to 10⁹ presently available.

SuperKEKB nanobeams

At SuperKEKB, we increase the luminosity based on "Nano-Beam" scheme (originally proposed for SuperB by P. Raimondi)

 $L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \frac{V_{\pm} \xi_{\pm y}}{\beta_y^*} \left(\frac{R_L}{R_y} \right)$

- − Vertical β function at IP: 5.9 \rightarrow 0.27/0.30 mm (x20)
- Beam current: $1.7/1.4 \rightarrow 3.6/2.6 \text{ A} (x2)$
 - → $L = 2x10^{34} \rightarrow 8x10^{35} \text{ cm}^{-2}\text{s}^{-1}$ (x40)

To get 40x luminosity of Belle

Reduce beam size to a few 100 atomic layers!

Parameter		КЕКВ		SuperKEKB		unito
		LER	HER	LER	HER	units
beam energy	Eb	3.5	8	4	7	GeV
CM boost	βγ	0.425		0.28		
half crossing angle	φ	11		41.5		mrad
horizontal emittance	εχ	18	24	3.2	4.6	nm
emittance ratio	к	0.88	0.66	0.37	0.40	%
beta-function at IP	β_x^*/β_y^*	1200/5.9		32/0.27	25/0.30	mm
beam currents	lb	1.64	1.19	3.6	2.6	Α
beam-beam parameter	ξγ	129	90	0.881	0.0807	
beam size at IP	σ_x^*/σ_y^*	10	0/2	10/0	.059	μm
Luminosity	ಕ	2.1 x	10 ³⁴	8 x	1035	cm-2s-1

KEKB upgrade → SuperKEKB(nano-beam)

Feb 2016: First turns at SuperKEKB

Schedule

• 3 phases in commissioning --> operation :

Phase I: without Belle II detector, Phase II: Belle II rolled in, no SVD, Phase III: Full detector on

Prospects of LFV at Belle II

- Belle II will collect about 10¹¹ τ leptons compared to 10⁹ presently available.
- Sensitivity depends on the background
 - $\tau \rightarrow 3$ leptons mode is still very clean at Belle II
 - For $\tau \rightarrow \mu \gamma$ better understanding and control of the background will be necessary.

- Sensitivity improves as $1/\int Ldt$ for decays without bkg
- Sensitivity improves as $1/\sqrt[7]{\int Ldt}$ for decays with bkg

Belle II Collaboration

- 23 countries,
- 98 institutions,
- 615 collaborators as of June 2016.

Summary

- *B*-factories are also τ factories. Produced *O*(10⁹) tau pairs so far.
 - Studied 48 LFV decay modes at Belle, x100 increase in sensitivity compared to CLEO.
 - No signal event is seen in any of the modes. Set 90% CL upper limits in O(10⁻⁸).
- The prospect to search for CLFV at Belle II looks brighter
 - The full range of T LFV is only accessible at Belle II.
 - Accelerator upgrade is finished, beam was turned on in Feb 2016.
 Detector up gradation is continuing.
 - With higher luminosity, expect higher background for modes like *ly*: efficient background reduction will be key.
 - Sensitivity for modes like 3 leptons will pretty much scale with the luminosity.
 - Start of full Physics run: 2018, reach 50 ab⁻¹ by 2023 2024.
 - Sensitivity reach for CLFV up to O(10⁻⁹ 10⁻¹⁰)

Backup Slides

Central Drift Chamber (CDC)

	Belle	Belle II	
Innermost sense wire	r=88mm	r=168mm	
Outermost sense wire	r=863mm	r=1111.4mm	
Number of layers	50	56	
Total sense wires	8400	14336	
Gas	He:C ₂ H ₆	He:C ₂ H ₆	
Sense wire	W(Φ30µm)	W(Φ30µm)	
Field wire	Al(φ120μm)	Al(φ120µm)	

Commissioning the Machine

- During phases 1 and 2 a commissioning detector will be used BEAST II (Beam Exorcisms for A Stable ExperimenT).
- Will be used to measure beam backgrounds, before Belle II is rolled in and fully installed.
- Phase 1: 2 MicroTPCs in 8 positions used to measure neutron backgrounds, and PIN diodes used to measure ionising particle backgrounds.
- Every other PIN diode coated in gold paint, to allow for separation of charged particle and x-ray contributions.

Slide from M. Barrett

