

van swinderen institute for particle physics and gravity

CLFV @ LHCb

Status & Prospects

Gerco Onderwater

on behalf of the LHCb collaboration

cLFV2016, Charlottesville VA, USA, 20-22 June 2016

van swinderen institute for particle physics and gravity

2 | 43

Outline

Intro

- LHCb Experiment
- LFV with muons : $\tau \rightarrow \mu \mu \mu$
- LFV with electrons : $D^0 \rightarrow e\mu$
- LFV with taus?

Conclusion

van swinderen institute for particle physics and gravity

3 | 43

Intro

van swinderen institute for particle physics and gravity

4 43

Standard Model

Remarkably successful, yet with many unexplained features

Many puzzles, e.g. 3 generations quarks & leptons

Rich symmetry-driven phenomenology

Study <u>all</u> generations for full insight

0

S

LHCb: can study all three generations

van swinderen institute for particle physics and gravity

5 43

Towards studying (c)LFV

Decay $\mu \rightarrow e\gamma, \mu \rightarrow eee, \tau \rightarrow \mu\mu\mu, \tau \rightarrow \mu hh, ...$

- **Conversion** $\mu A \rightarrow e A$
- **Production** $B_s \rightarrow e\mu, B \rightarrow Ke\mu, h^0 \rightarrow \mu\tau, ...$
- **Oscillation** $V_e \leftrightarrow V_\mu \leftrightarrow V_\tau$, $M(\mu^+e^-) \leftrightarrow \overline{M}(\mu^-e^+)$

Number violation $0\vee 2\beta$, $B^- \rightarrow \pi^+ \mu^- \mu^-$, ...

Non-Universality $\overline{B}^{0} \rightarrow D^{*+} \tau^{-} \overline{\nu}_{\tau} vs \overline{B}^{0} \rightarrow D^{*+} \mu^{-} \overline{\nu}_{\mu}, \dots$

van swinderen institute for particle physics and gravity

Tensions

- $B^{0} \rightarrow D(*) \overline{v_{T}} / \overline{v_{I}}$ 3.9 σ : LHCb + BaBar + Belle
- $B^+ \rightarrow K^+ \mu \mu / ee$ 2.6 σ : LHCb
- Anomalies **b** \rightarrow **sll**, esp. P'₅ in **B** \rightarrow **K***µµ @ LHCb
- h⁰→μτ 2.4σ : CMS
- aμ

 $\Lambda \Lambda \Lambda \Lambda \Lambda \Lambda$

MMMMMM

MMMM

2.7σ : E821

Global fit favors large cLFV

WWWWWGerco Onderwater, cLFV2016

FERMILAB-PUB-16-131-T

D ^o → eµ	PLB 754 (2016) 167	
$\overline{B}{}^{0} \rightarrow D^{*+} \overline{Tv}_{T} / \mu \overline{v}_{\mu}$	PRL 115, 111803 (2015)	LNU
τ → μμμ	JHEP 02 (2015) 121	
B+ → K+µµ / ee	PRL 113, 151601 (2014)	LNU
B ⁻ → π ⁺ μ ⁻ μ ⁻	PRL 112, 131802 (2014)	LNV
$D^+_{(s)} \rightarrow \Pi^- \mu^+ \mu^+$	PLB 724 (2013) 203-212	LNV
B ⁰ _(s) → eµ	PRL 111 (2013) 141801	

7 | 43

van swinderen institute for particle physics and gravity

8 | 43

LHCb

LHCb

LHC @ CERN : proton-proton collider

12 43

LHCb : precision measurement

 $\pi \pi$

 θ_1 [rad]

van swinderen institute for particle physics and gravity

14 | 43

LHC run-I luminosity

van swinderen institute for particle physics and gravity

15 | 43

Results

16 | 43

J detection

17 | 43

Challenge : **T** decays at hadron collider

B factory

- **X** Babar & Belle ~3x10⁹ τ-pairs
- ✓ e^+e^- → $\tau^+\tau^-$ extremely clean
- \checkmark tag with opposite τ possible

LHC

- LHCb ~3.5x10¹¹ τ's in detector acceptance in 2011 & 2012
- **X** pp $\rightarrow \tau$ + O(100) particles
- X No "production traces" in $D_s \rightarrow \tau v_{\tau}$
- Charm decay with missing particles similar to τ signature

van swinderen institute for particle physics and gravity

$\tau \rightarrow 3\mu$ search

Approach:

- Use run-I data
- trigger on *muon* and *secondary vertex*
- multivariate analysis to discriminate signal and background
- *control sample* for normalization and calibration

Gerco Onderwater, cLFV2016

main tau production via decay of D_s

IHEP 02 (2015) 121

19 | 43

Signal candidate selection

Trigger

- muons <u>not</u> "in beampipe" ($p_T > 1.48 \text{ GeV}/c$)
- two-, three- or four-track secondary vertex
- at least one particle does <u>not</u> point to collision point

Analysis

- no tracks may point to collision point
- good 3-track vertex
- decay-time compatible with τ decay (*c*t > 100 μ m)
- **•** τ momentum <u>must</u> point back to PV

Background elimination

- $|M(\mu+\mu-)-M(\Phi)| > 20 \text{ MeV}/c^2$
- $M(\mu + \mu -) > 450 \text{ MeV}/c^2$
- M(µ−µ−) > 250 MeV/*c*²

reconstructed from same particle

 $D_s^- \rightarrow \Phi(\mu^+\mu^-)\pi^ D_s^- \rightarrow \eta(\mu^+\mu^-\gamma)\mu^-\overline{\nu}_\mu$

Gerco Onderwater, cLFV2016

1HEP 02 (2015) 121

20 | 43

Signal & background discrimination

Three likelihoods to distinguish signal from background

21 | 43

M_{3µ} distribution

- Shape determined using $D_s^- \rightarrow \Phi(\mu^+\mu^-)\pi^-$
- Analyze 5x5 best bins in LPID and L3body

L_{PID} : [0.65, 1.0] L_{3body} : [0.725, 1.0]

Gerco Onderwater, cLFV2016

JHEP 02 (2015) 121

22 | 43

M_{3µ} distribution

- Shape determined using $D_s^- \rightarrow \Phi(\mu^+\mu^-)\pi^-$
- Analyze 5x5 best bins in LPID and L3body

LPID : [0.65, 1.0] L3body : [0.725, 1.0]

JHEP 02 (2015) 121

van swinderen institute for particle physics and gravity

23 | 43

Normalization

Branching fraction for $\tau^- \rightarrow \mu^-\mu^+\mu^-$ normalized to $D_s^- \rightarrow \Phi(\mu^+\mu^-)\pi^-$

$$B = \frac{N(\tau \rightarrow \mu \mu \mu)}{N(\tau)} = \alpha \times \frac{N_{sig}}{N_{cal}}$$

	$7\mathrm{TeV}$	8 TeV
$\mathcal{B}\left(D_{s}^{-} ightarrow\phi\left(\mu^{+}\mu^{-} ight)\pi^{-} ight)$	$(1.32 \pm$	$= 0.10) \times 10^{-5}$
$\mathcal{B}\left(D_s^- \to \tau^- \bar{\nu}_\tau\right)$	$(5.61 \pm$	$= 0.24) \times 10^{-2}$
$f_{ au}^{D_s}$	0.78 ± 0.04	0.80 ± 0.03
$\epsilon_{ m cal}{}^{ m R}/\epsilon_{ m sig}{}^{ m R}$	0.898 ± 0.060	0.912 ± 0.054
$\epsilon_{ m cal}{}^{ m T}/\epsilon_{ m sig}{}^{ m T}$	0.659 ± 0.006	0.525 ± 0.040
$N_{ m cal}$	28200 ± 440	52130 ± 700
α	$(7.20 \pm 0.98) \times 10^{-1}$	$^{9}~(3.37\pm0.50) imes10^{-9}$

Gerco Onderwater, cLFV2016

JHEP 02 (2015) 121

van swinderen institute for particle physics and gravity

 $\frac{\mathbb{P}(\theta_{up}(X) < \theta | \theta)}{\mathbb{P}(\theta_{up}(X) < \theta | \theta)} \le \alpha' \text{ for all } \theta.$

24 | 43

Result

- Robust analysis method
- Statistics limited
- No significant evidence for excess of events

... which will then be overtaken by Belle-II

Gerco Onderwater, cLFV2016

[HEP 02 (2015) 121

van swinderen institute for particle physics and gravity

$D^0 \rightarrow e\mu$

```
Belle : Br(D^{0} \rightarrow e\mu) < 2.6 \times 10^{-7} (90\% \text{ CL})
```

```
RPV SUSY : \sim 10^{-7}
Leptoquarks : 4 \times 10^{-8}
```

LHCb analysis based on 3 fb⁻¹ collected @ $\sqrt{s} = 7 \& 8 \text{ TeV}$

van swinderen institute for particle physics and gravity

27 | 43

Bremsstrahlung

Gerco Onderwater, cLFV2016

PLB 754 (2016) 167

van swinderen institute for particle physics and gravity

28 | 43

Mis-Identification

Gerco Onderwater, cLFV2016

PLB 754 (2016) 167

29 | 43

Unbinned simultaneous fits

van swinderen institute for particle physics and gravity

30 | 43

Result

$$\frac{\mathbb{P}(\theta_{up}(X) < \theta | \theta)}{\mathbb{P}(\theta_{up}(X) < \theta | 0)} \le \alpha' \text{ for all } \theta.$$

- -Robust analysis method
- -Statistics limited
- -No significant evidence for excess of events

$$B(D^0 \rightarrow e\mu) < 1.3 \times 10^{-8}$$

@ 90% C.L.

20x improvement over previous result Effectively deal with backgrounds Bremsstrahlung complicates analysis Difficult to do at e+e⁻ colliders

Gerco Onderwater, cLFV2016

PLB 754 (2016) 167

van swinderen institute for particle physics and gravity

31 | 43

Other channels under investigation

- $B_{(s)} \rightarrow e\mu$
- B0 → K_{*0}eh
- $B_s \rightarrow \Phi e \mu$
- $B_{(s)} \rightarrow J/\Psi(\rightarrow e\mu) X$
- $B^+ \rightarrow K^+ e\mu$

Expect to improve existing limits

van swinderen institute for particle physics and gravity

32 | 43

opportunities for detection

van swinderen institute for particle physics and gravity

33 | 43

Some existing limits

J/Ψ(1S)	→ μτ	< 2x10 ⁻⁶
Y(1S)	→ μτ	< 6x10 ⁻⁶
Y(2S)	→ μτ	< 3x10 ⁻⁶
Y(3S)	→ μτ	< 3x10 ⁻⁶
Ζ0	→ μτ	< 1x10 ⁻⁵
h ⁰	→ μτ	< 1.5%
J/Ψ(1S)	→ e τ	< 9x10 ⁻⁶
Ζ0	→ e τ	< 1x10 ⁻⁶

O(few x 10-6)

@ 90-95% CL

Gerco Onderwater, cLFV2016

Particle Data Group

van swinderen institute for particle physics and gravity

34 | 43

Reconstruction – I

Interesting possibility Short lifetime prohibits direct detection

van swinderen institute for particle physics and gravity

35 | 43

Reconstruction – II

Interesting possibility Short lifetime prohibits direct detection Neutrinos remain undetected

van swinderen institute for particle physics and gravity

36 | 43

Reconstruction – III

Interesting possibility Short lifetime prohibits direct detection Neutrino remains undetected

van swinderen institute for particle physics and gravity

37 | 43

Reconstruction – IV

Interesting possibility Short lifetime prohibits direct detection Neutrino remains undetected

van swinderen institute for particle physics and gravity

38 | 43

Reconstruction – V

Interesting possibility Short lifetime prohibits direct detection Neutrino remains undetected

39 | 43

Possibly interesting channels

- $B_{(s)} \rightarrow e/\mu\tau$
- $B^+ \rightarrow K^+ e/\mu \tau$
- $\Upsilon(nS) \rightarrow e/\mu \tau$

Benefit from $\overline{B}^0 \rightarrow D^{*+} \overline{\nabla}_{\tau}$

Gerco Onderwater, cLFV2016

Phys. Rev. Lett. 115, 111803 (2015)

van swinderen institute for particle physics and gravity

40 | 43

Conclusion

van swinderen institute for particle physics and gravity

41 | 43

LHC run II has started

42 | 43

Take away message

LHCb : diverse program studying flavor physics with <u>all</u> three quark & lepton generations

With LHC **Run-I** data **LHCb** sharpened limits for many LFV, LNV, and BNV channels

No significant deviations from SM seen

Demonstrated sensitive **BSM** searches @ hadron collider

Many more options around, lots of additional data expected in **Run-II** (just restarted) & **Run-III**

van swinderen institute for particle physics and gravity

Thank you for your attention!

