Final result of the MEG experiment and prospects on $\mu \rightarrow e\gamma$ searches

Cecilia Voena

INFN Roma

on behalf of the MEG collaboration

2nd International Conference on Charged Lepton Flavor Violation Charlottesville, June 20-22 2016

Outline

- Brief history of $\mu \rightarrow e\gamma$ searches
- The MEG experiment
- Analysis method
- Final MEG result
- The upgrade: MEG-II
- Prospects

Why $\mu \rightarrow e\gamma$

- Standard Model prediction for BR: $\propto \left(\frac{m_v}{m_w}\right)^4 < 10^{-55}$
- Current experimental limit close to predictions in many New Physics models
- Would be clear sign of New Physics
- Intense muon beam available
- Clean experimental signature

Simultaneous back-to-back e⁺ and γ with E_y=E_{e+}=52.8MeV

A long quest

The sensitivity greatly improved every time that a more intense muon "source" was available => more muons

With a given muon "source" improvements are obtained with detectors improvements => lower background

The location: PSI lab

The Paul Scherrer Institute Continuous muon beam up to 2x10⁸ µ⁺/s

Multi-disciplinary lab:

- fundamental research, cancer therapy, muon and neutron sources
- protons from cyclotron (D=15m, E_{proton}=590MeV I=2.2mA)

1.4MW Proton Cyclotron at PSI

The MEG experiment for $\mu \rightarrow e\gamma$ search

liq.Xenon photon detector (~900PMTs/~900L LXe, excellent resol.)

muon stopping target (200um CH2 target)

muon transport

~65 physicists

(12institutes/5countries)

COBRA Solenoid (highly gradient B-field)

Drift Chamber

Timing Counter (Very Fast, 45ps)

(Very Light, ~0.002X0)

World Most Intense DC Muon (3x10⁷ muon/sec)

Detector concept: search for $\mu \rightarrow e\gamma$

- I_µ≈3·10⁷ µ/s stopped in a thin plastic target
- Drift Chambers in highly-gradient B-field:
 - 16 drift chamber modules
 - very light
 - gradient magnetic field to sweep out Michel positrons

Measure:

- Positron energy E_{e^+}
- Positron vertex
- Positron track

Gradient Magnetic Field

Detector concept: search for $\mu \rightarrow e\gamma$

- Liquid Xe Calorimeter
 - 900l liquid Xe
 - read out by PMTs

Measures:

- Photon energy E_v
- Photon time and vertex at conversion point

Timing Counter

- 15 scintillating bars for two sectors
- read out by PMTs

Measures:

- Positron time at impact on TC

Backgrounds

Accidental background

- Accidental coincidence of e⁺ and γ:
- Proportional to $I^2_{\ \mu}$ while signal proportional to I_{μ} to I_{μ}
- Compromise between high intensity and low background
- Radiative muon decay background
 - Proportional to I_{μ}
 - Note: e⁺ and γ simultaneous as for signal

Final dataset

Published results

- 2008 dataset: BR<2.8x10⁻¹¹ @90% CL NPB 834 (2010),1
- 2009-2010 dataset: BR<2.4x10⁻¹² @90% CL PRL,107 171801 (2011)
- 2009-2011 dataset: BR<5.7x10⁻¹³ @90% CL PRL 110, 201801 (2013)

- 2009-2013 data set: 7.5x10¹⁴ stopped μ⁺
 this result

Detector resolutions

Photon energy $\sigma_{E\gamma}$ ~1.9%

 Positron energy σ_{Ee+}~300 keV

Detector resolutions

• Relative time σ_{Tev} ~130ps

$$T_{e\gamma} = T_{XEC} - \frac{L_{\gamma}}{c} - \left[T_{TC} - \frac{L_{e+}}{c}\right]$$

- Relative angle $\sigma_{\theta e \gamma} \sim 15 mrad, \sigma_{\phi \gamma} \sim 9 mrad$
 - Decay point of the muon from the intersection of the DC track with the target plane
 - Relative angle from the combination of track direction+ decay point + photon conversion point
 - No physical process to accurately calibrate the angle
 - We have to rely on careful geometrical alignment and separate calorimeter and drift chamber resolutions

Analysis strategy

- Blind-box likelihood analysis strategy
- Observables: $E_{e+}, E_{\gamma}, \theta_{e\gamma}, \phi_{e\gamma}, T_{e\gamma}$

```
\vec{x} = \begin{pmatrix} \mathbf{E}_{\gamma} : \text{Gamma energy} \\ \mathbf{E}_{e} : \text{Positron energy} \\ \mathbf{t}_{e\gamma} : \text{Time difference} \\ \boldsymbol{\vartheta}_{e\gamma} : \boldsymbol{\vartheta} \text{ angle difference} \\ \boldsymbol{\varphi}_{e\gamma} : \boldsymbol{\varphi} \text{ angle difference} \end{cases}
```


Analysis strategy

Likelihood function

$$\mathcal{L}\left(N_{\text{sig}}, N_{\text{RMD}}, N_{\text{ACC}}, \mathbf{t}\right) = \frac{e^{-N}}{N_{\text{obs}}!} C(N_{\text{RMD}}, N_{\text{ACC}}, \mathbf{t}) \times \prod_{i=1}^{N_{\text{obs}}} \left(N_{\text{sig}}S(\mathbf{x}_{i}, \mathbf{t}) + N_{\text{RMD}}R(\mathbf{x}_{i}) + N_{\text{ACC}}A(\mathbf{x}_{i})\right).$$

Accidental pdfs fully defined from data sidebands:
 very solid determination of the dominant background

- Signal and radiative decay pdfs by combining results of calibration
- Correlations between kinematic variables taken into account
- Normalization from Michel & RD decays

Improvements in the analysis vs last publication

- Non planar, non negligible target deformation observed
 - taken into account in the likelihhod analysis
 - 13% worse sensitivity
- Photons from e+ annihilations inside DC were identified & removed
 - background rejection~2%
 - signal inefficiency~1%
- Revised the algorithm to recover missing first turn of positron in the DC
 Signal efficiency improved by 4%
 - Signal efficiency improved by 4%

Comparison 2009-2011 vs last publication ok

Sensitivity from toy Monte Carlo

- Average 90% CL upper limit on branching ratio with null-signal hypotesis
- Checked with data sideband-fit
- Sensitivity = 5.3x10⁻¹³

Unblinding the full data set: likelihood fit

The best fitted likelihood function (projection) is shown "Signal" is magnified for illustrative purposes

2D likelihood projection and event distribution

 1σ , 1.64σ , 2σ contours are shown

BR($\mu \rightarrow e\gamma$) limit result

BR (µ→eγ) < 4.2x 10⁻¹³ at 90% C.L.

submitted to EPJC

Note: Upper limit from frequentistic procedure a la Feldman-Cousins

Next: MEG upgrade: MEG-II

• Extending the search of $\mu \rightarrow e\gamma$ is complementary to New Physics searches at the high energy frontier

MEG-II detector highlights: Liquid Xenon

Liquid Xenon Calorimeter with higher granularity in inner face: => better resolution, better pile-up rejection

- Developed UV sensitive MPPC (vacuum UV 12x12mm² SiPM)
- Detector under commissioning (calibrations by end of 2016)

Large UV-ext SiPM

MEG-II detector highlights: Drift Chamber

- Single volume drift chamber with 2π coverage
 - 2m long
 - 1200 sense wires
 - stereo angle (8°)
 - low mass
 - high trasparency to TC (double signal efficiency)
- Wiring in progress, to be completed by end of 2016)

MEG-II detector highlights: Timing Counter

- Scintillator tiles read by SiPM
 - 1/4 of the detector installed and tested on beam with Michel decays last December
- To be completed and tested by the end of 2016

MEG-II detector highlights: Radiative Decay Counter

- 50% of the background photons comes from radiative muon decay with positron along the beam line
- Can be vetoed by detecting the positron in coincidence with the γ

New Electronics

- New version of DRS custom digitization board integrating both digitization, triggering and some HV (four times more channels than before)
- About 1000 channels ready to be tested for the end of the year
- Final production expected in spring 2017

MEG-II goals

- Beam rate ~7x10⁷ μ/s
- Final sensitivity: 4x10⁻¹⁴

PDF parameters	Present MEG	Upgrade scenario
e ⁺ energy (keV)	306 (core)	130
$e^+ \theta$ (mrad)	9.4	5.3
$e^+ \phi$ (mrad)	8.7	3.7
e^+ vertex (mm) $Z/Y(core)$	2.4 / 1.2	1.6/0.7
γ energy (%) (w <2 cm)/(w >2 cm)	2.4 / 1.7	1.1 / 1.0
γ position (mm) $u/v/w$	5/5/6	2.6 / 2.2 / 5
γ -e ⁺ timing (ps)	122	84
Efficiency (%)		
trigger	≈ 99	≈ 99
γ	63	69
e ⁺	40	88

MEG-II schedule

- Successfull pre-engineering run in late 2015
- Engineering run foreseen at end of 2016 with several parts of the MEG-II detector
- Expect full detector ready and run in 2017

Note: this schedule assume exclusive use of PiE5 beam line by MEG-II

• New constraint on the $\mu \rightarrow e\gamma$ decay set by the MEG experiment with its final dataset: 7.5x10¹⁴ stopped μ^+

BR $(\mu \rightarrow e\gamma) < 4.2x \ 10^{-13} \text{ at } 90\% \text{ C.L.}$ submitted to EPJC

- MEG-II detector is in the construction phase
 same design of MEG but better resolution
- By the end of a decade sensitivity pushed to $\sim 4 \times 10^{-14}$
- Ultimate $\mu^+ \rightarrow e^+ \gamma$?
 - PSI HiMB Project: ~1.3x10¹⁰ µ/s seems possible..
 - Need to fight accidental background (photon conversion?)

Backup

Examples

Calibrations

