

Lepton Flavor Violation in Composite Higgs Models

Andrea Pattori

CLFV 2016 conference Charlottesville (VA), 06.20.2016

outline

- Composite Higgs models
 - reasons and features
 - fermion masses
 - possible approaches
- Flavor structure and CLFV
 - overview on the flavor structure
 - anarchic scenarios
 - scenarios with flavor symmetries
- Insights using the simplified approach

Hierarchy Problem: Huge mass gap between Planck scale ($\sim 10^{18}$ GeV) and EW scale (~ 100 GeV).

Possible solutions:

- New Physics at the TeV scale
 - Weak interaction (Supersymmetry)
 - Strong interaction (Composite Higgs)
- "Cosmological" explanation
 - Multiverse scenario (anthropic selection, SM likelihood)
 - Relaxion mechanism
- Disregard for naturalness argumentations

the first Technicolor theories

enter the Composite Higgs

[Dimopoulos, Susskind, '79] • Composite Higgs (CH) models ['t Hooft, '80] Strong TC sector QCD – M_{PL}– confinement ~TeV Higgs FWSB composite resonances EW scale confinement Aged baryons and mesons

why the Higgs is lighter?

• Higgs as a pseudo-Nambu-Goldstone (pNG)

[Kaplan, Georgi, '84] [Kaplan, Georgi, Dimopoulos '84] [Dugan, Kaplan, Georgi, '85]

Andrea Pattori, UniPD & UZH	CLFV 2016, 06.20.2016	5/28

• old TC models: $\mathcal{L}_{int} = \frac{1}{\Lambda_{TC}^2} (\bar{\psi}\psi)(\bar{\Psi}\Psi)$

[Weinberg, '76, '79] [Dimopoulos, Susskind, '79]

 ψ

[Kaplan, '91]

different fields • Partial Compositeness: $\mathcal{L}_{int} = \Delta_L \bar{\Psi}_R^2 \psi_L + \Delta_R \bar{\Psi}_L^1 \psi_R + h.c.$ $\frac{\Delta}{m_{\Psi}} = \epsilon \ll 1$

Andrea Pattori, UniPD & UZH	CLFV 2016, 06.20.2016	7/28

[Kaplan, '91]

• Partial Compositeness: $\mathcal{L}_{int} = \Delta_L \bar{\Psi}_R^2 \psi_L + \Delta_R \bar{\Psi}_L^1 \psi_R + h.c.$ $\frac{\Delta}{m_{\Psi}} = \epsilon \ll 1$

different fields

SM sector: <u>admixture</u> elementary/composite

[Kaplan, '91]

an, '91]
Partial Compositeness:
$$\mathcal{L}_{int} = \Delta_L \overline{\bar{\Psi}_R^2} \psi_L + \Delta_R \overline{\bar{\Psi}_L^1} \psi_R + h.c.$$
 $\frac{\Delta}{m_{\Psi}} = \epsilon \ll 1$

SM sector: admixture elementary/composite

SM fields massless before EWSB

Andrea Pattori, UniPD & UZH	CLFV 2016, 06.20.2016	8

- Yukawa interaction only with Ψ (Vector Meson Dominance, VMD)
- Two different Yukawa couplings Y, \tilde{Y} ("right" and "wrong" Yukawa)

Advantages of PC:

- Under Vector Meson Dominance
 - → effective suppression of NP effects (RS-GIM mechanism)

Advantages of PC:

- Under Vector Meson Dominance
 - → effective suppression of NP effects (RS-GIM mechanism)

[Gherghetta, Pomarol, '00] [Huber, '03]

Addressing the SM flavor puzzle

hierarchical $\Delta \rightarrow$ hierarchical masses and flavor mixing

is Partial Compositeness better?

Advantages of PC:

- Under Vector Meson Dominance
 - → effective suppression of NP effects (RS-GIM mechanism)

[Gherghetta, Pomarol, '00] [Huber, '03]

• Addressing the SM flavor puzzle

hierarchical \varDelta \rightarrow hierarchical masses and flavor mixing

Naturally arise in some concrete realisations

[Contino, Pomarol, '04]

Andrea	Pattori,	UniPD o	& UZH
--------	----------	---------	-------

different model building approaches

different model building approaches

different model building approaches

flavor structure in Partial Compositeness

Realistic 3-generation description:

basis choice

flavor structure in Partial Compositeness

Realistic 3-generation description:

Andrea Pattori, UniPD & UZH	CLFV 2016, 06.20.2016	11/28
-----------------------------	-----------------------	-------

flavor structure in Partial Compositeness

Realistic 3-generation description:

- Anarchic scenario:
 - $Y_{ij} \sim \mathcal{O}(1)$ and anarchic
 - ϵ_{Li} and ϵ_{Ri} hierarchical
- Flavor symmetries for Y_{ij} (discrete or continuous)

Partial Compositeness and lepton flavor

Flavor structure of the lepton sector:

• Requirements with massless neutrinos:

•
$$m_e \ll m_\mu \ll m_\tau$$
: $\frac{\epsilon_{Li} \epsilon_{Ri}}{\epsilon_{Lj} \epsilon_{Rj}} \approx \frac{m_i}{m_j}$

• democratic:
$$\frac{\epsilon_{Li}}{\epsilon_{Lj}} \sim \frac{\epsilon_{Ri}}{\epsilon_{Rj}} \sim \sqrt{\frac{m_i}{m_j}} \longrightarrow \epsilon_i \sim \sqrt{\frac{m_i}{\langle Y \rangle v}}$$

- likely configuration in anarchic scenarios
- configuration that minimise LFV
- + LH compositeness: $\epsilon_L \propto \mathbb{1}$ & $\epsilon_{Ri} \approx m_i$
- RH compositeness: $\epsilon_R \propto 1$ & $\epsilon_{Li} \approx m_i$
 - scenarios with flavor symmetries

Partial Compositeness and lepton flavor

Flavor structure of the lepton sector:

- Requirements with massive neutrinos:
 - $m_e \ll m_\mu \ll m_\tau$
 - $m_{\nu} \ll m_e$
 - + Majorana ν + see-saw mechanism
 - + Dirac ν + composite ν_R
 - UPMNS is not hierarchical
 - discrete flavor symmetries (A₄xZ₂, S₄xZ₃, ...)
 → troubles with θ₁₃≠0
 - + possible also in anarchical scenarios [Agashe, '09]

Present bounds and future sensitivity for LFV processes:

LFV Process	Present Bound	Future Sensitivity		
$\mu \to e\gamma$	5.7×10^{-13}	$\approx 6 \times 10^{-14}$	<u>ן</u>	strongest present
$\mu \rightarrow 3e$	1.0×10^{-12}	$\approx 10^{-16}$	}	challenges for CH
$\mu^{-}\mathrm{Au} \rightarrow e^{-}\mathrm{Au}$	7.0×10^{-13}	?	J	scenarios
$\mu^{-}\mathrm{Ti} \rightarrow e^{-}\mathrm{Ti}$	4.3×10^{-12}	?		
$\mu^{-} Al \rightarrow e^{-} Al$		$\approx 10^{-16}$		
$\tau \to e\gamma$	3.3×10^{-8}	$\sim 10^{-8} - 10^{-9}$		$\tau \mid FV$ is denotrous in PC
$ au \to \mu\gamma$	4.4×10^{-8}	$\sim 10^{-8} - 10^{-9}$		scenarios but present
$\tau \to 3e$	2.7×10^{-8}	$\sim 10^{-9} - 10^{-10}$		bounds are too mild
$\tau \to 3\mu$	2.1×10^{-8}	$\sim 10^{-9} - 10^{-10}$)	
Lepton EDM	Present Bound	Future Sensitivity		
$d_e(e cm)$	8.7×10^{-29}	?]]	interesting and important
$d_{\mu}(e cm)$	1.9×10^{-19}	?		correlations with LFV

CLFV: tree vs one loop contributions

• Tree level LFV: $\mathcal{B}(\mu \to 3e), \ \mathcal{B}(\mu N \to e N)$

Andrea Pattori, UniPD & UZH	CLFV 2016, 06.20.2016	15/28
· · · · · · · · · · · · · · · · · · ·		

CLFV: tree vs one loop contributions

• Tree level LFV: $\mathcal{B}(\mu \to 3e), \ \mathcal{B}(\mu N \to e N)$

• One loop LFV:
$$\mathcal{B}(\mu \to e \gamma)$$

diagonal in mass eigenstate basis

"Tension" between one loop and tree level bounds:

[Agashe, Blechman, Petriello, PRD 74 (2006) 053011]

Spoiling the tension "tree-level vs one-loop":

- There are contributions with different *Y*-dependence in considered processes
- Such contributions are quantitative important for an evaluation of the bounds
- $\mu \rightarrow e\gamma + \mu N \rightarrow eN$ provides the most stringent constraints
- Anarchic scenarios are strongly constrained by present experimental bounds

[Beneke, Moch, Rohrwild, Nucl.Phys. B906 (2016) 561-614]

Are there strongest challenges for CH models?

• Direct searches: ≥ 1 TeV

Are there strongest challenges for CH models?

- Direct searches: ≥ 1 TeV
- Quark sector: $\epsilon_{\rm K} \rightarrow \approx 7 \,{\rm TeV}$
 - close to future LFV sensitivity
 - + limited theoretical predictions

X

~

Are there strongest challenges for CH models?

- Direct searches: ≥ 1 TeV
- Quark sector: $\epsilon_{\rm K} \rightarrow \approx 7 \,{\rm TeV}$
 - close to future LFV sensitivity
 - limited theoretical predictions
- Precision observables: S and T parameter $\rightarrow \ge 4 \text{ TeV} \approx$

X

 \approx

18/28

Are there strongest challenges for CH models?

- Direct searches: ≥ 1 TeV
- Quark sector: $\epsilon_{\rm K} \rightarrow \approx 7 \,{\rm TeV}$
 - close to future LFV sensitivity
 - limited theoretical predictions
- Precision observables: S and T parameter $\rightarrow \ge 4 \text{ TeV} \approx$

new dangerouswith custodialcontributions to←gauge symmetry→LFV processesin 5th dimension

→ Some kind of "tension" between LFV and EWPT

Andrea Pattori, Un	niPD & UZH
--------------------	------------

CLFV 2016, 06.20.2016

X

 \approx

Conclusions for CH models with <u>anarchic</u> bulk Yukawas:

- Extensively studied for their appealing features, such as dynamical generation of hierarchies
- Despite RG-GIM suppression, bounds from EWPT and CLFV grew bigger in last ~10 years
- Not as appealing as in the past, $\Lambda \ge 8 \text{ TeV}$ ($\rightarrow m_{KK} \ge 20 \text{ TeV}$)
- These difficulties has increased the interest in models with flavor symmetries

Introduce discrete flavor symmetry:

- Originally motivated by conjectures about the UPMNS structure:
 - + explanation of the (nearly) tri-bimaximal lepton mixing
 - extra-suppression of LFV

Águila, Carmona, Santiago, JHEP 1008 (2010) 127 Hagedorn, Serone, JHEP 1110 (2011) 083

Introduce discrete flavor symmetry:

- Originally motivated by conjectures about the UPMNS structure:
 - + explanation of the (nearly) tri-bimaximal lepton mixing
 - extra-suppression of LFV

Águila, Carmona, Santiago, JHEP 1008 (2010) 127 Hagedorn, Serone, JHEP 1110 (2011) 083

- After $\theta_{13} \approx 0.1$, too large for old models:
 - + still exist flavor groups that "predict" UPMNS
 - still suppression of LFV
 - arguably less appealing models

→ m_{KK} ≈ 3.5 TeV

Hagedorn, Serone, JHEP 1202 (2012) 077

Composite Minimal Flavor Violation:

Redi, EPJC 72 (2012) 2030 Redi, JHEP 1309 (2013) 060

- Only one LFV source in charged lepton sector: ye
 - Left-handed compositeness:
 - Right-handed compositeness:
 - Intermediate scenario:

$$\epsilon_L \propto \mathbb{1}, \ \epsilon_R \propto y_e, \ Y \propto \mathbb{1}$$

$$\epsilon_L \propto y_e, \ \epsilon_R \propto \mathbb{1}, \ Y \propto \mathbb{1}$$

$$\epsilon_L \propto \mathbb{1}, \ \epsilon_R \propto \mathbb{1}, \ Y \propto y_e$$

diagonal in mass eigenstate basis NO CLFV

Andrea Pattori,	UniPD &	UZH
-----------------	---------	-----

Composite Minimal Flavor Violation:

Redi, EPJC 72 (2012) 2030 Redi, JHEP 1309 (2013) 060

- Only one LFV source in charged lepton sector: ye
 - Left-handed compositeness:
 - Right-handed compositeness:
 - Intermediate scenario:

$$\epsilon_L \propto \mathbb{1}, \ \epsilon_R \propto y_e, \ Y \propto \mathbb{1}$$

 $\epsilon_L \propto y_e, \ \epsilon_R \propto \mathbb{1}, \ Y \propto \mathbb{1}$
 $\epsilon_L \propto \mathbb{1}, \ \epsilon_R \propto \mathbb{1}, \ Y \propto y_e$

diagonal in mass eigenstate basis NO CLFV

• Neutrino sector introduce CLFV

→ effective suppression of CLFV

Composite Minimal Flavor Violation:

- Greater troubles in the quark sector (y_u, y_d)
 - Left-Handed compositeness: $\epsilon_L \propto \mathbb{1}$, $\epsilon_R^u \propto y_u$, $\epsilon_R^d \propto y_d$

• Right-Handed compositeness: $\epsilon_L \propto y_u, \ \epsilon'_L \propto y_d, \ \epsilon^{u,d}_R \propto \mathbb{1}$

Andrea Pattori, UniPD & UZH	
-----------------------------	--

Composite Minimal Flavor Violation:

- Greater troubles in the quark sector (y_u, y_d)
 - + Left-Handed compositeness: $\epsilon_L \propto \mathbb{1}$, $\epsilon_R^u \propto y_u$, $\epsilon_R^d \propto y_d$
 - Right-Handed compositeness: $\epsilon_L \propto y_u, \ \epsilon'_L \propto y_d, \ \epsilon^{u,d}_R \propto \mathbb{1}$

Due to top mass, in LH (RH) compositeness, all LH (RH) up-quarks have high degree of compositeness.

- + LH compositeness: troubles with precision tests
- + RH compositeness: troubles with quark flavor physics

Composite Minimal Flavor Violation:

- Greater troubles in the quark sector (y_u, y_d)
 - + Left-Handed compositeness: $\epsilon_L \propto \mathbb{1}$, $\epsilon_R^u \propto y_u$, $\epsilon_R^d \propto y_d$
 - Right-Handed compositeness: $\epsilon_L \propto y_u, \ \epsilon'_L \propto y_d, \ \epsilon^{u,d}_R \propto \mathbb{1}$

Due to top mass, in LH (RH) compositeness, all LH (RH) up-quarks have high degree of compositeness.

- + LH compositeness: troubles with precision tests
- + RH compositeness: troubles with quark flavor physics

→ way out: different flavor symmetries, e.g. SU(2)

an example of two-site model

Simplified approach starting from an effective Lagrangian:

Contino, Sundrum, JHEP 0705 (2007) 074

- Partial Compositeness implemented for fermions and bosons
- Vector Meson Dominance assumption
- Focus on the lepton sector

flavor structure of the two site model

Lepton content:	SU(2)∟ doublets	SU(2)∟ singlets	
SM leptons:	ℓ L,	e _R .	chiral fermions
Heavy leptons:	$L_L, L_R,$	El, Er.	Dirac fermions

Flavor parameters:

- Mass terms: $m\bar{L}L + \tilde{m}\bar{E}E + h.c.$
- Yukawas:
- $\Delta_L \bar{L}_R \ell_L + \Delta_R \bar{R}_R e_L + \text{h.c.}$
- Mass mixings: $Y\bar{L}_L\phi E_R + \tilde{Y}\bar{L}_R\phi E_L + h.c.$

flavor structure of the two site model

Lepton content:	SU(2)∟ doublets	SU(2)∟ singlets	
SM leptons:	ℓ L,	e _R .	chiral fermions
Heavy leptons:	$L_L, L_R,$	E _L , E _R .	Dirac fermions

Flavor parameters:

About dipole contributions:

- In this setup LO contributions decouples as $\propto 1/\Lambda^8$
- EDM is an important complementary observable
- Tensions can be reduced

Feruglio, Paradisi, Pattori, EPJC 75 (2015) no.12, 579

About tree level LFV:

- Is crucial to consider all kind of contributions
- In this setup the naive $\propto 1/Y^2$ dependence is spoiled by this

Feruglio, Paradisi, Pattori, EPJC 75 (2015) no.12, 579

Andrea Pattori, UniPD & UZH	CLFV 2016, 06.20.2016	26/28
-----------------------------	-----------------------	-------

correlations for a vanishing wrong Yukawa

Correlations tree level - one loop:

- Remarkable deviations from the "dipole dominance" case
- distinctive pattern for NP effects correlation

Feruglio, Paradisi, Pattori, EPJC 75 (2015) no.12, 579

Andrea Pattori, UniPD & UZH	CLFV 2016, 06.20.2016	27/28

conclusions

- Composite Higgs models are appealing proposals
 - natural solution to the hierarchy problem
 - Partial Compositeness address the flavor puzzle(s)
- At present days RS-GIM mechanism is challenged by CLFV
 - Anarchic scenarios gets serious bounds
 - Flavor symmetries are a not-so-easy way out
- The simplified approach gives a different perspective
 - Interesting insights in the flavor structure of these scenarios
 - Viable models have specific LFV patterns