In-situ Determination of Relative Fluxes: the Low- ν Method

Roberto Petti

University of South Carolina, USA

with contributions from H. Duyang, M. Gonchar, S. R. Mishra, X. Tian

DUNE ND Physics WG meeting, December 17, 2015

Roberto Petti

<u>RELATIVE FLUX WITH LOW- ν METHOD</u>

◆ Relative $\nu_{\mu}, \bar{\nu}_{\mu}$ flux vs. energy from low- ν_{0} method: (S. R. Mishra, Wold. Sci. 84 (1990), Ed. Geesman) $N(E_{\nu}, E_{\text{Had}} < \nu_{0}) = k\Phi(E_{\nu})f_{c}(\frac{\nu_{0}}{E_{\nu}})$ the correction factor $f_{c}(\nu_{0}/E_{\nu}) \rightarrow 1$ for $\nu_{0} \rightarrow 0$: $f_{c}(\frac{\nu_{0}}{E_{\nu}}) = 1 + \left(\frac{\nu_{0}}{E_{\nu}}\right)\frac{\mathcal{B}}{\mathcal{A}} - \left(\frac{\nu_{0}}{E_{\nu}}\right)^{2}\frac{\mathcal{C}}{2\mathcal{A}} + \dots$ where $\mathcal{A} = G_{F}^{2}M/\pi \int_{0}^{1} \mathcal{F}_{2}(x)dx$, $\mathcal{B} = -G_{F}^{2}M/\pi \int_{0}^{1} (\mathcal{F}_{2}(x) \mp x\mathcal{F}_{3}(x)) dx$ and $\mathcal{C} = \mathcal{B} - G_{F}^{2}M/\pi \int_{0}^{1} \mathcal{F}_{2}(x) \left[(1 + 2Mx/\nu)/(1 + \mathcal{R}(x, Q^{2})) - Mx/\nu - 1\right] dx$

+ In practice use MC to calculate the correction factor normalized at high E_{ν} :

 $f_c(E_{\nu}) = \frac{\sigma(E_{\nu}, E_{\text{Had}} < \nu_0)}{\sigma(E_{\nu} \to \infty, E_{\text{Had}} < \nu_0)}$

where the denominator is evaluated at the highest energy accessible in the spectrum.

 \implies Need precise muon energy scale and good resolution at low ν values

 \implies Reliable flux predictions for $E_{\nu} \gtrsim 2\nu_0$

 \rightarrow DUNE spectra require $\nu_0 \simeq 0.25 \div 0.50$ GeV

• Low- ν technique only provides RELATIVE BIN-TO-BIN flux as a function of E_{ν} , NOT ABSOLUTE flux

⇒ Implicit constraint of fixed flux integral (introduces correlation among bins)

• Freedom to chose the energy range used to impose the normalization constraint \implies E.g. E_{ν} bins with higher statistics / smaller systematic uncertainties

- The correction factor $f_c(E_{\nu})$ can be affected by model uncertainties on (anti)neutrino-nucleus cross-sections (QE, RES, DIS)
 - Typically keep $f_c(E_{\nu})$ at the level of few percent or below (small ν_0/E_{ν}) to minimize model uncertainties (correction to correction);
 - For $\nu_0 = 0.25 \div 0.50$ GeV samples almost entirely QE (99 ÷ 75%) and RES;
 - Low- ν sensitive only to model uncertainties modifying the total cross-section vs. E_{ν} (integrated over Q^2 and other kinematic variebles)

 \implies Shape of $\sigma(E_{\nu})$ intrinsically more stable

EMPIRICAL PARAMETERIZATION (EP) OF FLUXES

Talk by Sanjib Mishra

• Measurement of CC spectra of $\nu_{\mu}, \bar{\nu}_{\mu}, \nu_{e}, \bar{\nu}_{e}$ constraint flux predictions:

$ u_{\mu}$	≡	$\pi^+ \oplus K^+$			5< Enucl 5
$ar{ u}_{\mu}$	≡	$\pi^-\oplus K^-$	Mu+	87%	54%
ν_e	≡	$\mu^+(\pi^+ o u_\mu) \oplus K^+(o u_\mu) \oplus K^0_L$	K+	10%	33%
$\bar{\nu}_e$	≡	$\mu^-(\pi^- o ar u_\mu) \oplus K^-(o ar u_\mu) \oplus K^0_L$	KL	3%	15%

 \implies Need good reconstruction & identification of all 4 neutrino species.

+ Fit Near Detector $\nu_{\mu}, \bar{\nu}_{\mu}$ ($\nu_e, \bar{\nu}_e$) spectra in 4-5 (x,y) radial bins:

- Trace secondaries through beam-elements, decay;
- Predict (anti)neutrino fluxes by folding experiental acceptance;
- Compare predicted to measured spectra $\implies \chi^2$ minimization:

$$\frac{d^2\sigma}{dx_F dP_T^2} = f(x_F)g(P_T)h(x_F, P_T)$$

- Functional form constraint allows flux prediction close to $E_{\nu} \sim \nu^0$.
- ◆ Add measurements of π^+/K^+ and π^-/K^- ratios from hadro-production experiments to the empirical fit of the neutrino spectra in the Near Detector

Example of Low- ν EP fit to the MINOS low energy (LE) data (J. Ling and S.R. Mishra)

STUDIES ADDRESSING SYSTEMATICS

- MINOS ν_{μ} & $\bar{\nu}_{\mu}$ flux extraction for total cross-section [PRD 81 (2010) 072002]:
 - To increase statistics use variable ν_0 cut: $\nu < 1$ GeV for $E_{\nu} < 9$ GeV; $\nu < 2$ GeV for $9 < E_{\nu} < 18$ GeV; $\nu < 5$ GeV for $E_{\nu} > 18$ GeV;
 - Overlap between flux & cross-section samples: 60% (90%) for ν_{μ} ($\bar{\nu}_{\mu}$) at $E_{\nu} \sim 3$ GeV and 30% (60%) for $E_{\nu} > 6$ GeV.
- ◆ Phenomenological study by Bodek at al. [EPJC 72 (2012) 1973] to understand systematics related to the cross-section modeling and the possibility to extend the low-ν method to values of <u>ν₀ ~ 0.25 ÷ 0.5 GeV</u>
- DUNE (LBNE) study of ν_{μ} , $\bar{\nu}_{\mu}$ fluxes (H. Duyang, S.R. Mishra, docdb #7285):
 - Use standalone simulation with DUNE spectra and parameterized detector smearing;
 - Fit modified ν_{μ} and $\bar{\nu}_{\mu}$ CC spectra in the ND (fake data) with $E_{\text{Had}} < \nu_0 = 0.5$ GeV;
 - Extract fluxes from EP fits and extrapolate to the FD (focus on FD/ND ratio).
- NOMAD ν_µ flux extraction to validate DUNE ND sensitivity with real data & full reconstruction/simulation (M. Gonchar, R. Petti, docdb #9275):
 - Default flux sample $\nu < 3~{\rm GeV}$ including 1-track events;
 - Complementary cross-section sample with $\nu > 3$ GeV (0% overlap);
 - DUNE FGT similar to NOMAD with higher granularity (\times 12) and statistics (\times 100)

IMPACT OF CROSS-SECTION UNCERTAINTIES

• Example: discrepancy between MiniBooNE and NOMAD on QE total cross-section \implies Overall normalization factor or $\sigma(E_{\nu})$ shape difference?

A variety of theoretical issues on QE:

- Impulse approximation + Fermi gas vs. realistic nuclear modeling;
- Impact of many particle many hole processes (e.g. MiniBooNE);
- Transverse vs. longitudinal response;
- Role of Final State Interactions (FSI), etc.

⇒ Main question: what level of $\sigma(E_{\nu})$ shape distortion can result in sizeable (~ 1 ÷ 2 %) effects on low- ν technique (primarily f_c)? ⇒ Can be tested empirically introducing arbitrary fudge factors in MC.

- Bodek at al. [EPJC 72 (2012) 1973] showed low- ν works well down to very low values $\nu_0 = 0.25$ GeV and $\nu_0 = 0.5$ GeV and estimated model uncertainties:
 - Averaging different models gives uncertainty < 1.9% for ν_{μ} at $E_{\nu} > 0.7$ GeV;
 - Averaging different models gives uncertainty < 2.5% for $\bar{\nu}_{\mu}$ at $E_{\nu} > 1.0$ GeV.
- Stringent constraints on QE models will be available in DUNE ND from in-situ precision measurements of double differential cross-section

⇒ Substantial reduction of model dependence expected

- Duyang and Mishra (docdb #7285) showed that variations of the axial mass M_A in both QE and RES events have small impact on the low-ν extraction of fluxes at DUNE
 - \implies Ratio FD/ND stable against cross-section uncertainties
 - \implies Overall uncertainty of the FD/ND flux ratio $\sim 2\%$ including all systematics

- Gonchar and Petti (docdb #9275) showed with NOMAD analysis that a variable ν_0 cut as a function of E_{ν} dramatically enhances effect of cross-section uncertainties
 - Fixed ν_0 cut provides reduced dependence upon cross-section models;
 - Variable ν_0 cut alters event composition (QE/RES/DIS) and corresponding E_{ν} dependence.

 \implies Must keep the lowest fixed ν_0 cut allowed by experimental resolution / statistics

IMPACT OF ENERGY SCALE UNCERTAINTIES

- + Effect of energy scale uncertainties largely dominated by muon δE_{μ} (small $y_{\rm Bj}$)
- MINOS low-ν flux determination [PRD 81 (2010) 072002] used variable ν₀ cut and was intrinsically limited by the large energy scale uncertainties:
 δE_μ = 2% (stopping) or 4% (exiting); hadronic scale uncertainty δE_{Had} = 5.6%

MINOS low-nu relative flux uncertainties

- NOMAD low- ν flux extraction (Gonchar and Petti, docdb #9275) used a fixed ν_0 cut and exploited the high detector resolution / low energy scale uncertainties: $\delta E_{\mu} = 0.2\%$; hadronic scale uncertainty $\delta E_{\text{Had}} = 0.5\%$
 - \implies Crucial to achieve a muon energy scale uncertainty $\delta E_{\mu} \leq 0.2\%$ in DUNE ND to keep uncertainty on FD/ND $\sim 1\%$

NOMAD low-nu relative flux uncertainties

IMPACT OF ν_0 SMEARING

- Even a high resolution detector (NOMAD, DUNE ND) can still be subject to significant smearing on the reconstructed ν:
 - Reconstruction of low momentum / large angle tracks (protons);
 - Fermi motion and nuclear effects;
 - Final state interactions, etc.

\implies Dominant systematic uncertainty from variation of ν_0 cut once small energy scale uncertainties

NOMAD results on low-u extraction of relative u_{μ} flux

E_{ν}	Φ	$\delta_{ m stat}$	$\delta_{ m sys}$	$\delta_{ extbf{tot}}$	δ_{cut1}	δ_{cut2}	$\delta_{ m ehad}$	$\delta_{ ext{elep}}$	$\delta_{ m csc}$	$\Phi_5 - \Phi_3$	$\Phi_5-\Phi_3/\Phi$	overlap
GeV		%	%	%	%	%	%	%	%		%	%
9.000	5.505	0.453	0.773	0.896	0.439	0.003	0.051	0.607	0.185	-0.0151	-0.2738	68.16
15.00	3.008	0.578	1.277	1.402	1.230	0.000	0.039	0.301	0.165	0.0290	0.9658	66.56
19.00	2.274	0.645	1.394	1.536	1.366	0.001	0.033	0.256	0.103	0.0400	1.7571	66.49
23.00	1.729	0.734	1.165	1.377	1.136	0.001	0.024	0.184	0.183	0.0277	1.6008	66.67
27.00	1.258	0.849	0.302	0.901	0.292	0.001	0.004	0.068	0.034	0.0115	0.9169	66.66
31.50	1.072	0.916	0.192	0.936	0.175	0.000	0.004	0.074	0.026	-0.0046	-0.4317	67.01
37.00	0.846	1.023	0.558	1.165	0.531	0.000	0.006	0.043	0.166	0.0095	1.1215	66.73
45.00	0.839	1.028	0.204	1.048	0.011	0.200	0.006	0.038	0.000	-0.0043	-0.5136	67.23
57.00	0.640	0.957	0.666	1.166	0.011	0.664	0.015	0.031	0.039	-0.0055	-0.8558	67.44
72.00	0.447	1.138	0.513	1.248	0.011	0.504	0.005	0.079	0.058	-0.0026	-0.5760	67.61
93.00	0.420	1.171	0.786	1.411	0.010	0.783	0.004	0.019	0.056	-0.0041	-0.9875	67.67
153.00	0.355	1.269	0.922	1.569	0.009	0.869	0.018	0.299	0.077	-0.0065	-1.8465	68.21

- Muon energy scale $\delta E_{\mu} = 0.2\%$;
- + Hadronic energy scale $\delta E_{\text{Had}} = 0.5\%$;
- + Cross-section variations $\pm 15\%$ QE & RES, $\pm 2.1\%$ DIS;
- ← Cut 1 ($\nu < 3$ GeV) variation ± 1 GeV (33%);
- Cut 2 ($\nu < 5$ GeV) variation ± 1.5 GeV (30%).

REQUIREMENTS FOR DUNE ND (LOW- ν)

Glo-Sci-51,23 measure absolute and relative ν_{μ}, ν_{e} and $\bar{\nu}_{\mu}, \bar{\nu}_{e}$ spectra separately. \Rightarrow Absolute $\nu_{\mu}(\bar{\nu}_{\mu})$ fluxes to ~ 2 -3%, relative $\nu_{\mu}, \bar{\nu}_{\mu}, \nu_{e}, \bar{\nu}_{e}$ fluxes FD/ND to $\leq 2\%$ Glo-Sci-41 $\Delta_{Syst.}$ on FD/ND must be significantly less than $\Delta_{Stat.}$ in FD. $\Rightarrow \Delta_{Stat.}$ on relative fluxes in ND $\ll 1\%$ for not to limit FD/ND predictions

- ◆ Identify and measure ALL 4 species in LBNF beams: ν_{μ} , $\bar{\nu}_{\mu}$, $\bar{\nu}_{e}$, and $\bar{\nu}_{e}$ CC with particular emphasis on the low- ν topologies at $\nu < 1$ GeV (flux samples)
 - Measure the relative E_{ν} distribution vs. the radial distance from beam axis (e.g. radial bins);
 - Extract the parent meson distributions from EP fits to low- ν flux samples for FD/ND extrapolation.
- Minimal ND statistics required defined by target statistical precision $\Delta_{\text{Stat.}} \ll 1\%$ and lowest FIXED cut $\nu < 0.25$ GeV to constrain LBNF fluxes down to $E_{\nu} \sim 0.5$ GeV
 - Need samples equivalent to $\gtrsim 3 \times 10^6 \nu_{\mu}$ CC interactions after reconstruction and all analysis cuts to fully exploit the E_{ν} vs. radial distributions
 - ε for $\nu < 0.25$ GeV cut 9% for ν_{μ} CC and 11% for $\bar{\nu}_{\mu}$ CC, ε for reconstruction/selection $\sim 90\%$
 - Important to constrain the high energy tail of the spectrum (normalization in FD, non-standard oscillations, etc.) requiring even higher statistics
 - \implies Need to collect at least $\sim 37 \times 10^7 \nu_{\mu}$ CC, corresponding to a minimum FV of 3 tons with default 1.2 MW beam in 5y

Relative efficiency of the cut $\nu < \nu_0$ in DUNE ND reconstruction efficiencies not included (typically > 90%)

Fluxes from G4DUNE v3r3p8 (neutrino) and v3r2p4b (anti-neutrino)

- Energy scale uncertainties must be better than 0.5% to achieve target systematics on the relative fluxes $FD/ND \leq 2\%$ from low- ν technique:
 - Muon energy scale uncertainty $\left| \delta E_{\mu} \ll 0.5\% \right|$;
 - Hadron energy scale uncertainty $\delta E_{\text{Had}} \lesssim 0.5\%$.
- Need redundancy & accurate reconstruction of single-particle kinematics to constrain acceptances and low-ν smearing
- ✤ Need in-situ ancillary measurements:
 - Measurements of differential exclusive cross-sections (QE, RES, DIS);
 - Measurements to constrain nuclear effects, final state interactions (FSI) etc;
 - Control samples to validate efficiencies, energy scales, fitting procedure, parameterizations, etc.;

Backup slides

Roberto Petti

EXTRAPOLATION FD/ND

 Divide transverse fiducial volume (x, y) in 4-5 radial bins and perform EP fit to measured spectra in each radial bin

 \implies Enhanced sensitivity to $\nu(\bar{\nu})$ beam divergence

◆ Stringent constraints on π[±], K[±], K⁰_L components from ν_µ, ν_µ, ν_e, ν_e spectra in ND (EP fit) → extrapolation to FD defined only by decay kinematics & beam geometry
 ⇒ High resolution ND as a precision "ν(ν)-source measurement device"
 ⇒ Large cancellation of systematic uncertainties in FD/ND ratio

 Main systematic uncertainties on the FD/ND extrapolation from simulation/modeling of beam transport elements:

- Material profile along beam line;
- Misalignments & B field in focusing system;
- Effect of secondary/tertiary interactions.

⇒ Only differences which cannot be resolved by the ND resolution (EP) result in FD/ND systematics

SYSTEMATIC UNCERTAINTIES

Correction factor $f_c(E_{\nu})$:

• Modeling $\sigma(E_{\nu})$ shape: QE, RES, DIS

Low- ν extraction in ND:

- Muon energy scale δE_{μ}
- + Hadron energy scale δE_{Had}
- Detector smearing and effect of v₀ cut (including effect of FSI and nuclear smearing on resolution)
- ✤ Background calibration (control samples) & selection cuts

EP fit of parent meson distributions:

- + Functional form for $d\sigma/dx_F dP_T^2$
- + Fit procedure ($\Delta \chi^2$)
- + Input(s) from external hadro-production measurements of π^{\pm}/K^{\pm}

Extrapolation FD/ND:

- Material profile along beam line
- Misalignments & B field in focusing system
- Effect of secondary/tertiary interactions

NUCLEAR TARGETS

- Multiple nuclear targets in STT: $(C_3H_6)_n$ radiators, C, Ar gas, Ca, Fe, H_2O , D_2O , etc. \implies Separation from excellent vertex (~ 100µm) and angular (< 2 mrad) resolutions
- ← Subtraction of C TARGET (0.5 tons) from polypropylene $(C_3H_6)_n$ RADIATORS provides $5.0(1.5) \times 10^6 \pm 13(6.6) \times 10^3 (sub.) \nu(\bar{\nu})$ CC interactions on free proton \implies Absolute $\bar{\nu}_{\mu}$ flux from QE \implies Model independent measurement of puckets and ESL from PATIOS A/b
 - \implies Model-independent measurement of nuclear effects and FSI from RATIOS A/H
- Pressurized Ar GAS target (~ 140 atm) inside SS/C tubes and solid Ca TARGET (more compact & effective) provide detailed understanding of the FD A = 40 target
 Collect ×10 unoscillated FD statistics on Ar target
 Study of flavor dependence & isospin physics