Pion production tuning

P. Rodrigues¹, C. Wilkinson², K. McFarland¹

 1 Rochester

 $^{2}\mathsf{Bern}$

December 17, 2015

1

Introduction

- 1. Reanalyze low- E_{ν} pion production on deuterium
- 2. Tune GENIE to reanalyzed data
- 3. Compare to $\text{MINER}\nu\text{A}$ data on CH

D_2 data reanalysis

The two measurements of $\nu_\mu p \to \mu^- p \pi^+$ on D_2 around 1 GeV differ by 30–40%

A. Bercellie and PR

- ▶ Bubble chamber measurements on D₂: ~free nucleons
- Normalization not completely constrained by theory
- Previous work: joint fit to ANL and BNL: K. Graczyk et al., PRD 80, 093001 (2009)

Look for consistency in ratios of event rates to other processes: PRD 90, 112017

- What if the only problem were normalization? (Eg, flux)
 - \Rightarrow consistent $\sigma(\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+})/\sigma(\text{other})$ between ANL and BNL
- 1. Extract event counts from original papers
- 2. Apply appropriate corrections (efficiency, etc)
- 3. Make ratios

 $N(
u_{\mu}p
ightarrow \mu^{-}p\pi^{+})/N(CCQE)$ and $N(
u_{\mu}p
ightarrow \mu^{-}p\pi^{+})/N(CC)$ inclusive)

ν flux state of the art, ca 2015

MINER vA latest flux uncertainty: go to the Wine and Cheese! Dec 18, 1pm

Central

Multiply the ratios by the well-known CCQE cross section to get $\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}$ cross section

- H₂, D₂ CCQE measurements generally consistent
- Use GENIE 2.8 cross section ($M_A = 0.99$ GeV)
 - ▶ Not circular, since M_A from Q^2 shape, not normalization
- Result consistent with GENIE Δ^{++} cross section

Can do essentially the same thing for the other two CC single pion processes

$$u_{\mu} \mathbf{n} \rightarrow \mu^{-} \mathbf{p} \pi^{0}$$

$$\nu_{\mu}n \rightarrow \mu^{-}n\pi^{+}$$

Nice consistency here too

Fit to D_2 data

Tuning parameters

Axial form factor in pion production:

$$F_{\mathsf{A}}(Q^2) = rac{F_{\mathsf{A}}(0)}{\left(1+rac{Q^2}{\left(M_{\mathsf{A}}^{\mathsf{res}}
ight)^2}
ight)^2}$$

- Nonresonant background scales: NonRESBGv{n, p}CC1pi (also NC, not considered). Tie them together in one scale factor
- ► F_A(0) not a reweightable parameter (needs regeneration), so alternatively, use normalization of all CC resonant events, NormCCRES

Fit distributions 1

- ▶ Use total cross sections for all processes, and $d\sigma/dQ^2$ shape-only
- (Double-counts data, but we checked with pseudo-experiments that it doesn't make much difference to the final uncertainties)
- Exclude $Q^2 < 0.1$ GeV, since data less reliable there
- Technicality: Select events by final-state particles, not process, since nonres BG is "DIS".
- (Technicality)²: GENIE applies FSI in deuterium (seems wrong), so we actually use particles emerging from interaction, not from nucleus

Fit distributions, total cross section

- Small nonres ("DIS") in $\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}$: it will drive $M_{A}^{res} \times F_{A}(0)$
- ▶ Big nonres in $\nu_{\mu}n \rightarrow \mu^{-}n\pi^{+}$: it will drive the nonres scale
- Uncertainties shown are the default GENIE uncertainties

Fit distributions, Q^2

- Top row: ANL. Bottom row: BNL
- Recall $Q^2 < 0.1$ GeV excluded from fit
- $\nu_{\mu} p \rightarrow \mu^{-} p \pi^{+}$ will drive $M_{\rm A}^{\rm res}$

Fit results

	Nominal	Best fit	
Parameter		With Res norm	With $F_A(0)$
χ^2 for 157 dof	398	324	327
$M_{\rm A}^{\rm res}$ (GeV)	1.12	0.94 ± 0.05	1.00 ± 0.04
DIS norm. (%)	100	43 ± 4	43 ± 4
RES norm. (%)	100	1.15 ± 7	-
<i>F</i> _A (0) norm. (%)	100	-	107 ± 4

- With GENIE 2.8.2
- Most significant is reduction in nonresonant scale ("DIS norm") by more than half
- M_A^{res} goes down, and RES norm/ $F_A(0)$ goes up, but they're anticorrelated
- χ^2 is still pretty terrible: quality of data, not of fit/model

Best-fit distributions, total cross section

- Top row: ANL. Bottom row: BNL
- ▶ Maybe a little tension between $\nu_{\mu}n \rightarrow \mu^{-}p\pi^{0}$ and $\nu_{\mu}n \rightarrow \mu^{-}n\pi^{+}$
- Q² distributions in backups

Compare to MINER ν A data

Pions in MINER ν A data: CH target

- Incoherent pion production:
 - \blacktriangleright Reducing nonresonant component reduces MINER νA single pion production by about 5%
 - ▶ Still needs around 10% extra reduction, with some shape in pion kinetic energy
- Coherent pion production: reweight $E_{\pi} < 450$ MeV by 0.5

Conclusion

- We improved the constraint on νN pion production
- > Still doesn't describe the νA data, so extrapolation to Ar unclear

Backup slides

Best-fit distributions, Q^2

- Top row: ANL. Bottom row: BNL
- ▶ Maybe a little tension between $\nu_{\mu}n \rightarrow \mu^{-}p\pi^{0}$ and $\nu_{\mu}n \rightarrow \mu^{-}n\pi^{+}$

MINER ν A CC inclusive in slices of three-momentum transfer

Excess could be (partially) mismodeling of pion kinematics

T2K data wants GENIE pion reduction too

S. Cao, NuInt 15

MiniBooNE pion production data not so consistent with this picture

Or really with anyone's picture