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Objectives
Develop advanced analytical and numerical models describing the nonlinear
dynamics and collective processes in intense nonneutral beams in periodic
focusing accelerators and transport systems, with emphasis on:

* Heavy ion fusion.

* High energy and nuclear physics applications.

« Experimental and theoretical studies of heavy ion beam propagation on and
beam-plasma interactions in the target chamber.

« Basic experimental and theoretical investigations of nonneutral plasmas
confined in Malmberg-Penning traps and a Paul traps.

Personnel
PPPL Staff: R. C. Davidson, P. Efthimion, E. Gilson, L. Grisham, I. Kaganovich,
R. Majeski, W. W. Lee, H. Qin, E. Startsev.




PPPL Beam Dynamics Group (2/2)

PRINCETON
PLASMA PHYSICS
LABORATORY

Technical focus of experimental activities:

Develop advanced beam and plasma diagnostics, and advanced plasma
sources for intense charge bunch neutralization in neutralized drift
compression experiments on NDCX-II.

Make use of Princeton 100kV Test Stand to develop and test advanced
high density plasma sources for beam neutralization at very high beam
Intensities.

Technical focus of intense beam theory and modeling
activities:

Advanced analytical and numerical modeling of intense beam
propagation, nonlinear dynamics, beam-plasma interactions, and pulse

compression.

Mitigation and control of collective interactions and instabilities;
optimization of beam quality and brightness; identify techniques for halo
particle production and control.

Beam pulse compression and focusing in neutralizing background plasrya.

Atomic physics; develop improved charge-changing cross section models.
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Developing an improved understanding of intense beam propagation in high energy
accelerators is essential for high energy and nuclear physics applications, heavy ion
fusion, spallation neutron sources, and high energy density physics.

Critical issues for accelerators:

» Long time, long distance propagation of intense beam bunches.
« Stability against lattice noise.

« Stability against coherent periodic perturbations.

« Beam mismatch and envelope instabilities.

» Chaotic particle dynamics and production of halo particles.

« Emittance growth.

Paul traps help to address these critical issues in a cost-effective manner by simulating
the transverse dynamics of intense charge bunches in an accelerator. The simulation
Is possible because the transverse dynamics are equivalent since the configurations
are Lorentz transformations of one another.

H. Okamoto and H. Tanaka, Nucl. Instr. and Meth. in Phys. Res. A 437, 178 (1999).
R. C. Davidson, H. Qin, and G. Shvets, Phys. Plasmas 7, 1020 (2000). S
N. Kjeergaard and M. Drewsen, Phys. Plasmas 8, 1371 (2001).
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« Paul traps and the analogy between PTSX and alternating-gradient
transport systems.

« PTSX apparatus, operating parameters, and basic measurements.

* Injection mismatch and halo particles.

« Beam compression.

e Collective beam modes.

* Noisy lattices.

» Coherent periodic perturbations in a ring.

* Nonlinear field effects.

* Future plans.

e Summary



Paul Traps Use Temporally Periodic Quadrupole

PRINCETON

PLASMA PHYSICS Electric Fields to Confine Particles

1 , ,. Theoscilating electric field
€0, (X, Y, 1) = EKq (1)(X"=Y¥") with a spatial gradient gives
rise to a ponderomotive force

Ffoc(x) =Ky (t) (Xéx - yéy) that confines the particles.
a)q — 8ebVO max 7
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@PPPL The Alternating Gradient Transport System and
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et PTSX are Analogous

Quadrupolar Focusing

Self-Forces

Field Equations

Vlasov Equation {g_'_xfg_'_ yfi_(,( (S)X+a—w] 0

The PTSX team over the years includes primarily: M. Chung, R. C. Davidson, E. P.
Gilson, I. D. Kaganovich, R. Majeski, H. Qin, E. A. Startsev, and H. Wang.
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« PTSX apparatus, operating parameters, and basic measurements.



%} PPPL PTSX is a Cylindrical Paul Trap so that the

" PrinceTon Boundary Condition is the Same as in an
PLASMA PHYSICS .
AEORATORT _. _ Accelerator Pipe
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neighboring electrodes. DC voltages on the ends provide axial confinement.

Paul trap electrodes
. Plasma

ion source
(aluminosilicate cesium emitter)

Collector
(5 mm diameter moveable copper disk)



PTSX Studies Accelerator-Relevant Charge

=nceion - Bunches with Moderate Intensity that Travel for
HABORATORY Thousands of Lattice Periods
Plasma length 2m Wall voltage 140V
Wall radius 10 cm End electrode 20V
voltage
Plasma radius ~1lcm Frequency 60 kHz
Cesiumionmass 133 amu  Pressure 5 x 10-19 Torr
lon source grid <10V Trapping time 100 ms
voltages
Experimental data include: o T B A A
0.6
On-axis charge: Q= 515fC Q
On-axis number density: n= 10°cm3 3
Line charge: N,=2.010"m1g
RMS radius: R,=09cm ©
Effective temperature: KT =0.15 eV
Normalized intensity: s =0.22
2 2
0
g=_—"F ma)gR2 _Ng +2kT
20> Ars, 00— —%eeeee

q
Phys. Rev. Lett. 92, 155002 (2004). Radius (cm)
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* Injection mismatch and halo particles.

12



Experiments Demonstrated Halo Particle
eenceron Generation from Mismatch of Over-Intense Beams
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PTSX data and Warp particle-in-cell simulations of a steady state, flowing charge cloud show large
mismatch oscillations and the growth of a population of halo particles when the injected ion number
density is too large.
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Similar to C. K. Allen, et al., Phys. Rev. Lett. 89 ooL—
(2002) 214802 on the Los Alamos low-energy 1 C

demonstration accelerator (LEDA).

13
Phys. Rev. ST Accel. Beams 10, 014202 (2007).
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o Paul traps and the analogy between PTSX and alternating-gradient
transport systems.

o PTSX apparatus, operating parameters, and basic measurements.

* Injection mismatch and halo particles.

 Beam compression.

o Collective beam modes.

* Noisy lattices.

» Coherent periodic perturbations in a ring.

* Nonlinear field effects.

e [Future plans.

e Summary
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Plots show change
in density after
beam compression
when the strength of
focusing is changed.

Instantaneous
changes lead to
emittance growth
and reduced
comrpession.

Experimental Study of Beam Compression
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Phys. Rev. ST Accel. Beams 10, 064202 (2007).
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o Paul traps and the analogy between PTSX and alternating-gradient
transport systems.

o PTSX apparatus, operating parameters, and basic measurements.

* Injection mismatch and halo particles.

« Beam compression.

» Collective beam modes.

* Noisy lattices.

» Coherent periodic perturbations in a ring.

* Nonlinear field effects.

e [Future plans.

e Summary
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Both the Dipole Mode and the Quadrupole Mode
PLASA PHYSICS Can be Excited as Expected

V(t) =V, sin(2f, t)+éVsm(27zf t)

G 0.6 B B L L o ]
£ 05 ' ® e -
% 0.4 - - 5V/VO =0.01
5 03f Dipole 1 Electrode voltage: V, = 140 V
8 02 fooo=f 1 Electrode frequency: f, = 60 kHz
% r dipole q ] 0
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Both the frequency and the spatial structure of the perturbation must be appropriate to
excite the mode. Driving all four PTSX wall electrodes with properly phased V(t) excites
the quadrupole mode, while driving a single PTSX wall electrode excites the dipole

mode. _ 17
Physics of Plasmas 20, 055706 (2013).
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o Paul traps and the analogy between PTSX and alternating-gradient
transport systems.

o PTSX apparatus, operating parameters, and basic measurements.

* Injection mismatch and halo particles.

« Beam compression.

o Collective beam modes.

* Noisy lattices.

» Coherent periodic perturbations in a ring.

* Nonlinear field effects.

e Future plans.

e Summary
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®) PEEL We Applied 1.5% Amplitude Noise to the Lattice to
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Voltage waveform applied to PTSX wall
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Even 0.5% Amplitude Noise Drives Significant
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Emittance Growth
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200 “Noisy” Accelerators Were Created — Some
Had a Large Frequency Component at the Mode
Frequency — Some Didn’t

b Bl
B ; , ()“1 U m‘l’]ﬂ,‘pl ‘l ‘“’M"‘ ¢ i
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Mode Frequency Leads to Emittance Growth and
Beam Loss

When the filter eliminates the dipole
mode frequency, the deleterious effect is
removed.
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The Lattice Can Be Reordered to Remove the
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» Coherent periodic perturbations in a ring.
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Half-Integer-Tune Quadrupole Mode Resonances

PRINCETON

UABORATORY are Seen in “Ring” Experiments

N=12 P o2 [l T |
E -- Kq(2) (l g 0.6} Tunev =15 [T
(e f“W/\M] 2 |
R
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sl et RN
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Applied Voltage Waxveform Amplitude (V)
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See also:

Ohtsubo et al., “Experimental Study of Coherent Betatron Resonances with a Paul Trap”,
Phys. Rev. ST Accel. Beams, 13, 044201 (2010).
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Resonant Loss Effects are Eliminated When
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Ring Periodicity N = 12

2% amplitude dipole, &, = 60°, tune = 2
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o Paul traps and the analogy between PTSX and alternating-gradient
transport systems.

o PTSX apparatus, operating parameters, and basic measurements.

* Injection mismatch and halo particles.

« Beam compression.

o Collective beam modes.

* Noisy lattices.

» Coherent periodic perturbations in a ring.

* Nonlinear field effects.

e [Future plans.

e Summary
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Modes are Driven to Large Amplitude Where

raswarivsics Nonlinear Fields are Felt by the Charge Bunch
Periodicity of ring N = 12
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Scaling of Locations of “Valleys” Shows That the

PRINCETON Nonlinearity is Coming From the 12-pole
FABORATORY Contribution to the Lattice

Slopes: 1.18  -1.12 -1.21 %7 1ok
2 <1.26
10 -+
N Image charge effect would
S have r*term and -3/2 scaling
§ instead.
%—
S
<
1 T .
_ 10 100
Fangeromotive Duration (Number of Trips Around Ring)
2 1 6
A V(r,0,t) ~ Asin(24f,t) [2] cos(29)—3(2j cos(66’)+..}

—J The " term gives scaling as -(n-1)/(n-2) o8
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o Paul traps and the analogy between PTSX and alternating-gradient
transport systems.

o PTSX apparatus, operating parameters, and basic measurements.

* Injection mismatch and halo particles.

« Beam compression.

o Collective beam modes.

* Noisy lattices.

» Coherent periodic perturbations in a ring.

* Nonlinear field effects.

e [Future plans.

e Summary

29



), PP AnUpgraded PTSX Would Include a Modified lon
- ey . Source, More Compact Electrodes, and a Laser-
e Induced Fluorescence (LIF) System

A larger-radius ion source with matching into the time-dependent lattice would enable
larger space-charge and lower-emittance studies.

More compact electrodes would increase the strength of the confining lattice.

A laser-induced-fluorescence diagnostic system would allow time-resolved
measurements of the transverse phase-space distribution.

Laser sheet

Cartoon CCD

: 30
Field of View camera image.



21 Future Research Directions Would Include Studies with
PRINCETON Increased Space Charge, Understanding Higher-Order
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Lasoratory  Confining Fields, and Rotating (Coupled x-y) Configurations

e Increasing the space charge in PTSX allows further
studies of nonlinear effects.

 Making 8, or even 24, electrodes allows PTSX to study:
higher-order (hexapole, octupole, etc.) optics,
confinement, and errors; and coupled x-y configurations
that may have better confinement properties.

IOTA schematic

Stellarator
Field

~— 5
a
Betatron
Q Field

* pc = 150 MeV, electrons (single bunch, 1079)
= ~36 m circumference

* 50 quadrupoles, 8 dipoles, 50-mm diam vac chamber 31
" horu and vervr kickers' 16 BPMS FIG. 1. Stellatron Configuration.

#Fermllab IOTA - Nagaitsev C. W. ROberson, PRI—; 1983.
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The Paul Trap Simulator Experiment (PTSX) is a compact linear Paul trap that simulates the
transverse dynamics of intense beam propagation in magnetic alternating-gradient accelerator
transport systems.

PTSX confines single-component nonneutral plasmas for several hundred milliseconds,
corresponding to several thousand lattice periods. This long equivalent propagation distance,
together with moderate space-charge intensity s ~ 0.2, makes PTSX experiments accelerator-
relevant.

Emittance growth and halo particle generation due to beam mismatch have been observed and
agree with particle-in-cell simulations and experiments on the Low Energy Demonstration
Accelerator at Los Alamos National Laboratory.

Transverse beam compression can be achieved by gradually increasing the strength of the

confinement system — either by increasing the waveform amplitude, or by decreasing the
waveform frequency.
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Transverse dipole and quadrupole modes can be excited by perturbing the charge bunch with
the corresponding frequency and spatial pattern.

Periodic coherent perturbations in a ring machine, such as from an injection/extraction section of
the ring, can resonate with beam modes and cause particle loss. Filtering the applied waveform
to remove frequency components at the mode frequencies eliminates the deleterious effects.

Similarly, random noise, such as from magnet misalignments, causes particle loss if there is a
large frequency component at a collective mode frequency.

Devices like PTSX can be used to further study the propagation of intense charged-particle

beams, including the use of so-called nonlinear beam focusing elements such as hexapole and
octopole magnets.
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