Software Defined Networking for HPC Interconnect and its Extension across Domains

Michael Lang
Los Alamos National
Laboratory

Xin Yuan
Florida State
University

Focus of our project: OpenFlow-style SDN for HPC Interconnects

- Internally: within the interconnect
 - Optimize routing for individual applications and system
- Externally: match external network resources to HPC cluster
 - Remote users, remote resources
 - Storage systems
 - Data Analytics and Visualization clusters
 - Experimental Facilities (MaRie LANL)

- Existing interconnection networking technology for HPC systems
 - InfiniBand:
 - high bandwidth and low latency
 - Flexible topologies: Fat-tree topology for most operational systems, also support other topologies
 - Simple control: destination based routing inflexible and inefficient
 - Performance issues when scale up
 - Proprietary technologies:
 - Less flexible topologies
 - Complex control
 - Cray Cascade (Edison):
 - » Dragonfly topology
 - » Global adaptive routing
 - IBM Bluegene:
 - » 3D and 5D torus topologies
 - » Adaptive routing

- Existing interconnection networking technology for HPC systems
 - InfiniBand:
 - high bandwidth and low latency
 - Flexible topologies: Fat-tree topology for most operational systems, also support other topologies
 - Simple control: destination based routing inflexible and inefficient
 - Performance issues when scale up
 - Proprietary technologies:
 - Less flexible topologies
 - Complex control
 - Cray Cascade (Edis
 - » Dragonfly to
 - » Global adar
 - IBM Bluegene:
 - » 3D and 5D
 - » Adaptive ro

**Ethernet and SDN/Openflow will be persistent!

Existing interconnection networking technology for HPC systems

InfiniBand:

high bandwidth and low I

Flexible topologies: Fat-tr support other topologies

Simple control: destination

Performance issues when

Proprietary technologies:

Less flexible topologies

Complex control

– Cray Cascade (Edison):

» Dragonfly topolog

The partiage coverage with PCIs semantics, with 1907 optimisations for physical later » Global adaptive routing

– IBM Bluegene:

» 3D and 5D torus topologies

KNL with Omni-Path™

Omni-Path" Fabric integrated on pockage

First product with integrated fabric

Connected to KNL die via 2 x16 PCIe* ports Output: 2 Omni-Path ports

25 GB/s/port (bi-dir)

Benefits

- · Lower cost, latency and power
- · Higher density and bandwidth
- Higher scalability

- Existing interconnection networking technology for HPC systems
 - InfiniBand:
 - high bandwidth and low latency
 - Flexible topologies: Fat-tree topology for the stopologies
 - Simple control: destination based routing inflexible a ficient
 - Performance issues when scale up
 - Proprietary technologies:
 - Less flexible topologies
 - Complex control
 - Cray Cascade (Edison):
 - » Dragonfly topology
 - » Global adaptive routing
 - IBM Bluegene:
 - » 3D and 5D torus topologies

Ethernet and SDN/Openflow will be persistent!

Los Alamos

InfiniBand and SDN

- InfiniBand has some SDN functionality.
- What is lacking is the per-flow resource management capability.

Research Tasks

- Intra-domain
 - 1. Design OpenFlow-style SDN capability into InfiniBand
 - Investigate the potential benefits come with the added capability
 - Develop techniques to explore SDN capability in HPC systems
 - 4. Demonstrate a working SDN-enabled InfiniBand system
- Inter-domain Demonstrate a working SDNenabled InfiniBand system with inter-domain SDN capability
 - Multi-domain (OpenFlow <-> OpenSM)
 - 6. Wide area (ex OSCARS)

Task 1: Develop SDN-enabled InfiniBand for HPC systems.

- How to incorporate OpenFlow-style SDN capability into InfiniBand for HPC systems?
 - What is a flow for HPC application?
 - How SDN-enabled InfiniBand should work (like OpenFlow network or with modification)?
 - What changes need to be made to switches, subnet manager, subnet management agent?

Task 2: Evaluate the potential performance benefits of SDN-enabled InfiniBand

- Assuming the best-case scenario.
- Where the SDN capability can be explored? (job scheduler, HPC application, etc)
- Active and Passive SDN
- Benefits for different types of applications (MPI, PGAS, etc)
- Simulation and modeling for small and large systems.

Task 3: Develop techniques for exploring SDN-enabled InfiniBand

- How can the HPC system and/or HPC application effectively explore the SDN capability?
 - Techniques for exploring passive SDN
 - Systems level techniques recognize flows and adjust.
 - Techniques for exploring active SDN
 - Scheduler/Application level techniques
 - SDN interface for HPC systems/applications
 - Resilience for SDN-enabled InfiniBand

Task 4: Incorporate the intra-domain SDN functionality in OpenSM

- OpenSM is the current InfiniBand subnet management software
- Use the current multi-pathing with multiple DLIDs to emulate per-flow management functionality
- Add OpenFlow-style per-flow management capability to OpenSM
 - SDN controller functions may be incorporated into OpenSM or may be an independent entity that interacts with OpenSM
- Demonstrate OpenFlow-style SDN capability in a small scale cluster.

Task 5: Augment OpenSM with distributed SDN controller functionality

- Multi-domain SDN deployment
- Add inter-domain functionality

Task 6: Map intra-domain SDN into inter-domain SDN frameworks

- Leverage existing inter-domain frameworks, DOE OSCARS ("orchestrators")
- Expose internal resource and query/request external resources via OSCARS

Use cases supported with multi-domain support

Match job requirements to external "to cluster" resources

SDN-enabled InfiniBand for HPC: a preliminary design

- Objective: Add per-flow resource management into InfiniBand
 - Pre-establishment of flow table entries
 - Flow table in addition to forwarding table
 - Flow table entries are pre-established at either job launch time or during job execution before the communication starts
 - HPC applications have phase behavior
 - Fall back to forwarding table in case of flow table miss.
 - forwarding table remains also for the network initialization.

SDN-enabled InfiniBand for HPC: a preliminary design

- The flow concept
 - Use header fields in the existing InfiniBand packets
 - Flow identifier depending on per-flow functionality needed and flow table constraints.
 - DLID: allows for per application destination based routing
 - DLID+SLID: allows for per application source/destination routing
 - DLID+SLID+SL: allows for per application source/destination routing with multiple levels of service quality
 - DLID+SLID+SL+DestQP: per application multi-path routing based on flows
 - DLID+SLID+SL+DestQP+PSN: packets for the same message follow different routes

SDN-enabled InfiniBand for HPC: a preliminary design

SDN-enabled InfiniBand Switch

SDN-enabled InfiniBand for HPC: preliminary design

- OpenFlow Control packet Modification:
 - Add a new subnet management class for OpenFlow functionality (ManagementClass 0x09)
 - The data field follows OpenFlow packet format.

Field	Bits	Value	Used	Comment
BaseVersion	8	1	Yes	Required
→ MgmtClass	8	0x09	Yes	Vendor specific value (OpenFlow)
ClassVersion	8	1	Yes	Required
R	1	1 0	Yes	Depends on direction
Method	7	0	No	
Status	16	0	No	
Class Specific	16	0	No	
TransactionID	64	#	Yes	Generated from InfiniBand header data ¹
AttributeID	16	0	No	
Reserved	16	0	No	Reserved
AttributeModifier	32	0	No	
Data	??	ofp_flow_mod	Yes	Depends on direction

SDN-enabled InfiniBand for HPC: a preliminary design

- Addition to OpenSM
 - Implement subset of OpenFlow SDN controller functions
 - Maintain the global status of flow tables in the network
 - Interacting with applications, compute flow table entries, and set-up forwarding table entries
 - Two implementation choices:
 - Integrated within OpenSM
 - An independent controller outside OpenSM

SDN-enabled InfiniBand for HPC: a preliminary design

- Addition to OpenSM
 - Implement subset of OpenFlow SDN controller functions
 - Maintain the global status of flow tables in the network
 - Interacting with applications, compute flow table entries, and set-up forwarding table entries
 - Two implementation choices:
 - Integrated within OpenSM
 - An independent controller outside OpenSM

SDN-enabled InfiniBand for HPC

Summary:

- Software deliverables
 - OpenSM + OpenFlow interoperability
- Design of IB + SDN
- Demonstrate capability of IB + SDN
- Evaluation of possible performance improvements

Baseline: IB independently managed from external networks. New functionality: IB and SDN managed, in concert, to allow "smarter IB" for scientific applications and workflows

Synergy: *Expose* IB resources/interact with SENSE, FLOWS, "orchestrators"

* Try to influence future Infiniband hardware

Questions

SDN-enabled InfiniBand for HPC: a preliminary design

- Addition to OpenSM
 - Implement subset of OpenFlow SDN controller functions
 - Maintain the global status of flow tables in the network
 - Interacting with applications, compute flow table entries, and set-up forwarding table entries
 - Two implementation choices:
 - Integrated within OpenSM
 - An independent controller outside OpenSM

