

TURBO: Terabits/s Using Reconfigurable Bandwidth Optics

Dan Kilper, Madeleine Glick UA Keren Bergman Columbia University

February 18, 2016

Adding Airlines to Google Maps

TURBO Concept

- Develop SDN control methods to establish end to end intra domain flexible optical spectrum paths
 - Layer 2 inter-domain connections
- Develop transparent cross-domain handover methods
- Create optical physical layer orchestrator

Team

- University of Arizona
 - D. Kilper
 - M. Glick
 - Transparent Optical Aggregation Networks Testbed
 - 30 Gbaud coherent modulation
 - Mesh network emulation platform
- Columbia University
 - K. Bergman
 - Lightwave Research Lab
 - Inter-data center testbed
- CIAN: Center for Integrated Access Networks
 - NSF ERC, 18 Industry members, 8 Universities

Arizona TOAN Lab

Columbia LRL Data Center Testbed

Lightpath Configuration Time

Does not include physical device control and tuning delays from physical setup

Computation, signaling, and protocol part: ~ 1 second

CORONET: 700ms

Optical Switches, but no optical switching networks

Infinera record:

8 Tb/s provisioned in 19 minutes

- 16 channels
- Over pre-determined path
 Amsterdam to Hamburg

"Optical burst switch developer Intune Networks in receivership" – Lightwave Mag.

ON Lab, AT&T: Want White Box Programmable ROADMs

Disaggregated ROADMs

Martin Birk, Mehran Esfandiari, Kathy Tse, "AT&T's direction towards a Whitebox ROADM," ONS 2015.

Optical Power Dynamics: Unsolved

- Network problem not an amplifier problem
 - Present even for perfect constant gain control
- Only a problem for optical transmission with realtime wavelength switching
- Power dynamics, similar to noise performance, polarization effects, nonlinear impairments, must be addressed and lead to a trade off between cost and performance
- Higher performance (less dynamics) leads to higher cost
 - Better/more components
 - Better/more complex control algorithms

Optical Transients: Solved Problem

- Single EDFA problem
- Fast Feedforward Control & Nonlinear Feedback

Optical Power Dynamics

F. Smyth, et. al. JLT 2009

TURBO Goals

- Realize a white box optical transmission system control system
 - Only proprietary today
 - Allow researchers to program new algorithms and investigate new abstractions
- Realize a programmable and transparent SDX
- Demonstrate end to end intra- and inter-domain flex grid transparent path creation using these new capabilities
- In each case these are v1.0 implementations to open the door for further development and promote opening up of transmission systems

TURBO Impact

- Bring optical transmission system (ROADM) control into research domain
 - Don't expect commercial systems to ever be entirely open, but this approach enables experimentation of where that line should be drawn
- Enables White Box ROADMs, Disaggregated ROADMs, etc.
 - Stimulate new area of research
 - Promote creation of SDN interfaces in optical elements
 - Enable demonstrations (ON Lab) to include optical trans.
 - Encourage system vendors to open up their products to more programmability

OPL-O: Optical Physical Layer Orchestrator

Role of OPL Orchestrator

- Control diverse set of optical transmission hardware to operate network
 - Provision channels
 - Tune amplifiers
 - Tune channel powers
 - Manage faults, e.g. node loss, transient recovery
 - Defragmentation
 - Real time route selection*
 - Real time elastic bandwidth/flex grid management*
 - Wavelength layer protection

•

Current propriety

solution

Future

Worst Case Power Excursion: Remove 1 Chn

Consider accumulated ripple between ROADM nodes: 3-4 dB Channels flattened at each ROADM in steady state

Delay Accumulation with Node Hops

Wavelength Switching: Step by Step

Open channel and bring up/down slowly

Wavelength Switching: Fast Tunable Laser

- Switch laser faster than EDFA response time
- Vary dwell time on each wavelength
- Full power at all times
- Reduce number of steps

1560nm dwell time %

Static Channel

SDN Control Plane

Z. Wang JLT 2014

Factors that Impact Power Dynamics

- Order and timing of node adjustments
- Node control algorithm
- Channel loading and configuration
- Timing of wavelength switching
- Wavelength Route Characteristics

SDN Control Plane

Appropriate Abstractions for OPL?

- Layer 2/Ethernet switch: details are hidden, complexity goes to OPL
 - Problem: Only works for small networks, large margins
 - Problem: wavelength blocking, reach and power dynamics

- Network Models: a network of five nodes with multiple ports
 - Stable reconfiguration using OPL orchestrators for each domain
 - Colored ports: BW, latency, setup time, osnr, ...

OPL Orchestrator

- OPL Controller
 - Implements flexgrid assignments across many nodes and switches
 - Tuning of WSS controls
 - What happens when a filter encroaches on a live signal to allow room for a new signal?

Dynamic PCE

- Rules and logic for spectrum assignment and path selection
- Abstraction Model
 - Representations of available spectrum and paths throughout network
- Cross-Domain Interface
 - What spectral information gets shared?
 - How to represent path dependent spectral information between domains?

Optical Flexigrid

- Fixed grid: assign wavelengths to rigid spectral slots or channels
- Flex grid: wavelengths can be assigned to an arbitrary spectral location and allocated different spectral widths
 - Channel widths can be variable
 - Spatial dimentions (multi-fiber, multicore) can also be used
- Flexgrid capabilities have unique operational and control characteristics
- Spectrum may become fragmented

spectrum continuity constraint

Multi-Hop Spectrum Continuity

- Spectrum is not all or nothing
- Wide passbands for filter cascades & spectral broadening
 - Varying filtering conditions can be managed along path
 - Need to manage crosstalk
- How to manage used BC spectrum that overlaps ABCD assignment?

Cross-Domain Abstractions

- Performance weights for available routes
- Investigate defragmentation policies for common cross domain spectrum
- DPCE: Flex grid performance constraints with IA-RWA
 - Use AOPM at boundaries

Transparent Domain Boundary

- How to achieve spectrum continuity across domains?
- Need guarantees for SLAs
 - Who's to blame if something goes wrong

Dual Layer SDX Handover

- SLA based on advanced Optical Performance Monitoring (AOPM)
- Flexgrid WSS: enforce spectrum continuity

Transparent SLAs

- Use spectrum continuity and guardbands as specification
- Use OSNR for performance guarantee
 - Key performance parameter for coherent
- Silicon photonic OSNR monitor
 - Coherent
 - Polarizaiton Independent
 - Modulation Calibrated

Chip Scale OSNR Monitor

Network Transmission Emulation

 Introduce multiple impairments to reproduce range of phenomena

Distance Emulation

TURBO Deliverables

Year 1

- Define use cases
- Optical physical layer orchestrator implemented in testbed
- Prototype of transparent SDX

Year 2

- Optical physical layer abstraction models for single domain control
- Optical physical layer control algorithms for single domain, performance with SDN
- Multi-domain transparent path establishment

Year 3

- Physical layer abstraction models for multi-domain control
- Experiments on dynamic real-time provisioning of optical connections across multiple network domains in the emulated optical networking platform

Roles and Responsibilities

• UA

- Path setup and control (OPL Controller)
- Flexgrid Optical transmission, inter- and intra- domain
- Transparent SDX
- OPL abstraction

Columbia

- SDN Implementation and interface to network OS
- Wavelength resource management/rwa: DPCE

Looking forward 10 years

Data center/hpc server racks

