MCTrack Data Product Modification: Adding Calorimetry

Joseph Zennamo for MicroBooNE

LArSoft Coordination Meeting Jan. 19th, 2016

The Want

- Currently MCTrack contains no information about the ionization energy loss that one would use for doing particle identification
- The purpose of this work was to compute and store a step-by-step ionization energy loss
- This could have been done more efficiently if MCTracks were built at LArG4 level (a story for another time)

MCTrack

J. Zennamo, UChicago

MCTrack + EDeps

 For each pair of MCSteps we want to calculate the ionization energy loss

When computing distance add a voxel to both width to both ends to include the MCSteps' EDeps

J. Zennamo, UChicago

 This keeps us from picking up energy associated with other (non-ionization) forms of energy loss

 Next we sum the energy and charge associated with all of the EDeps and measure the 3D distance between the two MCSteps

- The result is a dEdx calculations associated with each MCStep pair and a dQdx calculation per plane with each MCStep pair
 - dEdx is the true ionization energy loss of the particle
 - dQdx is the ionization energy seen on the wires

The Implementation

- The default implementation of MCTrack contains no iterations through EDeps, had to add an iteration through all the MCSteps with an imbedded loop through EDeps
 - Take advantage of the fact that MCSteps are ordered
 - EDeps are not ordered, so currently iterate through full list for (N-1) MCSteps
- This implementation on a feature-branch "zennamo_MCTrackdEdx" for LArData, LArSim, and UBooNECode, and "newMCTrack_calo" in LArLite

Slow Down?

 To gauge the effect of introducing these additional iterations I ran over same 5 Corsika "Art events" (6.4ms exposure) with a CMC model (extra activity!)

"Vanilla" LArSoft (v04_33_00)

Total Time: 740 seconds (Average time 148 seconds)

New Implementation

Total Time: 806 seconds (Average time 161 seconds)

Validation

- Comparison of the dE/dx and dQ/dx vs. residual range can be found in back-up, things agree as expected
- When we look at the MIP average energy deposit for MCSteps "far from the end of the track" we find that it is ~1.955 MeV/cm which is lower than my expected 2.2 MeV/cm

Conclusions

- This implementation is a good first attempt to characterize the ionization energy loss and provides results that approach my expectations
- I request that these be merged into the next LArSoft release so that MicroBooNE can use this in its next large production run
- Used this opportunity to clean up some aspects of MCSTReco module
 - Errant cout's in MCShower (that I left...)
 - Killed off zero length MCTracks (they annoyed me...)
 - etc.

Future Studies

- Could improve this implementation:
 - Currently disregarding MCStep pairs that are closer than voxel size apart, can do better
 - Notice that the last pair of MCSteps is ALWAYS zero, not sure why
 - Results in a negligible decrease in MIP energy loss (1%)
- Could compute at LArG4 and wouldn't have to guess about ionization energy loss anymore with silly geometry functions...

Backups and Validation

The Checks

- We would expect to see a turn up and low values of residual range as we move out of the MIP regime
- We can compare this to our expectations

The Checks

From Ornella's DocDB 4672

 Looking at the expectation from GEANT we can see disagreement in dEdx (as expected, no recombination applied) but good agreement with dQdx

Less Pretty Plot!