
New MVA PID code in larsoft

Martin Haigh, University of Warwick

Overview and purpose of software

• New code will provide MVA-based particle identification for recob::Track objects.

– See talk by Nick Grant at DUNE Texas meeting here.

– Will also be extended to do PID for recob::Shower objects.

– Output is the variables used for MVA input, and a map containing the MVA
value for each MVA run. May also calculate a likelihood value later.

• Also add an art data object anab::MVAResult to store the output of the module.

– Rationale – existing PID object is specialised for existing code which is based
on a Chi-squared method. Does not contain any of the necessary fields for our
PID.

• Include .fcl file to run PID by itself for now; when stable PID will be added to
normal reco or analysis processing.

• Include shell script which will steer training of MVA for a set of signal and
background reco files (goes into scripts directory in larana install).

https://indico.fnal.gov/getFile.py/access?contribId=52&sessionId=40&resId=0&materialId=slides&confId=10276

Use case
• Code based on ROOT’s TMVA library. 3-step process to go from existing recon files

to running real PID with MVA.

– First need to train MVA methods. Run runPID.fcl over single-particle recon files
with no MVA methods defined, to get an ntuple with MVA input variables.

– Run a script TrainMVA.sh which generates MVA .xml weight files based on a
list of signal and background files. Based on ROOT macro since it is difficult to
run TMVA training from inside of art.

– Can then run full PID over any data files, with .fcl pointing to generated weight
files.

• We will provide canonical weight files for general use.

– => normal users only need to worry about final step.

– Users with particular analysis requirements for PID can generate weight files
for their specific case of signal and background.

• Weight files are .xml files up to ~1MB in size (can be significantly compressed).
Where to put these?

Details of code changes
• New module MVAPID_module.cc, and support class MVAAlg containing bulk of

code, in larana/ParticleIdentification.

• Training script TrainMVA.C, and .fcl file runPID.fcl, in
larana/ParticleIdentification/scripts (.fcl file is installed to job folder).

• Data struct MVAResult in lardata/AnalysisBase. Changes to classes.h,
classes_def.xml to build reflex dictionaries for this.

• Small changes to CMakeLists files so that scripts get installed correctly, and
calorimetry library is available to PID module.

• Will not affect existing processing until PID is added to .fcl files.

Planned future changes
• Alter MVAAlg soon to allow processing of shower objects.

• Alter MVAAlg when changes are made to PID logic.

– New variables, change in how existing variables are calculated…

• New version of MVAResult needed when new variables are added.

• Probable changes to runPID.fcl to allow settings to be tuned in future.

• Again, Will not affect existing processing until PID is added to .fcl files.

Code detail
.fcl for PID module:

 producers:{

 pid: {

 module_type: MVAPID

 CalModuleName: pandoracalo #Currently run calorimetry

 CalAmpConstants: [0.9033e-3, 1.0287e-3, 0.8800e-3] #ourselves. Need to move to

 CalAreaConstants:[5.1822e-3, 5.2682e-3, 5.3962e-3] #using output of calo module

 CaloUseModBox: true #if possible

 MVAMethods: ["ANN","BDT"]

 WeightFiles: ["MuEMVA_ANN.weights.xml", #specify labels to give MVA

 "MuEMVA_BDT.weights.xml"] #output and locations of weight

 } #files. Produce training ntuples

} #by making these lists empty.

MVAResult object:

struct MVAResult { #Need to move from struct to using getters/setters

 float evalRatio, concentration, coreHaloRatio, conicalness; #Variables used as input

 float dEdxStart, dEdxEnd, dEdxPenultimate; #to MVA

 float nSpacePoints;

 unsigned int trackID; #Enable mapping to tracks without art::Assn

 std::map<std::string,double> mvaOutput; #Map names of MVA methods to output of MVA

};

