New MVA PID code in larsoft

Martin Haigh, University of Warwick

Overview and purpose of software

New code will provide MVA-based particle identification for recob::Track objects.
— See talk by Nick Grant at DUNE Texas meeting here.
— Will also be extended to do PID for recob::Shower objects.

— Output is the variables used for MVA input, and a map containing the MVA
value for each MVA run. May also calculate a likelihood value later.

Also add an art data object anab::MVAResult to store the output of the module.

— Rationale — existing PID object is specialised for existing code which is based
on a Chi-squared method. Does not contain any of the necessary fields for our
PID.

Include .fcl file to run PID by itself for now; when stable PID will be added to
normal reco or analysis processing.

Include shell script which will steer training of MVA for a set of signal and
background reco files (goes into scripts directory in larana install).

https://indico.fnal.gov/getFile.py/access?contribId=52&sessionId=40&resId=0&materialId=slides&confId=10276

Use case

Code based on ROOT’s TMVA library. 3-step process to go from existing recon files
to running real PID with MVA.

— First need to train MVA methods. Run runPID.fcl over single-particle recon files
with no MVA methods defined, to get an ntuple with MVA input variables.

— Run a script TrainMVA.sh which generates MVA .xml weight files based on a
list of signal and background files. Based on ROOT macro since it is difficult to
run TMVA training from inside of art.

— Can then run full PID over any data files, with .fcl pointing to generated weight
files.

We will provide canonical weight files for general use.
— =>normal users only need to worry about final step.

— Users with particular analysis requirements for PID can generate weight files
for their specific case of signal and background.

Weight files are .xml files up to ~1MB in size (can be significantly compressed).
Where to put these?

Details of code changes

New module MVAPID_module.cc, and support class MVAAIg containing bulk of
code, in larana/Particleldentification.

Training script TrainMVA.C, and .fcl file runPID.fcl, in
larana/Particleldentification/scripts (.fcl file is installed to job folder).

Data struct MVAResult in lardata/AnalysisBase. Changes to classes.h,
classes_def.xml to build reflex dictionaries for this.

Small changes to CMakelists files so that scripts get installed correctly, and
calorimetry library is available to PID module.

Will not affect existing processing until PID is added to .fcl files.

Planned future changes

Alter MVAAIg soon to allow processing of shower objects.

Alter MVAAIg when changes are made to PID logic.
— New variables, change in how existing variables are calculated...

New version of MVAResult needed when new variables are added.
Probable changes to runPID.fcl to allow settings to be tuned in future.

Again, Will not affect existing processing until PID is added to .fcl files.

Code detail

fcl for PID module:

producers: {

pid: {
module type: MVAPID
CalModuleName: pandoracalo #Currently run calorimetry

CalAmpConstants: [0.9033e-3, 1.0287e-3, 0.8800e-3] #ourselves. Need to move to
CalAreaConstants:[5.1822e-3, 5.2682e-3, 5.3962e-3] #using output of calo module

CaloUseModBox: true #if possible

MVAMethods: ["ANN", "BDT"]

WeightFiles: ["MuEMVA ANN.weights.xml", #specify labels to give MVA
"MuEMVA BDT.weights.xml"] #output and locations of weight

#files. Produce training ntuples
#by making these lists empty.

MVAResult object:

struct MVAResult { #Need to move from struct to using getters/setters
float evalRatio, concentration, coreHaloRatio, conicalness; #Variables used as input
float dEdxStart, dEdxEnd, dEdxPenultimate; #to MVA
float nSpacePoints;
unsigned int trackID; #Enable mapping to tracks without art::Assn

std: :map<std::string,double> mvaOutput; #Map names of MVA methods to output of MVA

