Towards Horn Optimization for FFAG beamline

J. Pasternak

 nuPIL miniworkshop, RAL, 18/01/15
Introduction

- In below I assume we can fulfil the scaling promise:
- Optics is independent of momentum
- Facts:
- In circular scaling FFAG $\beta \sim R$-> $d \beta / \beta=d R / R$ for us -> $R^{\sim} 386 m, d R^{\sim} 0.5 m$-> β^{\sim} const -> Betatron function should be approximately independent of momentum
- In straight FFAG $\beta=$ const -> Betatron function is independent of momentum

Our Solution

Idea for horn optimization

- Maximise number of particles after the horn inside FFAG acceptance:
- Maximise number of particles which obey: $\gamma(\mathrm{p}) \mathrm{r}^{2}+2 \alpha(\mathrm{p}) \mathrm{r} \mathrm{p}_{\mathrm{T}} / \mathrm{p}_{\mathrm{Z}}+\beta(\mathrm{p})\left(\mathrm{p}_{\mathrm{T}} / \mathrm{p}_{\mathrm{Z}}\right)^{2}<\varepsilon \mathrm{F}(\mathrm{p})$, where ε is total unnormalized acceptance at the reference momentum (2Pi.mm.rad in our case) and $F(p)$ includes limitations coming from dispersion

Idea for horn optimization (ideal case)

- Maximise number of particles after the horn inside FFAG acceptance:
- Maximise number of particles which obey:
$\gamma r^{2}+2 \alpha r_{T} / p_{z}+\beta\left(p_{T} / p_{z}\right)^{2}<\varepsilon F(p)$,
where ε is total unnormalized acceptance at the reference momentum (2Pi.mm.rad in our case) and $\mathrm{F}(\mathrm{p})$ includes limitations coming from dispersion and Twiss functions are now independent of momentum

$F(p)$ function for ideal case

$$
F(p)=(U S[5-p] * U S[p-1] *(p-1) / 4+U S[9-p] * U S[p-(5+\epsilon)] *(9-p) / 4)
$$

- $F(p)$ is triangle function with 1 at $5 \mathrm{GeV} / \mathrm{c}$ and zero outside $(1,9)$ $\mathrm{GeV} / \mathrm{c}$ interval -> now needs to be updated
- $\operatorname{US}[x]$ is the unit step which is zero for $x<0$ and 1 for $x=1$ or above.
- p is in $\mathrm{GeV} / \mathrm{c}$
- ϵ is an infinitesimal small number. It depends on machine precision used, but may be $10^{\wedge}-11$ for example.
This is just to avoid overshoot at 5 to the value of 2 . You may argue it is irrelevant.
- You may also replace it by similar differentiable function like:

$$
F(p)=-(531441 / 64)^{-1}(p-0.5)^{3}(p-9.5)^{3}
$$

$F(p)$ function for ideal case -2

...however

- It seems the phase advance may not be constant as a function of momentum
- We may proceed in parallel along:
- Re-introducing nontrivial $\beta(\mathrm{p}), \alpha(\mathrm{p}), \gamma(\mathrm{p})$ and $\mathrm{F}(\mathrm{p})$
- Trying to re-establish constant phase advance by correcting the lattice.

