
The LArSoft architecture (draft)

The LArSoft project

January 20, 2016

Contents

1 Introduction 1
1.1 Purpose . 1
1.2 Scope . 2

2 Overview 25

3 Logical view: components 3
3.1 Internal components . 5

4 Process view: workflows 7
4.1 Simulation workflow . 7
4.2 Reconstruction workflow . 910

4.3 Analysis workflow . 11

5 Deployment view: development and extensibility 11
5.1 Development environment . 12
5.2 Testing . 13
5.3 Data products . 1315

5.4 User code . 14
5.5 External libraries . 16

6 Physical view: repositories and packages 18
6.1 Local LArSoft installation . 19

1 Introduction20

1.1 Purpose

The LArSoft toolkit enables simulation, reconstruction and physics analysis of
data from any detection system based on Liquid Argon TPCs. Its common

1

tools and algorithms render the development and analysis process more uni-
form across the Experiments, and facilitate direct sharing of code and expe-25

rience between Experiments. LArSoft is extensible to accommodate evolving
Experiments’ needs and adoption by new Experiments.

This document describes the current architecture of LArSoft toolkit. The
architecture was developed according to, and therefore reflects, the consensus
of LArSoft partners, including the adopting Experiments.30

The document provides a reference for the reader interested in learning the
general structure of LArSoft, its functional areas and interactions with the ex-
ecution environment. It also offers guidelines for the contributor aiming to de-
velop new algorithms within LArSoft or to use it together with external tools.

1.2 Scope35

This document provides an overview of the architecture of LArSoft toolkit,
including its relationship with the surrounding software environment. The in-
ternal flow of the different subsystems is also described. The document intends
to capture and convey the significant architectural decisions, which reflect into
the current implementation or drive its development.40

Some commonly used LArSoft elements are mentioned to exemplify flows and
connections, but this is no attempt to exhaustively describe each, or any, of the
single elements.

This document describes the architecture of LArSoft to date. At the time
of writing, LArSoft v05 00 00 is in Release Candidate 2.45

2 Overview

The LArSoft toolkit aims to offer a solution for the typical data analysis sce-
narios of an experiment based on a Liquid Argon TPC detector:

• generation of physics pseudo-events

• simulation of physics processes in the detectors50

• simulation of detector readout response

• reconstruction of low and high level physics objects

• analysis and presentation of collected data

• graphical display of physics events

As an example, suppose a scientist may want to develop a new clustering55

algorithm optimized for a certain type of physics events. LArSoft offers inter-
face to generators to produce either simplified physics events or more realistic
ones that include, for example, cosmic radiation. It also provides the simulation
of those events in the specific experiment detector. If the target processes are
common enough, the experiment might have already executed these steps on60

2

third-party
libraries

LArSoft
toolkit

experiment-specific
software

development & run-time
environment

Figure 1: Relationship of LArSoft with other software categories.

large scale, also using LArSoft, and provided the necessary input. The scientist
is then presented with standard interfaces to access geometry and detector in-
formation, and standard data structures to start from, including hits on single
wires suitable as starting point for a clustering algorithm, and to store the re-
sults into. She (or he) can use the standard framework environment to write an65

algorithm class and its framework module, compile it and test it immediately
on simulated data. The result, in a standard LArSoft data structure, can be
immediately visualized in a event display, and improvement made to the code.
Depending on the algorithm, the time between a code change and the visual-
ization of its effect may take less than one minute. Finally, replacing the input70

with actual detector data, that uses the same format as the simulation, she will
immediately see the performance in the real case.

As a different example, a scientist may want to compare two different algo-
rithms analyzing reconstructed tracks. After the tracks are produced, running
the track reconstruction algorithm on either simulated or real data, she will75

write one or more analysis algorithms and their framework modules to produce
the necessary plots.

3 Logical view: components

To provide the best solutions for LAr TPC simulation, reconstruction and anal-
ysis of data, LArSoft interacts with other software aimed to provide developers80

with tools commonly in use by the broader physics community, standardize code
development, and allow for experiment-specific needs (fig. 1).

Physics developers typically rely on copious libraries providing general or
physics-specific services (fig. 2). LArSoft already offers:

• access to a framework, art [1], providing essential functionalities including85

an event data model, an event loop, workflow definition and control, plug-
in of code, distribution and tracking of job configuration, serialization of
the results, and more

3

database

LArSoft
toolkit

event
generation

physics
libraries

framework

detector
simulation

pattern
recognition data analysis

visualization

Figure 2: Relationship between LArSoft and third-party libraries.

• proxy-, web-based access to data bases via libwda [2], or direct access to
PostgreSQL databases190

• physics libraries, as CERN CLHEP [3] and nutools [4]

• event generation packages: GENIE [5], CRY [6], HEPEVT [7] files

• detector simulation libraries (to date, only GEANT4 [8])

• pattern recognition libraries, like pandora

• data analysis tools, like CERN ROOT [9]95

• visualization aids, also with CERN ROOT and nutools

Additional libraries are expected to be added in the future.
LArSoft is designed to accommodate specific needs from the experiments.

Experiments directly contribute LArSoft content when it’s suitable, i.e. when
of general utility and experiment-agnostic. In the other cases, experiments100

interface to LArSoft though many channels (fig. 3):

• detector geometry is provided in GDML or ROOT format

• detector conditions can be learned via static configuration or from exper-
iment databases

1Experience has shown that direct database does not scale well with the number of accessing
jobs.

4

LArSoft
toolkit

detector
geometry

detector
conditions

data
acquisition

services

algorithms

job
configuration

workflows

Figure 3: Relationship between LArSoft and experiment-specific software.

• detector data is acquired by special art modules or by standard art files105

(e.g., produced by artDAQ) containing standard LArSoft data products

• specialized services and algorithms can be plugged in using the art frame-
work

• job configuration, controlling the data to be processed and the sequence
of actions to perform, is specified in FHiCL language [10]110

• workflows are defined by the experiment, typically by using custom scripts
that include the execution of LArSoft main program, lar

LArSoft has a large number of interdependent components, and provides the
users tools to facilitate code development (fig. 4). LArSoft code is organized in
repositories that can be compiled when needed. The building system ensures115

consistent builds among all supported platforms. The UPS [11] distribution sys-
tem ensures that the same consistency is preserved at run time. Infrastructure
for automatic execution of user tests is also provided, together with a growing
number of tests exercising parts of LArSoft tools.

3.1 Internal components120

Most LArSoft components can be grouped into some broad functional categories.
Some of them are well established, while others are being developed now or have
been just designed. The following list touches the main ones, without being
exhaustive:

detector information125

5

LArSoft
toolkit

packagingtesting

repositories build system

Figure 4: Relationship between LArSoft and development software categories.

• detector geometry description

• detector information services: liquid argon and detector properties,
readout timings and settings, readout channel quality

• calibration services: readout channel pedestals

• map of residual electric charge in TPC volume130

persistent data structures (“data products”), grouped in

• raw data, unprocessed from the detector

• simulation from event generator (“truth”) and detector simulation

• reconstruction of detector and physics objects

• optical data, raw or processed, from the optical detectors135

• analysis results of reconstructed objects

operations

• physics event generation

• detector simulation: TPC and optical detectors

• readout simulation: template modules for TPC and optical detectors140

• simulation of optical triggers

• calibration template modules

• object reconstruction: 1D (TPC wire hits, optical hits), 2D (TPC hit
clusters), 3D (tracks, showers, vertices) and time (optical flashes)

• TPC hit simulation and correlation between reconstructed objects145

and generated particles

• energy and momentum reconstruction (“calorimetry”)

• particle identification

• global event reconstruction

6

programming utilities and framework interface150

• physical constants

• helpers for common framework usage patterns (e.g., creation of aso-
ciations between data products)

graphical display of generated and reconstructed objects (“event display”)

example of analysis module155

4 Process view: workflows

LArSoft tools can be sequenced and combined to compound complete workflows.
The typical usage is aligned to three main types of “standard” workflows:

1. simulation

2. reconstruction160

3. analysis

where the first step, simulation, is of course skipped when processing real de-
tector data. LArSoft does not directly define these processing chains. Rather,
it inherits the flexibility from the art framework, which provides users with the
flexibility of choosing and arranging processing modules at will. Thus, the Ex-165

periments define the steps of each workflow according to their needs. Still, these
needs are fairly shared, and it is possible to characterize a “typical” chain for
each workflow.

4.1 Simulation workflow

The purpose of a simulation workflow is to describe a realistic response of the170

detectors to a known physics event (“truth”). Since the result of the simulation
should be equivalent to the output of the detectors, this result is represented by
the same data classes.

The main results of this workflow are:

• data products representing the detector response (e.g. raw::RawDigit175

and raw::OpDetWaveform)

• data products representing the simulated physics (e.g. simb::MCTruth,
simb::MCParticle

The complete simulation chain is summarized in fig. 5. The process is typi-
cally divided in three steps:180

1. event generation

2. detector physics simulation

7

Event
generators

Detector
simulation toolkits

LArSoft simulation

Event generator
modules

Detector physics
simulation

simulated data

LArSoft event
generators

Detector readout
simulation

Detector
conditions

Figure 5: A typical LArSoft simulation workflow.

8

3. detector readout simulation

• TPC: signal on the wires

• optical detector185

• “auxiliary” detectors (e.g. scintillator pads)

The physics event can be generated by an external program or library. LAr-
Soft currently interfaces directly to GENIE generator (neutrino interactions)
and CRY (cosmic rays). It can also read events stored in HEPEVT[7] format.
In addition, LArSoft provides built-in generators for single particles, Argon nu-190

cleus decays, and more.
The detector physics simulation includes the interaction of the generated

particles with the detector, and the transportation to the readout of produced
photons and electrons. This part of the simulation currently relies on GEANT4
for the interaction of particles with matter. Photon and electron transportation195

are implemented in built-in code. Detector parameters (e.g., the intensity of
the electric field) can be acquired from the job configuration or from a custom
data base.

The last step transforms the physics information, electrons and photons,
into digitized detector response, including the simulation of electronics noise200

and shaping. This is typically implemented with experiment-specific code, and
separately for each detector type.

4.2 Reconstruction workflow

The reconstruction phase produces standard physics objects describing the physics
event. Reconstruction delivers objects with different level of sophistication, as205

for example hits describing localized charge deposition as detected on a wire,
down to a complete hierarchy of three-dimensional tracks. These objects are
handed over for further analysis. Through the workflow, detector and data
acquisition parameters can be acquired from Experiment data bases.

Many possible reconstruction strategies are possible. LArSoft allows them210

to be applied indifferently to data produced by a real detector or simulated.
The more “traditional” one fig. 6) proceeds through:

1. calibration of the signals, noise suppression and removal of electronics
distortions;

2. independent reconstruction of charge deposition on each TPC wire (hits);215

3. definition of clusters from hits lying on the same wire plane;

4. combination of clusters from different planes in trajectories (tracks) and
particle cascades (showers);

5. identification of interaction points (vertices);

6. hierarchal connection of them into particle flow structures. Many options220

are implemented in LArSoft for each.

9

Detector

Detector
conditions

LArSoft reconstruction

Calibration

reconstructed objects

Calorimetry

simulated data

Particle
identification

Physics object reconstruction

Hit finding

Cluster finding

Track
reconstruction

Shower
reconstruction

Reconstruction
libraries

Figure 6: A typical LArSoft reconstruction flow.

10

Different algorithms can be chosen to perform each of these steps. Any ex-
ternal library that utilizes LArSoft data classes to receive inputs and deliver
results is also fully interchangeable with the algorithms implemented in LAr-
Soft. A noticeable example is the pandora pattern recognition toolkit, that225

accepts LArSoft hits as input and can present its results in the form of LArSoft
clusters, tracks and particle flow objects.

Alternative workflows can and have been developed. For example, a deriva-
tion of the workflow described above consists in a complete first pass tuned to
the reconstruction and subsequent identification of background objects (mostly230

cosmic rays), in their elimination at the level of hits, and a second pass tuned
for reconstruction of neutrino interactions.

Other approaches include direct track reconstruction without clustering; di-
rect clustering from calibrated or uncalibrated channel signals by image pro-
cessing algorithms, bypassing the construction of hits; perform a quick track235

reconstruction and use the result to better direct the algorithms during a sec-
ond pass; and more.

LArSoft and art modularity allows to arrange for acyclic workflows with any
predetermined number of (potentially optional) steps. It does not accommodate
cyclic workflows.240

4.3 Analysis workflow

Analysis workflows are the most vaguely defined, due in part to the more diverse
goals, and partly to the fact that in this relatively early stage the Experiments
have devoted most of the time to simulation and reconstruction.

The calibration of energy deposited in liquid argon by interacting parti-245

cles and their identification as specific types (e.g., muons, protons, etc.) have
been classified sometimes as “analysis”, sometimes as “reconstruction”. An-
other common analysis task is evaluation of reconstruction performances and
comparison between different algorithms and strategies.

Calibration activities, for example pedestal analysis, characterization of ar-250

gon purity, mapping of the electric field, also fall in this category and they are
ideal candidates for the standardization of workflows.

5 Deployment view: development and extensi-
bility

The extensibility of LArSoft is largely based on the underlying framework, art.255

The art framework processes physics event independently, executing on each
of them a sequence of modules. The framework also provides a list of global
“services” that modules can rely on. Examples of services implemented by
LArSoft include the description of detector geometry and channel mapping, the
set of detector configuration parameters, and access to TPC channel quality260

information.

11

In this section we describe the development environment and then focus on
the main handles LArSoft offers developers in terms of extensibility, including
new persistable data structures, new algorithms and the use of external libraries.

5.1 Development environment265

LArSoft is designed for and supports the use of a development environment
based on:

• UNIX Product Support (UPS) for access to dependent packages

• cetbuildtools [12] as build system

• Multi-Repository Build[13] (MRB) to coordinate build and execute soft-270

ware from different repositories

• source code repositories under git (recommended) or SVN

LArSoft is fully supported on the following platforms:

• Scientific Linux Fermi: version 6

• Darwin: version 13 (OS X 10.9 “Maverick”) and 14 (OS X 10.10, “Yosemite”)275

LArSoft typically supports the two most recent versions of these operating sys-
tems2. Support is also planned for the long term support release of Ubuntu
Linux (16.04 LTS).

A typical workflow starts with the set up of a working area. After the area
is created, subsequent utilization of it requires just a simple set up. LArSoft280

provides a script for this set up, and it is common practise for the Experiments
to provide customized ones.

The development, whether it is creation of new code or modification of ex-
isting one, follows the following workflow:

1. development-specific set up of the existing working area285

2. importing the source code to be modified, if any; this code will persist in
the area

3. modifications as needed

4. building

5. optional (and recommended) run of a standard test suite290

6. installation for running

The execution of LArSoft code including user development, as described
above, follows this workflow:

2 The actual supported versions depend also on the underlying support of the O.S. by
Fermilab.

12

1. run-time specific set up of the existing working area

2. execution of the software295

The execution of LArSoft code as distributed, without modification, has a sim-
pler set up that does not require a development working area.

LArSoft currently provides no facility to execute code remotely, including job
submission to remote clusters. The Experiments supply workflows and scripts
for this type of execution.300

5.2 Testing

LArSoft development model allows multiple contributors to modify the code at
the same time. This model can create conflicts and dysfunction in the code.
Tests are instrumental to the early detection of such defects. LArSoft includes
tests at two levels, called unit tests and integration tests.305

Unit tests exercise a limited part of the system, typically a single algorithm.
Ideally a unit test for an algorithm should test all the functions of that algorithm.
In practice, tests for complex algorithms tend to set up and test a few known
typical cases.

Integration tests involve the framework and one or more processing modules.310

These tests can reproduce real user scenarios, for example a part of the official
processing chain of an experiment, and they can compare new and historical
results. LArSoft tools allow these tests to be run at any time, and a standard
suite of tests is meant to be automatically and periodically run.

5.3 Data products315

LArSoft provides a basic set of persistable data classes. Each class is associated
to a simple concept and a set of related quantities. For example, raw::RawDigit
describes the raw data as read from a TPC channel; recob::Cluster describes
a set of hits observed on a wire plane; anab::Calorimetry contains information
about calibrated energy of a track.320

A data product is a class that:

• is simple: contains just data and trivial logic to access it; more complex
elaborations belong to algorithms

• contains only members from a small selected libraries: C++ standard
library is highly recommended; ROOT classes are also accepted325

• is not polymorphic

Limitations to ROOT I/O system impose restrictions on the types of al-
lowed data members, e.g. on the set of supported C++11 containers. Relations
between data products are expressed by associations. Associations are data
products provided by art which can relate a data product, or an element of it,330

to another element from another data product. Examples of use in LArSoft

13

provider test

art framework

art framework

service(s)

algorithm(s)provider

module(s)

provider test algorithm
test

provider(s)

provider(s)

algorithm test

Figure 7: LArSoft algorithm and service model. Black lines represent ownership.
The coloured lines show the path the algorithm obtains the provider through.
Both service providers and algorithms can be tested without involving the full
framework.

include associations between a reconstructed hit and the calibrated signal it’s
reconstructed from, and between a cluster and all the hits that constitute it.

Data products have a fundamental structural role: they act as messages to
be exchanged between algorithms. As such, they are also the format in which335

most of the results are saved. This allows to arbitrary split the processing chain
in multiple sequences of jobs.

5.4 User code

Algorithms constitute, together with data products, the heart of LArSoft, and
the ability for user to add their own algorithm is central to its design. In fact,340

LArSoft algorithms differ from users’ algorithms only in the judgment that their
purpose is considered of wider interest than just for the single user. Indeed, most
of the algorithms in LArSoft were written by users to solve their own specific
problems, and then adopted into the common toolkit. LArSoft encourages users
to produce algorithms that perform correctly on any liquid argon detector, and345

to integrate them into LArSoft itself.
The preferred model for algorithm structure is represented in fig. 7. We refer

to this as factorization model. The underlying principle it is that the algorithm
must be independently testable and portable, using the minimal set of necessary

14

dependences. This also allows for the algorithms to be used in contexts where350

the art framework is not available, provided that some other system supplies
equivalent functionalities as, and only when, needed. The model is made of two
layers:

1. the algorithm, in the form of a class that

• is configurable with FHiCL parameter sets355

• consumes LArSoft data products as input

• produces LArSoft data products as output

• has the minimal convenient set of dependencies

• elaborates a single event or part of an event at a time

2. a module for the art framework, that:360

• owns and manages the lifetime of one or more algorithm classes

• provides the algorithm(s) with the configuration, the data products
and the information it needs to operate

• delivers algorithm output to the art framework

Since algorithms often rely on services, the services also need to follow the365

same factorization model and be split in:

1. a service provider, in the form of a class that:

• is configurable with FHiCL parameter sets

• has the minimal convenient set of dependencies

• provides the actual functionalities370

2. a service for the art framework, that:

• owns and manages the lifetime of its service provider

• provides modules with a pointer to the provider

• when relevant, propagates messages from the framework (e.g., the
beginning of a new run) to the provider375

The module is also responsible of communicating to its algorithms which service
providers to use. Algorithms exclusively interact with service providers rather
than with art services.

Other important guidelines for the development of algorithms are:

interoperability they should document their assumptions in detail, and cor-380

rectly perform on any detector if possible

modularity each algorithm should perform a single task; complex tasks can
be performed by hierarchies of algorithms

15

maintainability they should come with complete documentation and proper
tests385

Figure 7 shows that if algorithms are not framework-dependent, their unit
test can also be framework-independent. Therefore, not only those algorithms
can be developed in a simplified, framework-unaware environment, but they can
also be tested in that same development environment. In other words, the full
development cycle, of which testing is an integral part, can seamlessly happen390

in the same environment.

5.5 External libraries

We call “external” any library that does not depend on LArSoft, with the pos-
sible exception of its data products. Examples in this category are GENIE,
GEANT4, and pandora.395

LArSoft

External
library

Library/LArSoft
interface

Exchange format,
API LArSoft

tools

data
products

Figure 8: Interaction between LArSoft and an external library

LArSoft’s modularity can accommodate contributions from external libraries
into its workflow (fig. 8). The preferred way is to use directly the external library
via its interface. This requires an additional interface module between LArSoft
and the library, in charge of converting the LArSoft data products into a format
digestible by the external library, configuring and driving it, and extracting and400

converting the results into a set of LArSoft data products.
This is exemplified in the interaction between LArSoft and pandora (fig. 9):

pandora uses its own data classes for input hits, particle flow results and geom-
etry specification. A base module exists that reads LArSoft hits, converts them
into pandora’s, translates geometry information, and recreates out of pandora405

particle flow objects LArSoft clusters, tracks, vertices, and more.
This approach has relevant advantages: it can be fairly fast; it allows a

precise translation of information; it provides the greatest control on the flow
within the library; it defines and tracks the configuration of the external library.
Its greatest drawback is the need for the LArSoft interface to depend on the410

external library. If this limitation is not acceptable, a more independent com-
munication channel can be established via exchange files. In this case, LArSoft
interface translates data products into a neutral format, possibly based solely on
ROOT objects or on a textual representation, and back into data products. The

16

LArSoft

pandora

module derived from
LArPandoraParticleCreator

particle flow
(via API)

Hit finder

recob::Hit

hits (via API)

More reconstruction
(e.g. particle ID, calorimetry...)

recob::Cluster
recob::PFParticle

...

Figure 9: Interaction between LArSoft and pandora

17

external library is in charge of performing the equivalent operations with the415

library data format. This is for example the generic communication mechanism
with event generators that support HEPEVT format. The strong decoupling
comes at the price of a fragmented execution chain and the burden of addi-
tional configuration consistency control, for example to ensure that a consistent
geometry was used for the information (re)entering LArSoft.420

6 Physical view: repositories and packages

LArSoft supports the use of the UNIX Product Support (UPS) system for de-
ployment of LArSoft itself and of the additional software it depends from. This
system is organized in products containing executable code for a specific plat-
form and auxiliary data as needed. LArSoft set up demands from UPS a specific425

version of almost every library LArSoft depends on, including for example the
GNU compiler, Boost libraries and CERN ROOT.

LArSoft code base is organized in repositories grouping different functional-
ities. The current list of repositories is:

larcore independent of data products (e.g. geometry description)430

lardata defining the shared data products

larevt code independent of simulation and reconstruction algorithms (e.g. cal-
ibration, database access)

larsim detector simulation

larreco physics object reconstruction435

larana depending on simulation or reconstruction algorithms (e.g. particle
identification, calorimetry)

larpandora interface with pattern recognition package pandora

lareventdisplay ROOT-based visualization tool

larexample examples of LArSoft modules440

larsoft “umbrella” product

Additional LArSoft repositories do not contain source code:

larsoft data containing small-size, slowly-changing data files

lar ci providing a Continuous Integration test system that allows instant, thor-
ough test of the code445

LArSoft repositories are maintained in Fermilab Redmine as git repositories.

18

6.1 Local LArSoft installation

LArSoft can be installed in any supported platform, either with:

binary installation copying prebuilt UPS products from Fermilab server into
a local UPS directory450

source installation copying, building and installing into a local UPS directory
the source code of each and every dependent package

Both installation patterns are supported via a single script. In this way, LArSoft
can be installed in virtual machines, personal computers as well as in computing
clusters.455

References

[1] Mike Wang Robert Kutschke, Marc Paterno. The art workbook. Fermilab,
2015. URL: https://web.fnal.gov/project/ArtDoc/Pages/workbook.
aspx.

[2] libwda.460

[3] Cern clhep.

[4] nutools. URL: https://cdcvs.fnal.gov/redmine/projects/nutools.

[5] Genie.

[6] Cry.

[7] Hepevt format.465

[8] Geant4.

[9] Cern root.

[10] The art team. Fhicl configuration language.

[11] Ups.

[12] cetbuildtools.470

[13] Multi-repository build.

19

https://web.fnal.gov/project/ArtDoc/Pages/workbook.aspx
https://web.fnal.gov/project/ArtDoc/Pages/workbook.aspx
https://web.fnal.gov/project/ArtDoc/Pages/workbook.aspx
https://cdcvs.fnal.gov/redmine/projects/nutools

	Introduction
	Purpose
	Scope

	Overview
	Logical view: components
	Internal components

	Process view: workflows
	Simulation workflow
	Reconstruction workflow
	Analysis workflow

	Deployment view: development and extensibility
	Development environment
	Testing
	Data products
	User code
	External libraries

	Physical view: repositories and packages
	Local LArSoft installation

