Introduction to DAQ discussions at CERN Gles Barr 25 Feb 2016

Overview

- General ProtoDUNE DAQ requirements
- Front-end warm electronics options
- Back-end computing options
- Trigger and timing system options
- Online storage and processing options
- Workshop summary Thursday

(General protoDUNE Offline Computing Requirements)

Summary of currently discussed architectures

The diagram below captures the main features of all the schemes, in some cases some of the boxes get combined together

Summary of currently discussed architectures

The diagram below captures the main features of all the schemes, in some cases some of the boxes get combined together

WA105

New (E.Hazen et al.)

Requirements

This section is under construction and will move to the front of the talk when it is more finished.

High level requirements

- Accumulate data from beam particles according to the protoDUNE proposal or any update of it (better to copy the requirement here and update it).
 - Use zero suppression to reduce the data size, but only in accordance with specification from the physics analysis groups.
 - High data throughput, consistent with the design for the far detectors (i.e. special features that are only needed for protoDUNE encouraged, but with moderation from cost considerations).
- Accumulate a cosmic ray sample
- Accumulate calibration events
- Data from beam detectors (TOF, BPM, ...) should be able to be associated with the TPC and PD data from protDUNE.

It is NOT required that the protoDUNE DAQ be a final production prototype of the DUNE FD DAQ – freezing our technology choices can occur later.

Requirements

This section is under construction and will move to the front of the talk when it is more finished.

Near front-ends:

- Receive digital signals from cryostat reliably
- Merge data from each cold board to (approx)
 1 APA (Merge 80 links to 1 or 2 computers)
- Provide trigger primitive information (for FD mode of operation)
- Remove some data in triggered mode: retain only data in a time window around the trigger time.
- Provide time synchronization each pulse time should be known with respect to the SPS spill start time.
- Have a backpressure mitigation policy
- Have the ability to start sending data at a coordinated time (start of run) and to finish data taking cleanly.

Near or in computers:

- Initialize hardware and software components for data taking according to a managed set of configuration parameters.
- Merge data into event units in a scheme that is compatible with the offline programs (event building).
- Allow software trigger selection and other data reduction techniques to be applied while the data is in computer memory (either before or after event building).
- Store the data ready for sending into the EOS system (Maxim, have I got that right?)
- Have a backpressure mitigation policy
- Have the ability to start sending data at a coordinated time (start of run) and to finish data taking cleanly.

11